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Abstract. We explore the generalized Drazin inverse in a Banach algebra. LetA be a Banach algebra, and
let a, b ∈ Ad. If ab = λaπbabπ for a nonzero complex number λ, then a + b ∈ Ad. The explicit representation
of (a + b)d is presented. As applications of our results, we present new representations for the generalized
Drazin inverse of a block matrix in a Banach algebra. The main results of Liu and Qin [Representations
for the generalized Drazin inverse of the sum in a Banach algebra and its application for some operator
matrices, Sci. World J., 2015, 156934.8] are extended.

1. Introduction

Throughout the paper, A is a complex Banach algebra with an identity and λ is a nonzero complex
number. The commutant of a ∈ A is defined by comm(a) = {x ∈ A | xa = ax}. An element a inA has g-Drazin
inverse (that is, generalized Drazin inverse) provided that there exists b ∈ comm(a) such that b = bab and
a − a2b ∈ Aqnil. Here,Aqnil is the set of all quasinilpotents inA, i.e.,

A
qnil = {a ∈ A | 1 + ax ∈ A is invertible for every x ∈ comm(a)}.

For a Banach algebraAwe have

a ∈ Aqnil
⇔ 1 + µa ∈ A is invertible for any µ ∈ C.

We useAd to denote the set of all g-Drazin invertible elements inA. As is well known, a ∈ Ad if and only
if there exists an idempotent p ∈ comm(a) such that a + p is invertible and ap ∈ Aqnil (see [10, Theorem 4.2]).
The objective of this paper is to further explore the generalized Drazin inverse in a Banach algebra.

The g-Drazin invertibility of the sum of two elements in a Banach algebra is attractive. Many authors
have studied such problems from many different views, e.g., [3, 4, 6, 7, 11, 13, 15, 17]. In Section 2, we
investigate when the sum of two g-Drazin invertible elements in a Banach algebra has g-Drazin inverse.
Let A be a Banach algebra, and let a, b ∈ Ad. If ab = λaπbabπ, we prove that a + b ∈ Ad. The explicit
representation of (a + b)d is presented. This extends [11, Theorem 4] to more general setting.
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It is a hard problem to find a formula for the g-Drazin inverse of a block matrix. There have been many

papers on this subject under different conditions, e.g., [5, 6, 9, 14, 16]. Let M =

(
A B
C D

)
∈ M2(A), A and

D have g-Drazin inverses. If a ∈ A has g-Drazin inverse ad, the element aπ = 1 − aad is called the spectral
idempotent of a. In Section 3, we concern new conditions on spectral idempotent matrices under which
M has g-Drazin inverse. If BD = λ(BC)πABDπ and CA = λ(CB)πDCAπ, we prove that M ∈ M2(A)d. The
formula for Md is given. This extends [11, Theorem 10] to the wider case.

Finally, in the last section, we present certain simpler representations of the g-Drazin inverse of the block
matrix M. If BC = 0 and BD = λAπAB,DC = λ−1DπCAAπ, then M ∈M2(A)d and

Md =


Ad (Ad)2B +

∞∑
n=0

AnB(Dd)n+2

C(Ad)2 Dd + C(Ad)3B +
∞∑

n=0

n∑
k=1

Dk−1CAn−kB(Dd)n+2

 .
2. Additive results

In this section we establish some additive properties of g-Drazin inverse in Banach algebras. Let p ∈ A
be an idempotent, and let x ∈ A. Then we write

x = pxp + px(1 − p) + (1 − p)xp + (1 − p)x(1 − p),

and induce a Pierce representation given by the matrix

x =

(
pxp px(1 − p)

(1 − p)xp (1 − p)x(1 − p)

)
p
.

We begin with

Lemma 2.1. Let a, b ∈ Ad and c ∈ A, and let

x =

(
a 0
c b

)
p

or
(

b c
0 a

)
p
.

Then

xd =

(
ad 0
z bd

)
p
, or

(
bd z
0 ad

)
p
,

where
z = (bd)2

( ∞∑
i=0

(bd)icai
)
aπ + bπ

( ∞∑
i=0

bic(ad)i
)
(ad)2

− bdcad.

Proof. See [3, Lemma 2.1].

Lemma 2.2. LetA be a Banach algebra, and let a, b ∈ Aqnil. If ab = λba, then a + b ∈ Aqnil.

