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Abstract. For a commutative, integral, and divisible quantale L, a concept of top L-convergence spaces
based on L-sets other than crisp sets is proposed by using a kind of L-filters, namely limited L-filters
defined in the paper. Our main result is the existence of function spaces in the the concrete category of
top L-convergence spaces over the slice category Set↓L rather than the category Set of sets, such that the
concrete category of top L-convergence spaces over the slice category Set↓L is Cartesian closed. In order
to support the existence of top L-convergence spaces, some nontrivial examples of limited L-filters and top
L-convergence spaces are presented also.

1. Motivation and introduction.

Lowen [29] pointed out that the category of stratified L-topological spaces is not completely satisfactory
from a structural point of view, that is, there is no natural function space structure for the sets of morphisms.
In classical theory, this deficiency can be overcome by considering the category of convergence spaces [35],
which is a super-category of the category of topological spaces [31]. In the lattice-valued case of the
underlying lattice L=[0,1], Lowen et al. [28, 29] consider fuzzy convergence spaces as a generalization
of Choquent [2] convergence spaces and the resulting category has, among other things, function space,
where prime prefilters play a crucial role as Jäger [22] pointed out. Beside prefilter, there are other kinds
of lattice-valued filters in literature of fuzzy topology or nontrivial lattice-valued convergence theory, see
Eklund and Gähler [3], Fang [5, 6, 8–10], Flores and others [4], Höhle and Šostak [16], Jäger [21, 22, 24, 25],,
Jäger and Burton [23], Li [26, 27], Pang [32–34], Yao [42] and others.

Besides Lowen’s function space of fuzzy convergence spaces, there are some significant works of
function spaces established by using different lattice-valued filters. For examples: (1) Based on the concept
of stratified L-filters [16], Jäger [21, 22] developed a theory of L-generalized convergence spaces in case
of L being a complete Heyting algebra, and the resulting category of stratified L-generalized convergence
spaces has the function space as desired. And after Jäger’s function space, Fang [5] proposed the category of
L-ordered convergence spaces as a reflective full subcategory of the category of L-generalized convergence
spaces, which has the function space [11]; (2) By using L-filters of ordinary sets, Yao [42] defined L-fuzzifying
convergence spaces and showed the resulting category has the corresponding function space in case of L
being a complete Heyting algebra. And after Yao’s work, Wu with coauthor Fang [40] constructed their
function spaces in the category of L-ordered fuzzifying convergence spaces, which is considered as a
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reflective full subcategory of the category of L-fuzzifying convergence spaces; (3) In 2013, Pang generalized
the concept of L-fuzzy Q-convergence spaces [32] to that of (L,M)-fuzzy Q-convergence spaces [33] by
using L-filters, and showed the existence of his function space, here the underlying lattices are completely
distributive.

Following these works about function spaces, Yu and Fang [39] pointed out that the existence of function
spaces in these work, seriously, depend on the idempotency of the meet operation ∧ of the underlying
Heyting algebra or completely distributive lattice, and then constructed their function spaces in the category
of>-convergence spaces in case of the underlying lattice being a MV-algabra, here the semigroup operation
of a MV-algebra is not idempotent but commutative. For more works about>-convergence spaces, we refer
to [12], [36], [30] and others.

From the constructions of function spaces described above, there exists a common phenomenon that the
domain set of function spaces is a set of suitable maps from one crisp set to another, so one could say the
base category of constructing function spaces is the category Set of sets and maps. We hesitate to mention
all L-sets as objects form a slice category Set↓L of Set over a appropriate lattice L. Then a interest question
is how to construct function spaces so that the base category involved is the slice category Set↓L rather than
the category Set of sets.

By this paper, we want to answer the existence of function spaces in a concrete category over the slice
category Set↓L. For this, we firstly recover the concept of >-filters in [12, 15] on an L-set rather than a crisp
set in case of the underlying lattice L being a commutative, integral, and divisible quantale, and obtain the
concept of limited L-filters on an L-set, which is a new version of >-filters defined on a crisp set. And then
by means of limited L-filters, we introduce a concept of top L-convergence spaces and establish the concrete
category of top L-convergence spaces over the slice category Set↓L. Our main result is the existence of
function spaces in the the concrete category of top L-convergence spaces over the slice category Set↓L such
that the concrete category of top L-convergence spaces is Cartesian closed. In order to support the existence
of our top L-convergence spaces, we present two kinds of examples to show how we can obtain firstly
limited L-filters and then top L-convergence spaces, one of which is from stratified L-topological topologies
and another stems from the classical convergence structures.

2. Preliminaries.

The main results in the paper depend on the quantaloidD(L) constructed from a commutative, integral,
and divisible quantale L and the base category Set↓L. Hence we will divide the section into four subsections
to introduce the definitions and notions needed.

2.1. GL-quantales

A commutative quantale is a pair (L, ∗), where L is a complete lattice with respect to a partial order ≤
on it, with the top element >(= ∧∅) and the bottom element ⊥(= ∨∅), and ∗ is a commutative semigroup
operation on L such that

α ∗
(∨

j∈J

β j

)
=

∨
j∈J

α ∗ β j,

for all α ∈ L and {β j | j ∈ J} ⊆ L. (L, ∗) is unital if there exists an element I with I ∗ α = α for all α, and the I is
unique if exists, called the unit.

For a given commutative quantale (L, ∗) there exists a binary operation→: L × L→ L, defined by

α→ β =
∨
{x ∈ L | α ∗ x ≤ β},

called the implication (operation). Further, ∗ and → form an adjoint pair in the sense that the following
adjointness holds:

α ∗ γ ≤ β⇐⇒ γ ≤ (α→ β) for all α, β, γ ∈ L. (Ad)
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A commutative unital quantale (L, ∗, I) is said to be divisible if it satisfies the following condition

∀α, β ∈ L, α ∧ β = α ∗ (α→ β). (Div)

From [20], we know (Div) is equivalent one of (Div1)-(Div2) below:

∀α, β ∈ L, α ≤ β⇒α = β ∗ (β→ α) (Div1)
∀α, β, γ ∈ L, α, γ ≤ β⇒γ ∗ (β→ α) = α ∗ (β→ γ) (Div2)

and divisible (L, ∗, I) or L simply, must be integral, i.e., I = >. Hence L will be called a GL-quantale.

Lemma 2.1 (Fang [7], Höhle[20]). In a GL-quantale L, (1)α∧(
∨

j∈J β j) =
∨

j∈J α∧β j, (2)α∗(β∧γ) = (α∗β)∧(α∗γ)
for α, β, γ, β j ∈ L, ∀ j ∈ J.

Standing assumpation. In this paper, if not otherwise specified, L always stands for a GL-quantale.
A quantaloidD(L) [37] (called the quantaloid of diagonals of L) is constructed in [18], which means that

it is a category by the following data:
(2) Objects: elements in L.
(2) Morphism sets: D(L)(δ, η) = {δ ∈ L | δ ≤ α ∧ β} for all α, β ∈ L.
(3) Composition: the composition ◦q of morphisms is defined by

ε ◦q δ := δ ∗ (β→ ε)
(Div2)
= ε ∗ (β→ δ)

for each δ ∈ D(L)(α, β) and ε ∈ D(L)(β, γ).
(4) Identities: the unit ofD(L)(α, α) is α for every α ∈ L.
(5) Local orders: the partial order ofD(L)(δ, η) is inherited from L such that

(i) D(L)(δ, η) is a complete lattice;
(ii) for all δ, δ j ∈ D(L)(α, β) ( j ∈ J), all β, ε j ∈ D(L)(β, γ) ( j ∈ J),(∨

j∈J

ε j

)
◦q δ =

∨
j∈J

(ε j ◦q δ), ε ◦q

∨
j∈J

δ j =
∨
j∈J

(ε ◦q δ j).

Remark 2.2. LetD(L) be the quantaloid of diagonals of a GL-quantale L.
(i) Given arrows δ ∈ D(L)(α, β) and ε ∈ D(L)(β, γ), supremum-preserving maps

(−) ◦q δ : D(L)(β, γ)→D(L)(α, γ) and ε ◦q (−) : D(L)(α, β)→D(L)(α, γ)

have right adjoints

(−)↙ δ : D(L)(α, γ)→D(L)(β, γ) and ε↘ (−) : D(L)(α, γ)→D(L)(α, β),

called the left implication and the right implication, respectively, Hence we have

(β ◦q α) ≤ γ⇔ β ≤ (γ↙ α)⇔ α ≤ (β↘ γ).