Proof. See [2, Lemma 2.1] and [8, Lemma 2.1].

Lemma 2.3. LetA be a Banach algebra, and let a ∈ Aqnil and b ∈ Ad. If

ab = λbabπ,

then a + b ∈ Ad and

(a + b)d = bd +

∞∑
n=0

(bd)n+2a(a + b)n.



H. Chen, M. Sheibani / Filomat 34:11 (2020), 3845–3854 3847

Proof. Let p = bbd. Then we have

b =

(
b1 0
0 b2

)
p
, a =

(
a1 a2
a3 a4

)
p
.

Hence,

bd =

(
b−1

1 0
0 0

)
p

and bπ =

(
0 0
0 1 − bbd

)
p
.

Since ab = λbabπ,, we get (
a1b1 a2b2
a3b1 a4b2

)
p

= ab = λbabπ =

(
0 λb1a2
0 λb2a4

)
p
.

Thus a1b1 = 0 and a3b1 = 0, and then a1 = 0 and a3 = 0. Obviously, b2 = b − b2bd
∈ ((1 − p)A(1 − p))qnil.

Since ab = λbabπ, we have abbd = λbabπbd = 0. Hence a(1 − bbd) = a ∈ Aqnil. In view of Cline’s formula
(see [12, Theorem 2.1]), we prove that a4 = bπabπ ∈ Aqnil. As a4b2 = λb2a4, by Lemma 2.2, we show that
a4 + b2 ∈ ((1 − p)A(1 − p))qnil, i.e., (a4 + b2)d = 0.

Since

a + b =

(
b1 a2
0 a4 + b2

)
p
,

it follows by Lemma 2.1 that

(a + b)d =

(
b1 a2
0 a4 + b2

)d

=

(
b−1

1 z
0 0

)
p
,

where z = (bd)2
( ∞∑

i=0
(bd)ia(a4 + b2)i

)
. Since abbd = 0, we derive

(a + b)d = bd +

∞∑
n=0

(bd)n+2a(a + b)n,

the result follows.

Now we state one of our main results.

Theorem 2.4. LetA be a Banach algebra, and let a, b ∈ Ad. If

ab = λaπbabπ,

then a + b ∈ Ad and
(a + b)d = bπad + bdaπ +

∞∑
n=0

(bd)n+2a(a + b)naπ

+ bπ
∞∑

n=0
(a + b)nb(ad)n+2

−

∞∑
n=0

∞∑
k=0

(bd)k+1a(a + b)n+kb(ad)n+2

−

∞∑
n=0

(bd)n+2a(a + b)nbad.

Proof. Let p = aad. Then we have

a =

(
a1 0
0 a2

)
p
, b =

(
b11 b12
b1 b2

)
p
.
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Since ab = λaπbabπ, we get aadb = λadaπbabπ = 0; hence, b11 = b12 = 0. Thus,

a =

(
a1 0
0 a2

)
p
, b =

(
0 0
b1 b2

)
p
,

So we get

ad =

(
a−1

1 0
0 0

)
p
, bd =

(
0 0

(bd
2)2b1 bd

2

)
p
.

Hence,

aπ =

(
0 0
0 1 − p

)
p
, bπ =

(
p 0
−bd

2b1 bπ2

)
p
.

Clearly, a2 = (1 − p)a(1 − p) = a − a2ad
∈ A

qnil. Since (1 − aad)b = b ∈ Ad, it follows by Cline’s formula that
b2 = aπbaπ ∈ ((1 − p)A(1 − p))d. As ab = λaπbabπ, we infer that(

0 0
a2b1 a2b2

)
= ab = λaπbabπ

= λ

(
0 0

b1a1 − b2a2bd
2b1 b2a2bπ2

)
,

and then
a2b2 = λb2a2bπ2 .

In view of Lemma 2.3,

(a2 + b2)d = bd
2 +

∞∑
n=0

(bd
2)n+2a2(a2 + b2)n.

By virtue of Lemma 2.1, we have

(a + b)d =

(
a−1

1 0
z (a2 + b2)d

)
=

(
ad 0
z (a2 + b2)d

)
,

where

z = (a2 + b2)π
( ∞∑

i=0

(a2 + b2)ib(ad)i
)
(ad)2

− (a2 + b2)dbad.

We easily see that a2bd
2 = (λb2a2bπ2 )(bd

2)2 = 0; hence,

(a2 + b2)π = (1 − aad) − b2bd
2 −

∞∑
n=0

(bd
2)n+1a2(a2 + b2)n

= bπ2 −
∞∑

n=0
(bd

2)n+1a2(a2 + b2)n.

Moreover, we have

z =
∞∑

i=0
bπ2 (a2 + b2)ib(ad)i+2

−

∞∑
n=0

∞∑
i=0

(bd
2)n+1a2(a2 + b2)n+ib(ad)i+2

− bd
2bad
−

∞∑
n=0

(bd
2)n+2a2(a2 + b2)nbad.
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Clearly, adb = abd = (ad)2(λaπbabπ) = (λaπbabπ)(bd)2 = 0, one easily verifies that(
ad 0

−bd
2b1ad 0

)
= bπad,(

0 0
bπ2 (a2 + b2)ib(ad)i+2 0

)
= bπ(a + b)ib(ad)i+2,(

0 0
(bd

2)n+2a2(a2 + b2)nbad 0

)
= (bd)n+2a(a + b)nbad,(

0 0
(bd

2)n+1a2(a2 + b2)n+ib(ad)i+2 0

)
= (bd)n+1a(a + b)n+ib(ad)i+2.

Also we have (
0 0
0 bd

2

)
= bdaπ,(

0 0
0 (bd

2)n+2a2(a2 + b2)n

)
= (bd)n+2a(a + b)naπ,

hence the result.

Example 2.5. LetA = M3(C) and let

a =

 0 0 0
1 0 0
0 1 0

 , b =

 0 0 0
1 0 0
0 2 0

 ∈ Ad.

Then ab = 1
2 aπbabπ, while ab , aπbabπ.

Proof. It is clear that a3 = b3 = 0, then ad = bd = 0 which implies that aπ = bπ = I3. Obviously,

ab =

 0 0 0
0 0 0
1 0 0

 =
1
2

aπbabπ,

while aπbabπ =

 0 0 0
0 0 0
2 0 0

 , ab.

3. Block operator matrices

In this section, we turn to study the g-Drazin inverse of the block matrix M by applying Theorem 2.4.
We now derive

Theorem 3.1. Let M =

(
A B
C D

)
∈ M2(A), A and D have g-Drazin inverses. If BD = λ(BC)πABDπ and

CA = λ(CB)πDCAπ, then M ∈M2(A)d and

Md =

(
Ad(BC)π AπB(CB)d

DπC(BC)d Dd(CB)π

)
+
∞∑

n=0

(
0 (Ad)n+2B

(Dd)n+2C 0

)
Mn

(
(BC)π 0

0 (CB)π

)
+
∞∑

n=0

(
Aπ 0
0 Dπ

)
Mn

(
A 0
0 D

)
(

0 B(CB)d

C(BC)d 0

)n+2

−

∞∑
n=0

∞∑
k=0

(
0 (Ad)k+1B

(Dd)k+1C 0

)
Mn+k(

A 0
0 D

) (
0 B(CB)d

C(BC)d 0

)n+2

−

∞∑
n=0

(
0 (Ad)n+2B

(Dd)n+2C 0

)
Mn

(
0 AB(CB)d

DC(BC)d 0

)
.
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Proof. Clearly, we have M = P + Q, where

P =

(
A 0
0 D

)
,Q =

(
0 B
C 0

)
.

Then

Pd =

(
Ad 0
0 Dd

)
,Pπ =

(
Aπ 0
0 Dπ

)
;

Q2 =

(
BC 0
0 CB

)
, (Q2)d =

(
(BC)d 0

0 (CB)d

)
.

By using Cline’s formula, we get

Qd = Q(Q2)d =

(
0 B(CB)d

C(BC)d 0

)
.

Hence,

Qπ =

(
(BC)π 0

0 (CB)π

)
.

Clearly,

PQ =

(
0 AB

DC 0

)
,

QP =

(
0 BD

CA 0

)
,

and so

QπPQPπ =

(
0 (BC)πABDπ

(CB)πDCAπ D

)
.

By hypothesis, we have
QP = λQπPQPπ.

According to Theorem 2.4, M has g-Drain inverse. The representation of Md is easily obtained by Theorem
2.4.