(ii) If α, δ, β are in L with δ ≤ α ∧ β, then δ has two roles in D(L): one is a morphism from α to β, i.e.,
δ ∈ D(L)(α, β), and another is a morphism from β to α, i.e., δ ∈ D(L)(β, α). Thus for δ ≤ (α ∧ γ) and
ε ≤ (β ∧ γ), the left implication (ε ↙ δ) ∈ D(L)(α, β) for δ ∈ D(L)(γ, α), ε ∈ D(L)(γ, β) and the right
implication (δ↘ε) ∈ D(L)(β, α) for δ ∈ D(L)(α, γ), ε ∈ D(L)(β, γ), are well-defined. Further, (ε↙δ) is equal
to (δ↘ε), and both are smaller than α ∧ β. In fact, both (ε↙ δ) and (δ↘ε) are computed by

(ε↙ δ) = (δ↘ε) = α ∧ β ∧ ((β→ δ)→ ε), (Im)

Some basic properties of operations, such as↘,↙ and ◦q are needed, which are collected in the lemma
below. They can be found in many works, for instance, [37].

Lemma 2.3. In the quantaloid D(L), the following formulas hold for all arrows ε ∈ Q(β, γ), δ, δ1, δ j ∈ Q(α, β),
η, η j ∈ Q(α, γ) for all j ∈ J.

(1) β ◦q δ = δ = δ ◦q α, (δ↙ α) = δ = (β↘ δ).
(2) α ≤ (δ↘ δ1) ⇔ δ ≤ δ1 ⇔ β ≤ (δ1 ↙ δ).
(3)

(∧
j η j

)
↙

(∧
j δ j

)
≥

∧
j(η j ↙ δ j),

(∨
j η j

)
↙

(∨
δ j

)
≥

∧
j(η j ↙ δ j).

(4) (η↙ δ) ◦q δ ≤ η and ε ◦q (ε↘ η) ≤ η.
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2.2. The base category Set↓L.

An L-set A is a map from a domain set Adom to the underlying GL-quantale L, which is precisely an
L-fuzzy set in terminology of Goguen [14]. And intuitively, the valued A(x) ∈ L is interpreted as the degree
to which the element x ∈ Adom belong to A.

For two L-sets A and B, if a map ϕ : Adom → Bdom with the property of A(x) = B(ϕ(x)) for all x ∈ Adom,
we say that it is degree-preserving from L-set A to B, denoted by ϕ : A → B as usual. All L-sets and
degree-preserving maps between them form the the base category Set↓L in our paper. In details, Set↓L is
given by the following data:

• objects: all L-sets, denoted by A,B,C, · · · , in the paper.
• morphisms: the set of morphisms from an L-set A to B is denoted and determined by

[A,B]Set↓L := {ϕ | ϕ : Adom → Bdom is a map with A = B ◦ ϕ}
= {ϕ | ϕ : A→ B is a degree-preserving map}.

• composition: (ψ ◦ ϕ)(x) = ψ(ϕ(x)) for all x ∈ Adom when ϕ ∈ [A,B]Set↓L and ψ ∈ [B,C]Set↓L.

• identity: for A ∈|Set↓ L|, the identity idA in [A,A]Set↓L is the identity map idAdom on the domain set
Adom.

Remark 2.4. In Set↓L, the terminal object, is the L-set idL, the identity map on L, with its domain set L.

If an L-set B fulfills Bdom ⊆ Adom and A(x) = B(x) for all x ∈ Bdom, then we say B is a saturated L-subset of A.
For an L-set A and δ ∈ L, we write Aδ, for the saturated L-subset of A such that Aδ(s) = δ whenever

s ∈ (Aδ)dom := {x ∈ Adom |A(x) = δ},

called the δ-saturated L-subset of A concretely. No loss of generality, we assume the domain set of A is
nonempty. Under these notions, we have the following proposition.

Proposition 2.5. Let {A j
} j∈J be a set-indexed family of L-sets. The product of {A j

} j∈J in Set↓L is an L-set P, given by

(i) P = idL if J = ∅.

(ii) When J , ∅, Pdom =
⋃
α∈L

{
(x j) j∈J | A j(x j) = α for all j ∈ J

}
such that P((x j) j∈J) = α whenever

(x j) j∈J ∈ {(x j) j∈J | A j(x j) = α for all j ∈ J}

with some α ∈ L. In the case, the projection p j : P → A j from the product P to A j in Set↓L, here j ∈ J, is
determined by p j((x j) j∈J) = x j whenever (x j) j∈J ∈ Pdom. In particular, The product of two L-sets A and B is
denoted by A × B simply, and of course

(A × B)dom = {(x, y) ∈ Adom × Bdom | A(x) = B(y)}.

Notice that in Proposition 2.5, for the product of two L-sets A and B, it is possible that the domain set
(A×B)dom is empty as a referee pointed out by the example: let an L-set A with Adom = {x} and A(x) = α, and
B with Bdom = {y} and B(y) = β, where α , β. Then (A×B)dom = ∅ according to the definition of A×B. In this
case, we confirm here that A × B as an object in Set↓L, is the unique empty map ∅ → L since the empty set
∅ is the initial object in Set, and both projections pA : A × B→ A and pB : A × B→ B are empty. By the way,
∅ → L is the initial object in Set↓L, precisely.
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2.3. The power L-set
For an L-set A, an L-set PA [19] could be constructed by

(PA)dom :=
⋃
δ∈L

{(δ, f ) ∈ L × LAdom | f ≤ δ ∧ A}

with PA(δ, f ) = δ for (δ, f ) ∈ (PA)dom. And PA will be called the power L-set of A, and a pair (δ, f ) ∈ (PA)dom

is called a δ-limited L-subset (or a limited L-subset) of A sometimes. Note that for a limited L-subset (δ, f )
of A and an x ∈ Adom, f (x) is a morphism inD(L)(A(x), δ), and we write (δ, f ) = (ε, 1) for δ = ε and f = 1.

Remark 2.6. There exists a partial order ≤ on (PA)dom defined by

∀(δ, f ), (ε, 1) ∈ (PA)dom, (δ, f ) ≤ (ε, 1)⇔ δ = ε and f ≤ 1,

which is called the underlying order on PA. Further, if we still write ≤ for the restriction of the underlying order ≤ to
the set (PA)δdom with δ ∈ L, ((PA)δdom,≤) is a complete lattice with the bottom element (δ,⊥Adom ) and the top element
(δ, δ∧A), where⊥Adom and δ∧A are determined by⊥Adom (x) = ⊥ and (δ∧A)(x) = δ∧A(x) for all x ∈ Adom, respectively.
Thus for a family of {(δ, f j) ∈ (PA)δdom | j ∈ J}, the supremum and the infimum of it are given by∨

j∈J

(δ, f j) =
(
δ,

∨
j∈J

f j

)
and

∧
j∈J

(δ, f j) =
(
δ,

∧
j∈J

f j

)
,

here
(∨

j∈J f j

)
(x) =

∨
j∈J f j(x),

(∧
j∈J f j

)
(x) =

∧
j∈J f j(x) for x ∈ Adom.

There exists an L-relation on PA, denoted by PA(−,−) or PA simply, in the sense that PA : (PA)dom ×

(PA)dom → L is a map such that
P((δ, f ), (ε, 1)) ∈ D(L)(δ, ε),

which is defined by

PA((δ, f ), (ε, 1)) =
∧

x∈Adom

(
1(x)↙ f (x)

)
(Im)
=

∧
x∈Adom

(
δ ∧ ε ∧ ((δ→ f (x))→ 1(x))

)

In particular, PA((δ, f ), (δ, 1)) =
∧

x∈Adom
δ ∧

(
(δ → f (x)) → 1(x)

)
, and further, by using the condition (Div),

PA((δ, f ), (δ, 1)) =
∧

x∈Adom
δ ∗

(
f (x)→ 1(x)

)
. Note that (δ, f ) ≤ (ε, 1) if and only if PA((δ, f ), (ε, 1)) = δ = ε.

To keep notations simple, we will write x ∈ A instead of x ∈ Adom for an element x in the domain set
Adom of any L-set A if no confusion exists.

Each degree-preserving mapϕ : C→ D between L-sets can induce two degree-preserving maps between
the power L-sets. One is denoted by ϕ→ : PC → PD, such that ϕ→(δ, 1) = (δ, ϕ→(1)) for (δ, 1) ∈ PC, here
ϕ→(1) is determined by for each y ∈ D, ϕ→(1)(y) =

∨
ϕ(x)=y 1(x), or equivalently,

ϕ→(1)(y) =

{ ∨
{1(x) | ϕ(x) = y, x ∈ CD(y)

}, y ∈ ϕ(CD(y)),
⊥, others,

since ϕ : C → D is a degree-preserving map. And another is denoted by ϕ← : PD → PC such that
ϕ←(ε, f ) = (ε, ϕ←( f )) for (ε, f ) ∈ PD, here ϕ←( f ) is defined by ϕ←( f )(x) = f (ϕ(x)) for an x ∈ C. The pair
of degree-preserving maps ϕ→ : PC → PD and ϕ← : PD → PC form an adjunction in the sense that for
(δ, 1) ∈ PC, (ε, f ) ∈ PD, PD(ϕ→(δ, 1), (ε, f )) = PC((δ, 1), ϕ←(ε, f )) holds.