Corollary 3.2. Let M =

(
A B
C D

)
∈ M2(A), A and D have g-Drazin inverses. If BD = λABDπ,CA = λDCAπ

and BC = 0, then M ∈M2(A)d and

Md =

(
Ad 0
0 Dd

)
+
∞∑

n=0

(
0 (Ad)n+2B

(Dd)n+2C 0

)
Mn.

Proof. Since BC = 0, we have (BC)π = I = (CB)π. Moreover, (BC)d = 0,B(CB)d = B(CB)((BC)d)2 = 0.Construct
Q as in the proof of Theorem 3.1, we have Qd = 0, and so Qπ = I. This completes the proof by Theorem
3.1.

In a similar way as it was done in Theorem 3.1, using the another splitting, we have

Theorem 3.3. Let M =

(
A B
C D

)
∈ M2(A), A and D have g-Drazin inverses. If AB = λAπBD(CB)π and
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DC = λDπCA(BC)π, then M ∈M2(A)d and

Md =

(
(BC)πAd B(CB)dDπ

C(BC)dAπ (CB)πDd

)
+
∞∑

n=0

(
0 B(CB)d

C(BC)d 0

)n+2

(
A 0
0 D

)
Mn

(
Aπ 0
0 Dπ

)
+
∞∑

n=0

(
(BC)π 0

0 (CB)π

)
Mn(

0 B(Dd)n+2

C(Ad)n+2 0

)
−

∞∑
n=0

∞∑
k=0

(
0 B(CB)d

C(BC)d 0

)k+1

(
A 0
0 D

)
Mn+k

(
0 B(Dd)n+2

C(Ad)n+2 0

)
−

∞∑
n=0

(
0 B(CB)d

C(BC)d 0

)n+2 (
A 0
0 D

)
Mn

(
0 BDd

CAd 0

)
.

Proof. Construct P and Q as in the proof of Theorem 3.1, we have

PQ =

(
0 AB

DC 0

)
,

PπQPQπ =

(
0 AπBD(CB)π

DπCA(BC)π 0

)
.

By hypothesis, we see that PQ = λPπQPQπ. The theorem is therefore established by Theorem 2.4.

As a consequence of the above, we now derive

Corollary 3.4. Let M =

(
A B
C D

)
∈ M2(A), A and D have g-Drazin inverses. If AB = λAπBD,DC = λDπCA

and BC = 0, then M ∈M2(A)d and

Md =

(
Ad 0
0 Dd

)
+
∞∑

n=0
Mn

(
0 B(Dd)n+2

C(Ad)n+2 0

)
.

4. Certain simpler expressions

Let M =

(
A B
C D

)
∈ M2(A). The aim of this section is to present certain simpler representations of the

g-Drazin inverse of the block matrix M in the case BC = 0 or CB = 0. We now come to the main result of
this section.

Theorem 4.1. Let A and D have g-Drazin inverses. If BD = λAπAB,DC = λ−1DπCAAπ and BC = 0, then
M ∈M2(A)d and

Md =


Ad (Ad)2B +

∞∑
n=0

AnB(Dd)n+2

C(Ad)2 Dd + C(Ad)3B +
∞∑

n=0

n∑
k=1

Dk−1CAn−kB(Dd)n+2

 .
Proof. Write M = P + Q, where

P =

(
AAπ 0

0 D

)
,Q =

(
A2Ad B

C 0

)
.

Then

Pd =

(
0 0
0 Dd

)
,Pπ =

(
I 0
0 Dπ

)
.



H. Chen, M. Sheibani / Filomat 34:11 (2020), 3845–3854 3852

As BC = 0, we have

Qd =

(
Ad (Ad)2B

C(Ad)2 C(Ad)3B

)
,Qπ =

(
Aπ

−AdB
−CAd I − C(Ad)2B

)
.

Since BD = λAπAB and BC = 0, we get BDC = (λAπAB)C = 0. As DC = λ−1DπCAAπ, we have

PQ =

(
0 AπAB

DC 0

)
= λ−1

(
0 BD

DπCAAπ 0

)
= λ−1PπQPQπ.

In view of Theorem 2.4, we obtain

Md = QπPd + QdPπ +
∞∑

n=0
(Qd)n+2PMnPπ

+ Qπ
∞∑

n=0
MnQ(Pd)n+2

−

∞∑
n=0

∞∑
k=0

(Qd)k+1PMn+kQ(Pd)n+2

−

∞∑
n=0

(Qd)n+2PMnQPd.