At the end of the section, we offer a proposition to collect the properties of L-relation PA; and they can
be found in many works, for instance [19, 38], which is useful to the following sections.
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Proposition 2.7. For all (δ, f ), (ε, 1), (η, h) ∈ PA, the following are valid.

(1) δ = PA((δ, f ), (δ, f )).
(2) PA((ε, 1), (η, h)) ◦q PA((δ, f ), (ε, 1)) ≤ PA((δ, f ), (η, h).
(3) For each δ-limited L-subset (δ, f ), PA((δ, f ),−) is order-preserving and PA(−, (δ, f )) is order-inverse, and

further for a family {(ε, 1 j)} j∈J,
(a)

∧
j∈J PA((δ, f ), (ε, 1 j)) = PA((δ, f ),

∧
j∈J(ε, 1 j)),

(b)
∧

j∈J PA((ε, 1 j), (δ, f )) = PA(
∨

j∈J(ε, 1 j), (δ, f )).

2.4. Categorical concepts.

The reader is referred to [1] for notions and results in category theory. In the subsection, some
categorical concepts needed in the paper, are introduced. By a category we mean a constructCwhose objects
are structured L-sets, i.e. pairs (A, ξ) where A is an L-set and ξ a C-structure on A, whose morphisms ϕ :
(A, ξ)→ (B, η) are suitable degree-preserving maps from A to B and whose composition is the composition
of degree-preserving maps. Hence a category in the paper is a concrete category over Set↓L and the forgetful
functor is obvious. We simply write A for a categorical object (A, ξ) sometimes.

Definition 2.8. A category C is said to be topolo1ical over Set↓ L if for any L-set A, any family
{
(A j, ξ j)

}
j∈J

of
C-objects and any family {ϕ j : A → A j} j∈J of degree-preserving maps, indexed by a class J, there exists a unique C-
structure ξ on A which is initial with respect to {ϕ j : A→ (A j, ξ j)} j∈J, i.e., for a C-object (C, η), a ψ : (C, η)→ (A, ξ)
is a C-morphism if and only if for every j ∈ J the composite ϕ j ◦ ψ : (C, η)→ (A j, ξ j) is a C-morphism.

Definition 2.9. A category C is said to be Cartesian-closed provided

(1) C has the terminal object T in the sense that there is exactly one C-morphism from every C-object C to T.
(2) For each pair (A,B) of C-objects there exists a product A × B in C.
(3) For each pair of C-objects A and B, there exists a C-object BA, called function space, such that there exists a
C-morphism EA,B : BA

× A → B (called evalution morphism) satisfying the universal property that for each
C-object C and each C-morphism ψ : C × A → B, there is a unique C-morphism ψ : C → BA such that
EA,B ◦ (ψ × idA) = ψ.

3. Limited L-filters on an L-set and their products.

The contents of the section are twofold: one is to generalize the concept of >-filters from a crisp set
to any L-set such that the concept of limited L-filters is obtained; Another is to determine the products of
limited L-filters on L-sets.

3.1. Limited L-filters on an L-set.

In the subsection, a concept of limited L-filters is proposed and some examples are offered.

Definition 3.1 (Fang and Yue [13] for quantaloid-enriched categories). Let A be an L-set with the nonempty
domain set and F be a nonempty subset of (PA)δ for an element δ ∈ L. The pair (δ,F), or F briefly, is said to be a
δ-limited L-filter, or justly limited L-filter sometimes, on A provided the subset F satisfies the following axioms:

(T1) For all (δ, 1) ∈ F, δ =
∨

x∈Aδ 1(x).
(T2) (δ, f ) ∈ (PA)δ with δ =

∨
(δ,1)∈FPA((δ, 1), (δ, f )) means (δ, f ) ∈ F.

(T3) Both (δ, 1) ∈ F and (δ, f ) ∈ F mean (δ, 1∧ f ) ∈ F.

Write F>(A) for the L-set with the domain set of all limited L-filters on A, and for a limited L-filter (δ,F), F>(A)(δ,F) =
δ. For a fixed δ ∈ L, the δ-saturated L-subset of F>(A) is denoted by Fδ

>
(A).
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According to Definition 3.1, there exists an order ≤F on the domain set of F>(A) defined by

(δ,F) ≤F (ε,G) if and only if δ = ε and F ⊆ G,

and then (F>(A),≤F) becomes a partially ordered set. Here notice that the condition (T2) assures that the
subset F of a limited L-filter (δ,F) must be an upper set with the underlying order on PA.

Definition 3.2. Let A be an L-set, and S be a nonempty subset of (PA)δ for δ∈L. The pair (δ, S), briefly S sometimes,
is said to be a δ-limited filter-base or limited filter-base on A if the subset S satisfies the following conditions:

(TB1) For all (δ, 1) ∈ S, δ =
∨

x∈Aδ 1(x),
(TB2) For each (δ, f1), (δ, f2) ∈ S, δ =

∨
(δ,1)∈SPA((δ, 1), (δ, f1 ∧ f2)).

Every δ-limited filter-base (δ, S) generates a δ-limited L-filter (denoted by (δ,FS) or FS simply), defined by

FS := {(δ, 1) ∈ (PA)δ | δ =
∨

(δ, f )∈S

PA((δ, f ), (δ, 1))}.

In the case, (δ, S) is called a δ-limited filter-base of (δ,FS). Certainly, every limited L-filter is a limited
filter-base of itself. There are examples of limited L-filters useful to next sections.

Example 3.3. (1) For an L-setA with x ∈ A, a pair (A(x), [x]A(x)), given by

[x]A(x) := {(A(x), f ) ∈ (PA)A(x)
| f (x) = A(x)},

is a limited L-filter on A in the sense of Definition 3.1, called the degree-limited L-filter of x. Furthermore, we
observe that the degree-limited L-filter (A(x), [x]A(x)) has a limited filter-base of one element determined by {(A(x), fx)},
here and in the following, fx denote the map from the domain set of A to L such that for each y in the domain set
of A, fx(y) = A(x) if y = x, and = ⊥ otherwise. Notice that (A(x), [x]A(x)) is ultrafilter with respect to ≤F. In
fact, if (A(x), [x]A(x)) ≤F (A(x),F), i.e., [x]A(x) ⊆ F, for some limited >-filter on A, then for each (A(x), f ) ∈ F,
(A(x), fx ∧ f ) ∈ F follows from the (A(x), fx) ∈ [x]A(x) ⊆ F. So,

f (x) =
∨
y∈A

( fx ∧ f )(y) =
∨
y∈A

( fx(y) ∧ f (y)) = fx(x) = A(x),

which means that (A(x), f ) ∈ [x]A(x) already.
(2) Let ϕ : C→ D be a degree-preserving map between L-sets.
(i) For (δ,F) ∈ F>(C), the pair (δ,BF) is a δ-limited filter-base on D, here BF := {(δ, ϕ→( f )) | (δ, f ) ∈ F}.

The limited L-filter (δ, ϕ⇒(F)) generated by (δ,BF) is called the image of (δ,F) under ϕ, denoted by ϕ⇒(δ,F).
Especially, when x ∈ C, the image of the degree-limited L-filter (C(x), [x]C(x)) of x under ϕ is the degree-limited L-filter
(C(x), [ϕ(x)]C(x)), where C(x) = D(ϕ(x)).

(ii) The degree-preserving mapϕ⇒ : (F>(C),≤F)→ (F>(D),≤F) between partially ordered sets is order-preserving
in the sense of (δ, ϕ⇒(F)) ≤F (δ, ϕ⇒(G)) when (δ,F) ≤F (δ,G) in (F>(C),≤F).

(iii) For (σ,G) ∈ F>(D), the pair (σ, SG) determined by

SG = {(σ, ϕ←(1)) ∈ (PC)σ | (σ, 1) ∈ G},

is a σ-limited filter-base on C provided
∨

x∈Cσ 1(ϕ(x)) = σ for any (σ, 1) ∈ G, and in this case the limited L-filter
(σ, ϕ⇐(G)) on C generated by (σ, SG) is determined by

ϕ⇐(G) = {(σ, f ) ∈ (PC)σ |
∨

(σ,1)∈G

PC((σ, ϕ←(1)), (σ, f )) = σ},

which is called the inverse image of (σ,G) under ϕ and denoted by ϕ⇐(σ,G).
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Example 3.4. If A is an L-set with Aδ , ∅ for a δ ∈ L, and iδ : Aδ
→ A denotes the inclusion degree-preserving

map, then (δ, i⇐δ (G)) is a limited L-filter on Aδ for a limited L-filter (δ,G) on A, and we have (δ,G) ≤F (δ, i⇒δ (i⇐δ (G)))
in general. Further, if (δ,F) is a limited L-filter on Aδ, then (δ, i⇐δ (i⇒δ (F))) = (δ,F) holds.

Example 3.5. Let idL be the terminal object (Cf. Remark 2.4) in Set↓L. Then the power L-setPidL of idL is determined
by the following data:

(i) the domain set of it is {(α, α∧S) | S ∈ LL such that S ≤ idL and α ∈ L}.
(ii) PL(α, α∧S) = α for each (α, α∧S) in the domain set.

By using (T1) and (T2) of Definition 3.1, the degree-limited L-filter (α, [α]α) of α ∈ L must have the form of

[α]α = {(α, α∧S) | S ∈ LL such that S ≤ idL and S(α) = α}.

3.2. The products of limited L-filters
We will focus on the products of limited L-filters on L-sets. For this, we need the lemma below.

Lemma 3.6. Let (δ, Si) be a δ-limited filter-base of (δ,Fi) ∈ F>(Ci), here i = 1, 2 and δ ∈ L. Then the pair (δ, S1 × S2),
determined by

S1 × S2 =
{
(δ, f1 × f2) ∈

(
P(C1×C2)

)δ
| (δ, f 1) ∈ S1 and (δ, f2) ∈ S2

}
,

is a δ-limited filter-base, here for any (δ, f1) ∈ (PC1)δ and (δ, f2) ∈ (PC2)δ,

f1 × f2((x1, x2)) = f1(x1) ∧ f2(x2), ∀(x1, x2) ∈ (C1×C2).

Concretely, the δ-limited filter-base (δ, S1 × S2) generates a δ-limited L-filter, called the product of (δ,F1) and(δ,F2)
and denoted by (δ, ,F1 × F2) or F1 × F2 simply, determined by

F1 × F2 =
{
(δ, f ) ∈

(
P(C1 × C2)

)δ
| δ =

∨
(δ, fi)∈Si,i=1,2

P(C1 × C2)
(
(δ, f1 × f2), (δ, f )

)}
.

In particular, the binary operation (−) × (−) of limited L-filters preserves the partial order ≤F in each argument,
i.e., (δ,H1 × F2) ≤F (δ,H1 × G2) for (δ,H1) ∈ F>(C1) is (δ,F2 ≤F (δ,G2) and (δ,F1 ×H2) ≤F (δ,G1 ×H2) for
(δ,H2) ∈ F>(C2) if (δ,F1) ≤ (δ,G1).

Proof. For any pair (δ, f ), (δ, 1) ∈ (S1 × S2), there exist (δ, f1), (δ, 11) ∈ S1 and (δ, f2), (δ, 12) ∈ S2 such that
(δ, f ) = (δ, f1 × f2) and (δ, 1) = (δ, 11 × 12). Firstly,

δ = PCi((δ, fi), (δ, fi)) ≤
∨

(δ,hi)∈Si

PCi((δ, hi), (δ, fi)) (i = 1, 2)

follows immediately from Proposition 2.7 (1), and then, we observe that

δ =
∨

(δ,hi)∈Si,(i=1,2)

PC1((δ, h1), (δ, f1)) ∧ PC2((δ, h2), (δ, f2)),

by means of Lemma 2.1 (1). Since for each (δ, hi) ∈ Si (i = 1, 2), by Lemma 2.1 (2)

P(C1 × C2)((δ, h1 × h2), (δ, f1 × f2)) =
∧

(x1,x2)∈C1×C2

δ ∗
(
(h1(x1) ∧h2(x2))→ ( f1(x1) ∧ f2(x2))

)
≥

∧
(x1,x2)∈C1×C2

δ ∗
[(

h1(x1)→ ( f1(x1)
)
∧

(
h2(x2)→ f2(x2)

)]
≥

( ∧
x1∈C1

δ ∗ (h1(x1)→ f1(x1))
)
∧

( ∧
x2∈C2

δ ∗ (h2(x2)→ f2(x2))
)

=PC1((δ, h1), (δ, f1)) ∧ PC2((δ, h2), (δ, f2)),
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we use the above observation together with the condition (TB2) of satisfying byBi (i = 1, 2) to conclude that

δ =
∨

(δ,hi)∈Si,(i=1,2)

P(C1 × C2)((δ, h1 × h2), (δ, f1 × f2))

since for each (δ, f1), (δ, f2) ∈ S,

δ =
∨

(δ,h1)∈S1

PC1((δ, h1), (δ, f1) and δ =
∨

(δ,h2)∈S2

PC2((δ, h2), (δ, f2).

Certainly,
∨

(δ,hi)∈Si,(i=1,2)
P(C1×C2)((δ, h1 × h2), (δ, 11 × 12)) = δ. From all above, (TB2) of satisfying by S1 × S2

follows from

δ=
∨

(δ,hi)∈Si,(i=1,2)

P(C1 × C2)((δ, h1 × h2), (δ, f1 × f2)) ∧ P(C1 × C2)((δ, h1 × h2), (δ, 11 × 12))

=
∨

(δ,hi)∈Si,(i=1,2)

P(C1 × C2)
(
(δ, h1 × h2), (δ, ( f1 × f2) ∧ (11 × 12))

)
(By Proposition 2.7(3))

=
∨

(δ,hi)∈Si,(i=1,2)

P(C1 × C2)
(
(δ, h1 × h2), (δ, f ∧ 1)

)
For any (δ, f1) ∈ S1 and (δ, f2) ∈ S2, we have

δ =
∨

xi∈(Ci)δ,(i=1,2)

f1(x1) ∧ f2(x2) =
∨

xi∈(Ci)δ,(i=1,2)

f1 × f2((x1, x2))

since δ =
∨

xi∈(Ci)δ
fi(xi) for the (δ, fi) ∈ S (i = 1, 2), that is to say that the condition (TB1) is satisfied by S1 × S2.

Finally, the conclusion that the binary operation (−) × (−) of limited L-filters preserves the partial order
≤F in each argument, follows from the definition of the product of two limited >-filters.

We will show two lemmas in preparations for the construction of function spaces in Section 6.

Lemma 3.7. Let ϕ : A→ B and ψ : C→ D be degree-preserving maps, (δ,F1) ∈ F>(A), (δ,F2) ∈ F>(C). Then(
δ, (ϕ × ψ)⇒(F1 × F2)

)
=

(
δ, ϕ⇒(F1) × ψ⇒(F2)

)
,

here the degree-preserving map ϕ × ψ : A × C→ B ×D is defined by sending each (x, y) ∈ (A × C) to (ϕ(x), ψ(y)).

Proof. First of all, we observe that for (δ, f ) ∈ PA, (δ, 1) ∈ PC, it holds that

(δ, (ϕ × ψ)→( f × 1)) = (δ, ϕ→( f ) × ψ→(1))

By means of the formula above, the claimed equality

(δ, (ϕ × ψ)⇒(F1 × F2)) = (δ, ϕ⇒(F1) × ψ⇒(F2))

is true since for each (δ, h) ∈
(
P(B ×D)

)δ
,

(δ, h) ∈ (ϕ × ψ)⇒(F1 × F2)⇔δ =
∨

(δ, fi)∈Fi,(i=1,2)

P(B ×D)
(
(δ, (ϕ × ψ)→( f1 × f2)), (δ, h)

)
⇔δ =

∨
(δ, fi)∈Fi,(i=1,2)

P(B ×D)
(
(δ, ϕ→( f1) × ψ→( f2)), (δ, h)

)
,

and the last is equivalent to (δ, h) ∈ ϕ⇒(F1)×ψ⇒(F2) by Lemma 3.6 and the definition of ϕ⇒(F)×ψ⇒(G).
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Lemma 3.8. If pC : C×D→ C and pD : C×D→ D be the projections, then for any (δ,F) ∈ F>(C), (δ,G) ∈ F>(D)
and (δ,K) ∈ F>(C×D), (1) (δ, p⇒C (F×G)) = (δ,F) and (δ, p⇒D (F×G)) = (δ,G); (2) (δ, p⇒C (K)× p⇒D (K)) ≤F (δ,K).

Proof. In the proof, we only show the first equality of (1) for example. In general, for each (δ, f ) ∈ F and
each (δ, 1) ∈ G, (δ, p→C ( f × 1)) = (δ, f ) holds since for all x ∈ Cδ, here δ∈L, we have

p→C ( f × 1)(x) =
∨

pC(u,v)=x

f × 1((u, v)) = f (x) ∧
∨
v∈Dδ

1(v) = f (x) ∧ δ = f (x),

where
∨

v∈Dδ

1(v) = δ owing to (δ, 1) ∈ G. Thus for each (δ, h) ∈ (PC)δ,

(δ, h) ∈ F⇔ δ =
∨

(δ, f )∈F

PC((δ, f ), (δ, h))⇔ δ =
∨

(δ, f )∈F,(δ,1)∈G

PC
(
(δ, p→C ( f × 1)), (δ, h)

)
⇔ (δ, h) ∈ p⇒C (F ×G).