Since BD = λAπAB, we infer that AdBD = Ad(λAπAB) = 0, and then

QdP =

(
Ad (Ad)2B

C(Ad)2 C(Ad)3B

) (
AAπ 0

0 D

)
= 0.

Therefore

Md = Pd + Qd + Qπ
∞∑

n=0

MnQ(Pd)n+2.

Moreover, we have BDC = (λAπAB)C = 0. By induction, BDnC = 0 for any n ∈N. Accordingly,

Qπ
∞∑

n=0
MnQ(Pd)n+2

=
∞∑

n=0

(
Aπ

−AdB
−CAd I − C(Ad)2B

) (
A B
C D

)n (
0 B(Dd)n+2

0 0

)
=

∞∑
n=0

(
Aπ

−AdB
−CAd I − C(Ad)2B

) (
A B
C D

)n (
1 0
0 0

)
(

0 B(Dd)n+2

0 0

)
=

∞∑
n=0

(
Aπ

−AdB
−CAd I − C(Ad)2B

)  An 0
n∑

k=1
Dk−1CAn−k 0

(
0 B(Dd)n+2

0 0

)

=


0

∞∑
n=1

AnB(Dd)n+2

0
∞∑

n=0

n∑
k=1

Dk−1CAn−kB(Dd)n+2

 ,
as desired.

Corollary 4.2. Let A and D have g-Drazin inverses. If CA = λDπDC,AB = λAπBDDπ and CB = 0, then
M ∈M2(A)d and

Md =


Ad + B(Dd)3C +

∞∑
n=0

n∑
k=1

Ak−1BDn−kC(Ad)n+2 B(Dd)2

(Dd)2C +
∞∑

n=0
DnC(Ad)n+2 Dd

 .
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Proof. Obviously, (
A B
C D

)
=

(
0 I
I 0

) (
D C
B A

) (
0 I
I 0

)
.

Applying Theorem 4.1 to
(

D C
B A

)
, we see that it has g-Drazin inverse and

(
D C
B A

)d

=


Dd (Dd)2C +

∞∑
n=0

DnC(Ad)n+2

B(Dd)2 Ad + B(Dd)3C +
∞∑

n=0

n∑
k=1

Ak−1BDn−kC(Ad)n+2

 .
Since

(
0 I
I 0

)−1

=

(
0 I
I 0

)
, we derive

Md =

(
0 I
I 0

) (
D C
B A

)d (
0 I
I 0

)
,

as desired.

Now we are ready to prove the other main theorem in this section.

Theorem 4.3. Let A and D have g-Drazin inverses. If AB = λAπBD,DC = λDπCA and BC = 0, then M ∈M2(A)d

and

Md =

(
Ad 0
0 Dd

)
+

∞∑
n=0

Mn
(

0 B(Dd)n+2

C(Ad)n+2 0

)
.

Proof. Write M = P + Q, where

P =

(
A 0
0 D

)
,Q =

(
0 B
C 0

)
.

Then

Pd =

(
Ad 0
0 Dd

)
,Pπ =

(
Aπ 0
0 Dπ

)
.

As BC = 0, we see that Q3 = 0, and so Qd = 0,Qπ = I. One easily checks that

PQ =

(
0 AB

DC 0

)
= λ

(
0 AπBD

DπCA 0

)
= λPπQPQπ.

Since Qd = 0, it follows by Theorem 2.4 that

Md = Pd +

∞∑
n=0

MnQ(Pd)n+2.

Moreover, we have
∞∑

n=0

MnQ(Pd)n+2 =

∞∑
n=1

Mn
(

0 B(Dd)n+2

C(Ad)n+2 0

)
,

as required.

The following example illustrates that Theorem 4.3 is a nontrivial generalization of [11, Theorem 10].
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Example 4.4. Let M =

(
A B
C D

)
∈M8(C), where

A = D =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,B = C =


0 0 1 0
0 0 0 3
0 0 0 0
0 0 0 0

 ∈M4(C).

Then
AB = 3AπBD,DC = 3DπCA and BC = 0.

Proof. Since A,B,C,D are nilpotent, we have Aπ = Bπ = Cπ = Dπ = I4. It is clear by computing that

AB = 3AπBD,DC = 3DπCA and BC = 0.

In this case, AB , AπBD.
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