Consequently, (δ, p⇒C (F ×G)) = (δ,F).

4. Top L-convergence structures.

In the section, a concept of top L-convergence spaces based on L-sets other than crisp sets, is proposed
by using limited L-filters. Then for the purpose of the construction of our function spaces based on L-sets
in the last section, we show that the concrete category of top L-convergence spaces and degree-preserving
maps is topological over the slice category Set↓L, and give the terminal objects in the concrete category of
top L-convergence spaces.

In order to introduce the concept of top L-convergence spaces, we construct an L-set D(C) for each L-set
C, which is defined by

D(C)dom :=
⋃
δ∈L

{
S | S ⊆ (C)δdom

}
,

and D(C)(S) = δ when S ⊆ (C)δdom with some δ ∈ L. Further there exists an partial order, written as ⊆ still,
on D(C)dom determined by for any two S1,S2 ∈ D(C)dom,

S1 ⊆ S2 whenever there is a δ ∈ L such that S1,S2 ⊆ Cδdom with S1 ⊆ S2.

In the following, we will still write x ∈ A instead of x ∈ Adom for an element x in the domain set Adom of any
L-set so that the notations are simplified.

Definition 4.1. Let C be an L-set with the nonempty domain set. A degree preserving map

lim : F>(C)→ D(C),

is called a top L-convergence structure on C if it sends each δ-limited L-filter (δ,F) ∈ F>(C) to a subset lim(δ,F) of
Cδ and satisfies the following conditions:

(TC1) x ∈ lim(δ, [x]δ) for each x ∈ Cδ and δ ∈ L.
(TC2) (δ,F) ≤F (δ,G) means lim(δ,F) ⊆ lim(δ,G) for (δ,F), (δ,G) ∈ F>(C).

Then the pair (C, lim) is called a top L-convergence space. We write F →lim x or just F → x for x ∈ lim(δ,F), and
say that F is convergent to x also.

Remark 4.2. Our initial idea of introducing top L-convergence structures on an L-set C is that a point x and a filter
(δ,F) should have the the same degree to which they belong, that is to say F>(C)(δ,F) = δ = C(x), whenever the filter
is convergent to the point x with respect to the convergence structure. According to Definition 4.1, the concept of top
L-convergence structure, already, make us to realize our initial idea.

(2) Let X be a classical set and >X denote the L-set such that >X(x) = > for all x ∈ X. Then X is the domain
set of the >-saturated L-subset (>X)> of >X, and LX, called the L-power set of X in the fuzzy community, is the
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domain set of the >-saturated L-subset (P>X)>. Thus the set of all >-filters on X becomes the domain set of the
>-saturated L-subset F>

>
(>X) of F>(>X). Under these notions, a >-convergence on X in the terminology of [12]

could be understood as the restriction lim |F>
>

(>X) of a top L-convergence structure lim on >X. Hence we could say
>-convergence in [12] is a type of top L-convergence structures defined partly, in other words, each >-convergence
on a set X is a part of a top L-convergence structure on the L-set >X with the mark >.

We are going to introduce the notion of the category of top L-convergence spaces. A degree-preserving
map ϕ : (C, limC)→ (D, limD) between top L-convergence spaces is said to be continuous if it fulfills that for
an x ∈ Cα and a limited L-filter (α,F), (α,F) → x means (α, ϕ⇒(F)) → ϕ(x). All top L-convergence spaces
together with continuous degree-preserving maps form a category over Set↓L, denoted by >-L-Conv.

Now we offer some examples of top L-convergence structures on L-sets. Of course, part of these
examples will be useful to the following sections.

Example 4.3. (1) Define a degree-preserving map limdis : F>(C)→ D(C) on an L-set C by for each δ-limited L-filter
(δ,F) and an x ∈ Cδ,

x ∈ limdis(δ,F) if and only if (δ, [x]δ) ≤ (δ,F),

or equivalently (δ, [x]δ) = (δ,F) since (δ, [x]δ) ultrafilter here (See Example 3.3 (1)), which is a top L-convergence
structure on C, called the discrete structure. Thus every degree-preserving map ϕ : (C, limdis) → (D, lim) is
continuous for any space (D, lim) since every degree-limited L-filter under a degree-preserving map is a degree-limited
L-filter (See Example 3.3 (2) (i)).

(2) Define a map limind : F>(C)→ D(C) by limind(δ,F) = Cδ for each δ-limited L-filter (δ,F), which is an example
of top L-convergence structures so that a degree-preserving map ϕ : (D, lim)→ (C, limind) is continuous for any space
(D, lim), and hence called the indiscrete structure.

For the category >-L-Conv of top L-convergence spaces, we have

Theorem 4.4. The category>-L-Conv of top L-convergence spaces is topological over Set↓L in the sense that for any
L-set A, any family

{
(A j, lim j)

}
j∈J

of top L-convergence spaces and any family {ϕ j : A→ A j} j∈J of degree-preserving
maps, indexed by a class J, there exists a unique top L-convergence structure lim on A which is initial with respect to
{ϕ j : A→ (A j, lim j)} j∈J, i.e., for a space (C, limC), a degree-preserving map ψ : (C, limC)→ (A, lim) is a continuous
if and only if for every j ∈ J, the composite ϕ j ◦ ψ : (C, limC)→ (A j, lim j) is continuous.

Proof. For {ϕ j : A→ (A j, lim j)} j∈J, we only list the unique structure map lim on A about it, determined by

(δ,F)→lim x if and only if (δ, ϕ⇒j (F))→lim j ϕ j(x) for all j ∈ J,

for each limited L-filter (δ,F) together with an x ∈ Aδ.

Following Theorem 4.4, we introduce the products and subspaces respectively. Firstly, for given (C, limC)
and (D, limD), C×D with the unique top L-convergence structure on with respect to{

pC : C×D→ (C, limC); pD : C×D→ (D, limD)
}

is called the product of (C, limC) and (D, limD), denoted by (C×D, limC
× limD) explicitly. Of course, for

any (δ,F) ∈ F>(C × D) and (x, y) ∈ Cδ × Dδ, (x, y) ∈ (limC
× limD)(δ,F) if and only if x ∈ limC(δ, p⇒C (F)) and

y ∈ limD(δ, p⇒D (F)).
(2) If the domain set of a saturated L-subset Cδ of C is not empty for some δ ∈L. Then the Cδ with the

unique top L-convergence structure with respect to the inclusion degree-preserving map iδ : Cδ → (C, limC)
is called the subspace of (C, limC), which is denoted by (Cδ, limC

|Cδ).
Finally, we note a fact on the terminal object in >-L-Conv. In details, we have
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Corollary 4.5. In the category>-L-Conv of top L-convergence spaces and degree-preserving maps, (idL, limind) is the
terminal object in the sense that there is exactly one continuous degree-preserving map from any top L-convergence
space to the (idL, limind).

Proof. Let (C, lim) be any top L-convergence space and limind be the indiscrete top L-convergence structure
on idL (See Example 4.3 (2)). Since every degree-preserving map from (C, lim) to (idL, limind) is continuous,
the only one degree-preserving map C from (C, lim) to (idL, limind) becomes the unique continuous degree-
preserving map.

5. Two kind of nontrivial Examples.

Our object of the section have twofold: one is to explore that there exist top L-convergence structures
induced by a kind of lattice-valued topological spaces, indeed. Another is to explore that there exists a kind
of top L-convergence structures induced by classical convergence spaces.

5.1. Examples from stratified L-topological spaces
First of all, we introduce stratified L-topology in [16] for case of L-sets as follows.

Definition 5.1. Let A be an L-set. A saturated L-subsetT ofPA is said to be a stratified L-topology on A if it satisfies
the following axioms:

(O0) (δ,⊥A) ∈ T for all δ ∈ L, here ⊥A(x) = ⊥ for all x ∈ A,
(O1) (δ, δ∧A) ∈ T for all δ ∈ L,
(O2) (δ,

∨
j∈J h j) ∈ T for any family {(δ, h j)| j ∈ J} ⊆ T with δ∈L,

(O3) (δ, 1∧h) ∈ T for any (δ, 1), (δ, h) ∈ T with δ∈L,
(Os) (σ, α ◦q h) = (σ, α ∗ (δ→ h)) ∈ T for (δ, h) ∈ T and α ∈ D(L)(δ, σ), here for all x ∈A,

(
α ∗ (δ→ h)

)
(x) =

α ∗ (δ→ h(x)).

Then the pair (A,T) is called a stratified L-topological space, and a δ-limited L-subset (δ, h) is said to be open w.r.t. T
whenever (δ, h) ∈ T.

As usual, we need to construct limited L-neighborhood systems in a stratified L-topological space (A,T)
so that top L-convergence spaces could be obtained from stratified L-topological spaces. In fact, for an
x ∈ A, let a pair (A(x),Ux

T
) is determined by

Ux
T :=

{
(A(x), f ) ∈ (PA)A(x)

|A(x) =
∨
{1(x) | (A(x), 1) ∈ TA(x), (A(x), 1) ≤ (A(x), f )}

}
,

or equivalently,

Ux
T =

{
(A(x), f ) ∈ (PA)A(x)

|A(x) =
∨

(A(x),1)∈TA(x)

PA((A(x), 1), (A(x), f )) ◦q 1(x)
}

since for each (A(x), f ) ∈ (PA)A(x), the pair (A(x), h), here

h :=
∨

(A(x),1)∈TA(x)

PA((A(x), 1), (A(x), f )) ◦q 1

is open w.r.t. T (Cf. (O2) and (Os)) and (A(x), h) ≤ (A(x), f ).
Thus we get a system of {(A(x),Ux

T
)}x∈A in (A,T) and each pair (A(x),Ux

T
) of the system is an example of

limited L-filters on A, which could be confirmed by the following proposition.

Proposition 5.2. For every stratified L-topology T on an L-set A, each (A(x),Ux
T

) in the system {(A(x),Ux
T

)}x∈A
with respect to T satisfies the following conditions:

(N1) f (x) = A(x) for each pair (A(x), f ) ∈ Ux
T

.
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(N2) (A(x),Ux
T

) is a limited L-filter.

Proof. For convenience here, we write δx for A(x) with x ∈ A. Then the claim f (x) = δx for (δx, f ) ∈ Ux
T

follows from
δx =

∨
{1(x) | (δx, 1) ∈ Tδx with (δx, 1) ≤ (δx, f )} ≤ f (x) ≤ δx.

In order to confirm the claim (N2), we have to check that (T1)-(T3) of Definition 3.1. For (T2), we recall that

δx =
∨

(δx,h)∈Tδx

PA((δx, h), (δx, 1)) ◦q h(x)

holds for any (δx, 1) ∈ Ux
T

. From this, for a (δx, f ) ∈ (PA)δx with δx =
∨

(δx,1)∈Ux
T
PA((δx, 1), (δx, f )), it holds

that for every (δx, 1) ∈ Ux
T
,∨

(δx,h)∈Tδx

PA((δx, h), (δx, f )) ◦q h(x) =
( ∨

(δx,h)∈Tδx

PA((δx, h), (δx, f )) ◦q h(x)
)
↙ δx (By Lamma 2.3 (1))

≥

∧
(δx,h)∈Tδx

(
PA((δx, h), (δx, f )) ◦q h(x)↙ PA((δx, h), (δx, 1)) ◦q h(x)

)
(by δx =

∨
(δx,h)∈Tδx

PA((δx, h), (δx, 1)) ◦q h(x) and Lemma 2.3 (3))

≥ PA((δx, 1), (δx, f )),

here the last is from Prop. 2.7 (2). Thus we obtain

δx =
∨

(δx,1)∈Ux
T

PA((δx, 1), (δx, f )) ≤
∨

(δx,h)∈Tδx

PA((δx, h), (δx, f )) ◦q h(x)

i.e., (δx, f ) ∈ Ux
T

by the definition ofUx
T

, and so (T2) is satisfied byUx
T

.
Next, let us demonstrate that the condition (T1) is satisfied by (δx,Ux

T
). For this, take an element (δx, f )

inUx
T

. Then ∨
y∈Aδx

f (y) ≥ f (x) = δx,

which already means δx =
∨

y∈Aδx f (y).
Finally, we are going to show Ux

T
fulfils the condition (T3) also. For this, let (δx, f1), (δx, f2) ∈ Ux

T
. And

hence we have ∨{
1(x) | (δx, 1) ∈ Tδx with (δx, 1) ≤ (δx, fi)

}
= δx (i = 1, 2).

Thus the conclusion of (δx, f1 ∧ f2) ∈ Ux
T

follows from

δx = δx ∧ δx

=
(∨
{11(x) | (δx, 11) ∈ Tδx , (δx, 11) ≤ (δx, f1)}

)
∧

(∨{
12(x) | (δx, 12) ∈ Tδx , (δx, 12) ≤ (δx, f2)

})
(O2)
≤

∨{
1(x) | (δx, 1) ∈ Tδx with (δx, 1) ≤ (δx, f1 ∧ f2)

}
≤ δx.

Following Proposition 5.2, for a stratified L-topological space (A,T),UT : A→ F>(A) given by for each
x ∈ A,UT(x) = (A(x),Ux

T
), is a degree-preserving map, which is called Top L-neighborhood system of T.

By means of Top L-neighborhood systemUT of a stratified L-topology T on an L-set A, it is possible to
capture a top L-convergence structure on A as showed in following example.
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Example 5.3. Let UT be the Top L-neighborhood system of a stratified L-topology T on an L-set A. The structure
map limT : F>(A) → D(A) defined by limT(δ,F) = {x ∈Aδ

| A(x) = δ, Ux
T
⊆ F} is a top L-convergence structure

on A, called top L-convergence structure of T.

Proof. (TC1) follows from the condition (N1) of Proposition 5.2. In fact, by (N1), (A(x),Ux
T
≤F (A(x), [x]A(x))

holds for every x ∈ A. So, x ∈ limT(A(x), [x]A(x)) is true for all x ∈ A, in other words, (TC1) is satisfied by
limT. Directly, (TC2) can be verified by the definition of limT. Therefore we conclude that limT is a top
L-convergence structure on A, as desired.

5.2. Examples from classical convergence spaces.

Now, we want to introduce another example of top L-convergence structures induced by a family of
convergence structures [31]. Firstly, we need to give a method of inducing limited L-filters on an L-set from
classical filters. In details, for an L-set C and Cδ , ∅ with some δ ∈L. If we write F(Cδ) for the set of filters
on Cδ, then for each filter F ∈ F(Cδ), a pair (δ,FF ) could be defined by

FF :=
{
(δ, f ) ∈ (PC)δ | δ =

∨
S∈F

∧
s∈S

f (s)
}
.

Thus we have

Proposition 5.4. Let C be an L-set and Cδ , ∅with some δ ∈L. Then for each F ∈F(Cδ), the pair (δ,FF ) is a limited
L-filter on C.

Proof. To complete the proof of the proposition, our strategy is to check that the (δ,FF ) fulfills the axioms
(T1)-(T3) of limited L-filters as follows:

(i) (T1) is satisfied by (δ,FF ) because for each (δ, f ) ∈ FF ,

δ =
( ∨

S∈F

∧
s∈S

f (s)
)
≤

∨
s∈Cδ

f (s).

(ii) In order to check that (T2) is satisfied by (δ,FF ), we take a (δ, 1) ∈ PC with the property of

δ =
∨

(δ, f )∈FF

PC((δ, f ), (δ, 1)).

Since δ =
∨

S∈F
∧

s∈S f (s) for each (δ, f ) ∈ FF , we have

δ =
∨

(δ, f )∈FF

δ ◦q PC((δ, f ), (δ, 1)) =
∨

(δ, f )∈FF

[ ∨
S∈F

∧
s∈S

f (s)
]
◦q PC((δ, f ), (δ, 1))

=
∨
S∈F

∨
(δ, f )∈FF

[(∧
s∈S

f (s)
)
◦q PC((δ, f ), (δ, 1))

]
=

∨
S∈F

∨
(δ, f )∈FF

[(∧
s∈S

f (s)
)
∗

(
δ→ PC((δ, f ), (δ, 1))

)]
=

∨
S∈F

∨
(δ, f )∈FF

(∧
s∈S

f (s)
)
∗

[∧
s∈C

(
f (s)→ 1(s)

)]
≤

∨
S∈F

∨
(δ, f )∈FF

(∧
s∈S

f (s)
)
∗

[∧
s∈S

(
f (s)→ 1(s)

)]
≤

∨
S∈F

∨
(δ, f )∈FF

(∧
s∈S

f (s)
)
∗

[(∧
s∈S

f (s)
)
→

(∧
s∈S

1(s)
)]

≤

∨
S∈F

∧
s∈S

1(s),

i.e., δ =
∨

S∈F
∧

s∈S 1(s). Thus (δ, 1)∈FF by the definition of (δ,FF ).
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(iii) To check that (T3) is satisfied by (δ,FF ), we take (δ, f1), (δ, f2) ∈ FF . Then δ =
∨

S∈F
∧

s∈S fi(s) for
i = 1, 2. Finally, it follows from

δ = (δ ∧ δ) =
( ∨

S1∈F

∧
s∈S1

f1(s)
)
∧

( ∨
S2∈F

∧
t∈S2

f2(t)
)

=
∨

S1,S2∈F

∧
t∈S2

∧
s∈S1

(
f1(s) ∧ f2(t)

)
(by Lemma 2.1 (1))

≤

∨
S∈F

∧
s∈S

(
f1(s) ∧ f2(s)

)
=

∨
S∈F

∧
s∈S

( f1 ∧ f2)(s)

that (δ, f1 ∧ f2) ∈ FF , that is to say (δ,FF ) satisfies (T3) indeed.

For a limited L-filters induced by a filter, we have the corollary below and omit its routine proof.

Corollary 5.5. Let C be a L-set and δ ∈ L. If x ∈Cδ, then (δ,Fẋ) is a limited L-filter, here ẋ := {S ⊆ Cδ | x ∈ S}.
Further, (δ,Fẋ) = (δ, [x]δ) holds for any element x ∈ Cδ.

Following Proposition 5.4 and Corollary 5.5, it is the position to introduce how to obtain top L-convergence
structures on an L-set from the classical convergence structures. For this object, we have

Example 5.6. Let C be an L-set and Θ := {Θδ}δ∈L, where each Θδ is a convergence structure (see [31]) on Cδ in the
sense that Θδ : F(Cδ)→ P(Cδ) is a map satisfying

(L1) If x ∈ Cδ, then x ∈ Θδ(ẋ).
(L2) If F ⊆ G, then Θδ(F ) ⊆ Θδ(G) for all F ,G ∈F(Cδ).

Then a degree-preserving map limΘ : F>(C) → D(C) such that for a limited L-filter (δ,F), limΘ(δ,F) is defined by
for every x ∈ Cδ,

x ∈ limΘ(δ,F) iff ∃F ∈ F(Cδ) such that x ∈ Θδ(F ) and (δ,FF ) ≤F (δ,F).

Proof. The definition of limΘ above together with Corollary 5.5 assures that limΘ is an example of top
L-convergence structutes on C.

6. Function spaces

In the last section, our object is to construct function spaces in the concrete category >-L-Conv of top
L-convergence spaces over the slice category Set↓L. And then we will show our function spaces have the
desired universal property, i.e., the condition (3) of Definition 2.9 is satisfied by the function spaces, so that
we could conclude that the concrete category>-L-Conv of top L-convergence spaces over the slice category
Set↓L is Cartesian closed.

For the existence of function spaces with respect to two spaces (A, limA) and (B, limB) in the concrete
category >-L-Conv, we construct an L-set, denoted by [A,B], such that its domain set is given by the set{

(δ, ϕ) | δ ∈ L and ϕ : (Aδ, limA
|Aδ)→ (B, limB)) is continuous

}
and for each (δ, ϕ) in the domain set, [A,B](δ, ϕ) = δ. Notice that in the base category Set↓L, there exists the
evaluation map EA,B : [A,B] × A→ B defined by

EA,B((δ, ϕ), x) = ϕ(x), ∀((δ, ϕ), x) ∈ [A,B]δ × Aδ.

First of all, we need a lemma about E := EA,B in preparation.
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Lemma 6.1. (Cf. [21] for a crisp set). Let A be an L-set with the nonempty domain set and δ ∈ L. If iδ : Aδ
→ A is

the inclusion degree-preserving map and (δ, ϕ)∈ [A,B], then for a δ-limited L-subset (δ, 1) of A,

(δ,E→(δ(δ,ϕ) × 1)) = (δ, ϕ→(i←δ (1))),

here the limited L-subset (δ, δ(δ,ϕ)) is determined by for each (σ, ψ) ∈ [A,B],

δ(δ,ϕ)(σ, ψ) =

{
δ, if (δ, ϕ) = (σ, ψ),
⊥, otherwise.

Proof. Take any δ-limited L-subset (δ, 1) of A. Then the claimed equality follows from for each y ∈ B,

E→(δ(δ,ϕ) × 1)(y) =
∨

E((δ,ψ),x))=y

(δ(δ,ϕ) × 1)((δ, ψ), x)

=
∨

ϕ(x)=y,x∈Aδ

δ(δ,ϕ)(δ, ϕ) ∧ 1(x) (Here, must be x ∈ Aδ)

=
∨
ϕ(x)=y

δ ∧ i←δ (1)(x) =
∨
ϕ(x)=y

i←δ (1)(x)

=ϕ→(i←δ (1))(y).

Thus the proof is completed.

Then a function space based on [A,B] is constructed by the theorem below.

Theorem 6.2. (Construction of function spaces) Let (A, limA), (B, limB) be >-L-Conv-objects and a map

limA,B : F>
(
[A,B]

)
→ D(C)([A,B])

define by for all (δ,H) ∈ F>
(
[A,B]

)
,

limA,B(δ,H) =
{
(δ, ϕ) ∈[A,B]δ | ∀x ∈ Aδ, ∀(δ,F) ∈ F>(A), x ∈ limA(δ,F)⇒ ϕ(x) ∈ limB(δ,E⇒(H × F))

}
.

Then limA,B is a top L-convergence structure on [A,B], and the pair ([A,B], limA,B) will be called the function space
determined by (A, limA) and (B, limB).

Proof. We have to check the map limA,B satisfies the axioms (TC1) and (TC2). Since the maps

E⇒ : (F>([A,B] × A),≤F)→ (F>(B),≤F) and H × (−) : (F>(A),≤F)→ F>([A,B] × A)

for each (δ,H) ∈ F>([A,B]) are order-preserving by Example 3.3 (2) (ii) and Lemma 3.6, respectively, the
axiom (TC2) follows immediately from the definition of limA,B. For the condition (TC1), we will show
(δ, ϕ) ∈ limA,B(δ, [(δ, ϕ)]δ) for each (δ, ϕ) ∈ [A,B].

First of all, we claim that (δ, ϕ⇒(i⇐δ (F))) ≤F (δ,E⇒([(δ, ϕ)]δ × F) for (δ,F) ∈ F>(A), here iδ : Aδ
→ A is the

inclusion degree-preserving map. For this, we take (δ, f ) ∈ ϕ⇒(i⇐δ (F)). Then it follows from Lemma 6.1 that

δ =
∨

(δ,1)∈F

PB
(
(δ, ϕ→(i←δ (1))), (δ, f )

)
=

∨
(δ,1)∈F

PB
(
(δ,E→(δ(δ,ϕ) × 1)), (δ, f )

)
≤

∨
(δ,h)∈[(δ,ϕ)]δ×F

PB
(
(δ,E→(h)), (δ, f )

)
,

i.e., δ =
∨

(δ,h)∈[(δ,ϕ)]δ×FPB((δ,E→(h)), (δ, f )), which assures

(δ, f ) ∈ E⇒([(δ, ϕ)]δ × F).
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Thus (δ, ϕ⇒(i⇐δ (F))) ≤F (δ,E⇒([(δ, ϕ)]δ × F) for (δ,F) ∈ F>(A).
Second, for us to show (δ, ϕ) ∈ limA,B(δ, [(δ, ϕ)]δ) for each (δ, ϕ) ∈ [A,B], let (δ,G) ∈ F>(A) and x ∈ Aδ with

x ∈ limA(δ,G). Then (δ, i⇐δ (G)) ∈ F>(Aδ), and x ∈ limA(δ, i⇒δ ◦i
⇐

δ (G)) since (δ,G) ≤F (δ, i⇒δ ◦i
⇐

δ (G)),which means
x ∈ (limA

|Aδ)(δ, i⇐δ (G)). Since ϕ : (Aδ, limA
|Aδ)→ (B, limB) is continuous, we have ϕ(x) ∈ limB(δ, ϕ⇒(i⇐δ (G))).

Hence ϕ(x) ∈ limB(δ,E⇒([(δ, ϕ)]δ) × G) follows from (TC2) of satisfying by limB and (δ, ϕ⇒(i⇐δ (G))) ≤F

(δ,E⇒([(δ, ϕ)]δ ×G)). Finally, by the definition of limA,B, (δ, ϕ) ∈ limA,B(δ, [(δ, ϕ)]δ) is verified.

In the following, we shall show that our function space given in Theorem 6.2 has the universal property.
For this purpose, let A and B be L-sets and E : [A,B] × A→ B is the evaluation map. Now it is the position
to show that for each pair of the spaces (A, limA) and (B, limB),

E : ([A,B], limA,B) × (A, limA)→ (B, limB)

is continuous by the following proposition.

Proposition 6.3. The degree-preserving map

E : ([A,B], limA,B) × (A, limA)→ (B, limB)

is continuous for each pair of spaces (A, limA) and (B, limB).

Proof. For the continuity of E,we take a δ-limited L-filter (δ,K) on [A,B]×A with δ ∈ L such that ((δ, ϕ), x) ∈
(limA,B

× limA)(δ,K), and we have to verify E((δ, ϕ), x) ∈ limB(δ,E⇒(K)) as follows.
Firstly, according to the definition of limA,B

× limA, we directly obtain

both (δ, ϕ) ∈ limA,B(δ, p⇒[A,B](K)) and x ∈ limA(δ, p⇒A (K)).

It follows from the definition of limA,B together with x ∈ limA(δ, p⇒A (K)) that (δ, ϕ) ∈ limA,B(δ, p⇒[A,B](K))
means that

ϕ(x) ∈ limB
(
δ,E⇒(p⇒[A,B](K) × p⇒A (K))

)
,

which further means ϕ(x) ∈ limB(δ,E⇒(K)) from (δ, p⇒[A,B](K) × p⇒A (K)) ≤F (δ,K) of Lemma 3.8 (2). So,

E((δ, ϕ), x) = ϕ(x) ∈ limB(δ,E⇒(K)) holds finally.

Let ψ : (C × A) → B be a degree-preserving map from the product of L-sets C and A to an L-set B. For
a z ∈ Cδ with δ ∈ L, we obtain a degree-preserving map ψ(z,−) : Aδ

→ B defined by ψ(z,−)(x) = ψ(z, x)
for x ∈ Aδ, and of course, ψ(z,−) is empty map whenever the domain set of Aδ is empty set. For the
degree-preserving map ψ : (C × A)→ B, we have the following proposition.

Proposition 6.4. If a degree-preserving map ψ : (C × A, limC
× limA) → (B, limB) is continuous, then ψ(z,−) :

(Aδ, limA
|Aδ)→ (B, limB) is continuous for each z ∈ Cδ with δ ∈ L.

Proof. Without loss of generality, we assume the domain set of Aδ is not empty. Thus in order to show
the continuity of ψ(z,−), here z ∈ Cδ with δ ∈ L, we take any x ∈ Aδ and a δ-limited L-filter (δ,F)
such that x ∈ (limA

|Aδ)(δ,F), i.e., x ∈ limA(δ, i⇒δ (F)). It follows from (δ, i⇒δ (F)) = (δ, p⇒A ([z]δ × i⇒δ (F))) and
(δ, [z]δ) = (δ, p⇒C ([z]δ × i⇒δ (F))) (See Lemma 3.8 (1)) that

(z, x) ∈ (limC
× limA)(δ, [z]δ × i⇒δ (F)).

Thus the continuity of ψ implies that

ψ(z,−)(x) = ψ(z, x) ∈ limB
(
δ, ψ⇒([z]δ × i⇒δ (F))

)
. (Res1)
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Now in the position, we need to check the inequality

(δ, ψ→( f × i→δ (1))) ≥ (δ, ψ(z,−)→(1)) (Res2)

holds for all (δ, f ) ∈ [z]δ and (δ, 1) ∈ F, which can be proved by for each y ∈ B,

ψ→( f × i→δ (1))(y) =
∨
{ f (u) ∧ i→δ (1)(v) | ψ(u, v) = y}

≥

∨
ψ(z,v)=y

(i→δ (1)(v) ∧ f (z)) =
∨

ψ(z,v)=y

(
(i→δ (1)(v) ∧ δ)

)
=

∨
ψ(z,v)=y

i→δ (1)(v) =
∨

ψ(z,v)=y

( ∨
(w=iδ(w)=v)

1(v)
)

=
∨

ψ(z,w)=y

1(w) = ψ(z,−)→(1)(y).

Using (Res2), we will obtain

(δ, ψ⇒([z]δ × i⇒δ (F))) ≤F (δ, ψ(z,−)⇒(F)). (Res3)

For this purpose, we have to show δ =
∨

(δ,1)∈FPB((δ, ψ(z,−)→(1)), (δ, h)) for each (δ, h) ∈ ψ⇒([z]δ × i⇒δ (F)),
which, by (Res2), could be shown by

δ =
∨

(δ,1)∈F,(δ, f )∈[z]δ

PB
(
(δ, ψ→( f × i→δ (1))), (δ, h)

)
≤

∨
(δ,1)∈F

PB
(
(δ, ψ(z,−)→(1)), (δ, h)

)
,

here the last is from Proposition 2.7 (3). Finally, using (TC2) together with (Res1) and (Res3), we observe

ψ(z,−)(x) = ψ(z, x) ∈ limB(δ, ψ(z,−)⇒(F)),

which confirm that ψ(z,−) is continuous.

For a degree-preserving map ψ : (C × A) → B, by Proposition 6.4 above, we construct a well defined
degree-preserving map ψ : C→ [A,B] as follows:

ψ(z) =(δ, ψ(z,−)), if z ∈ Cδ for some δ ∈ L (D1)

Further, the ψ can be presented by the composition E ◦ (ψ × idA), i.e.,

E ◦ (ψ × idA) =ψ, (D2)

and the continuity of ψ will be confirmed by the following proposition.

Proposition 6.5. If a degree-preserving map

ψ : (C × A, limC
×limA)→ (B, limB)

is continuous, then the map ψ : (C, limC)→ ([A,B], limA,B) is continuous.

Proof. In order to confirm the continuity of ψ : (C, limC) → ([A,B], limA,B), we take any z ∈ Cδ with δ ∈ L
and a δ-limited L-filter (δ,G) such that z ∈ limC(δ,G). Then by the definition of ψ in the formula (D1), we
have to verify

ψ(z) = (δ, ψ(z,−)) ∈ limA,B(δ, ψ
⇒

(G)).



J. Fang, Y.Yue / Filomat 34:11 (2020), 3815–3834 3833

For this, we further take an x ∈ Aδ and a δ-limited L-filter (δ,F) such that x ∈ limA(δ,F), and then observe
that both z ∈ limC(δ, p⇒C (G × F)) and x ∈ limA(δ, p⇒A (G × F)) hold since

(δ,G) = (δ, p⇒C (G × F)) and (δ,F) = (δ, p⇒A (G × F)),

respectively. Then we know (z, x) ∈ (limC
× limA)(δ,G × F) according the definition of limC

× limA. As a
result of the continuity of ψ,

ψ(z,−)(x) = ψ(z, x) ∈ limB(δ, ψ⇒(G × F))

is obtained , which means ψ(z,−)(x) ∈ limB(δ,E⇒(ψ
⇒

(G) × F)) holds due to Lemma 3.7 and the formula
(D2), i.e., E ◦ (ψ × idA) = ψ. Finally, by the definition of limA,B,

ψ(z) = (δ, ψ(z,−)) ∈ limA,B(δ, ψ
⇒

(G)),

which answer the continuity of ψ, as desired.

At the end of this section, we explore that our function space given Theorem 6.2 having the desired
universal property so that the category >-L-Conv is Cartesian-closed.

Theorem 6.6. The category >-L-Conv of top L-convergence spaces and continuous degree-preserving maps is
Cartesian-closed.

Proof. Since the category >-L-Conv has the product of two objects and the terminal object (see Theorem 4.4
and Corollary 4.5), it suffices to show that the condition (3) of Definition 2.9 is satisfied by it. By Theorem
6.2, an object ([A,B], limA,B) as function space exists for any two objects (A, limA) and (B, limB). Further,
there exists a continuous degree-preserving map

E : ([A,B], limA,B) × (A, limA)→ (B, limB)

from Proposition 6.3, and then it follows from Proposition 6.5 and the formula (D2) before Proposition 6.5,
that for every continuous degree-preserving map ψ : (C × A, limC

× limA) → (B, limB), there is a unique
continuous ψ : (C, limC) → ([A,B], limA,B) with the equality of E ◦ (ψ × idA) = ψ. Following this together
with Definition 2.9, we get the conclusion that the category >-L-Conv of top L-convergence spaces and
continuous degree-preserving maps is Cartesian-closed.

7. Concluding remarks.

In order to construct function spaces for different kinds of lattice-valued convergence spaces in the fuzzy
community, there exists a common phenomenon that the domain set of function spaces is a set of suitable
maps from one crisp set to another, so one could say the base category of constructing function spaces is
the category Set of sets and maps. In this paper, we focus on the question how to construct function spaces
so that the base category involved is the slice category Set↓L over a appropriate lattice L instead of the
category Set of sets.

By this paper, we confirm that there exists a kind of lattice-valued convergence spaces, namely top
L-convergence spaces, such that

(i) it is possible to obtain the function space in the concrete category of top L-convergence spaces over
the slice category Set↓L if the underlying lattice L is a commutative, integral, and divisible quantale;

(ii) the concrete category of top L-convergence spaces over the slice category Set↓L is Cartesian closed.

In addition, the concept of top L-convergence spaces proposed in the paper seems rational since they
could be obtained from both stratified L-topological topologies and classical convergence structures natu-
rally (see Section 5). We hope our try to give new lights on discussing mathematical structures based on
L-sets instead of crisp sets in our fuzzy community.
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