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Abstract. In this paper we obtain two known solutions of the problem of continuity of contractive
mappings at fixed point under alternative set of conditions; these known solutions followed the first
solution of Rhoades problem by Pant in 1999. We show that these two solutions characterize completeness
and we also compare these with some recent solutions of the Rhoades problem.

1. Introduction

If f is a self-mapping of a metric space (X, d), we denote

mi(x,y) = max{d(x, fx),d(y, fy)}
mZ(x/ ]/) max{d(x, ]/)/ d(x/ fx)/ d(]// f]/)}

d(x, d(y,
matey) = max(dx, ), dy, fy), LI

d(x, dy,
my(x,y) = max {d(x, y),d(x, £2),d(y, fy), (x fy); (v fx)}‘

Consider the following conditions fori =1, 2,4.
For any € > 0 there exists a 6 > 0 such that, for any x, y € X,

e <mi(x,y) <e+06=d(fx, fy) <e.

1
e<mi(x,y) <e+o=d(fx, fy) <e. (2)
d(fx, fy) < mi(x,y) for any x, y € X with m;(x, y) > 0. 3)
d(fx, fy) < mi(x, y) for any x,y € X. 4)
d(fx, fy) < p(m;(x,y)) for any x, y € X. ®)

where ¢ : R; — R, denotes a function such that ¢(f) < t for each t > 0. Jachymski [11] studied various
Meir-Keeler type conditions and observed that (1) = (2) A (3) but not conversely. The symbol A represents
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the word and.

In 1988, Rhoades [21] examined continuity of a large number of contractive mappings at their fixed
points and found that though these contractive definitions do not require the map to be continuous but are
strong enough to force the mapping to be continuous at the fixed point. Rhoades [21] proposed an open
question whether there exists a contractive definition which is strong enough to generate a fixed point,
but which does not force the mapping to be continuous at the fixed point. In 1999, Pant [18] proved the
following theorem and obtained the first result as an affirmative answer.

Theorem 1.1 ([18]). Let f be a self~mapping of a complete metric space (X, d) such that the conditions (2) and (5)
hold for i = 1. Then f has a unique fixed point, say z. Moreover, f is continuous at z if and only if lim,_,, m(x, z) = 0.

In continuation, Pant [19] also obtained another solution of the Rhoades” problem.

Theorem 1.2 ([19]). Let f be a self-mapping of a complete metric space (X, d) such that the conditions (2) and (5)
hold for i = 2. Then f has a unique fixed point, say z. Moreover, f is continuous at z if and only if lim,_,, m(x, z) = 0.

In 2002, V. Pant [20] gave Matkowski type ¢—contractive solution for the Rhoades’ problem.

Theorem 1.3 ([20]). Let f be a self-mapping of a complete metric space (X,d) such that condition (5) holds for
i = 3 and lim, ¢"(t) = 0. Then f has a unique fixed point, say z. Moreover, f is continuous at z if and only if
lim,, ,, M(x,z) = 0.

We now recall some weaker forms of continuity.

Definition 1.4 ([16]). A self-mapping f of a metric space X is called k-continuous, k = 1,2,3,..., if fx, — ft
whenever {x,} is a sequence in X such that f*x, — t.

It was shown in [16] that continuity of f* and k-continuity of f are independent conditions when k > 1; and
k-continuity = (k + 1)-continuity, where k € IN, but not conversely. Obviously, 1-continuity is equivalent to
continuity.

Definition 1.5 ([5]). If f is a self-mapping of a metric space (X, d) then the set O(x, f) = {f"x :n =10,1,2,...} is
called the orbit of f at x and f is called orbitally continuous if u = lim; f™x implies fu = lim; f f™x.

A continuous mapping is orbitally continuous but not conversely. A k-continuous mapping is obviously
orbitally continuous [17].

Definition 1.6 ([17]). A self-mapping f of a metric space (X,d) is called weakly orbitally continuous if the set
ly € X:lim; f™y = u = lim; ff™y = fu} is nonempty whenever the set {x € X : lim; f™x = u} is nonempty.

An orbitally continuous mapping is obviously weakly orbitally continuous but not conversely (see [Exam-
ple 1.7, [17]]).

In 2017 Bisht and Pant [1] obtained one more solution to the Rhoades” problem under a ¢-contractive
condition and a Meir-Keeler type (2) condition.

Theorem 1.7 ([1]). Let (X, d) be a complete metric space. Let f be a self-mapping on X such that f* is continuous
and satisfy the conditions (2) and (5) for i = 4. Then f has a unique fixed point, say z, and f"x — z for each x € X.
Moreover, T is discontinuous at z iff lim,_,, ma(x, z) # 0.

Fixed point theorems for discontinuous mappings have found various applications. Applications of such
theorems in the study of neural networks under suitable conditions is a very active area of research (see,
[8, 9,12, 13]). Cromme and Diener [6] and Cromme [7] have proved results on approximate fixed points
for discontinuous functions and have given applications of their results to neural nets, economic equilibria
and analysis. All the known solutions of the Rhoades’ problem (e.g. [1-4, 14-16, 20, 22]) employ condition
(2) or some generalized form of (2) together with a ¢-contractive condition (5) or some weaker form of
continuity, e.g., orbital continuity, continuity of f* or k-continuity for some k > 1. Recently, Pant et al [17]
obtained a Meir-Keeler type solution for the Rhoades’ problem with condition (4) under the weak orbital
continuity condition.
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Theorem 1.8 ([17]). Let f be a self-mapping of a complete metric space (X,d) such that conditions (1) and (4)
hold for i = 1. Then f possesses a fixed point if and only if f is weakly orbitally continuous. Moreover, the fixed
point is unique and f is continuous at the fixed point, say z, if and only if lim,_,, my(x,z) = 0 or, equivalently,
lim,_,, supd(fz, fx) =0.

In this paper we obtain the solution of the Rhoades” problem with the conditions (2) and (3) under weak
orbitally continuity without assuming (5). We show that these solution characterize completeness of the
metric space and we also compare these with some recent solutions of Rhoades” problem.

2. Main Results

Theorem 2.1. Let f be a self-mapping of a complete metric space (X, d) such that fori =1,2

(i) d(fx, fy) < mi(x, y) whenever m;(x,y) > 0
(ii) given € > 0O there exist 6 > 0 such that

e <mi(x,y) <e+0=d(fx, fy) <e.

(iii) f is orbitally continuous or k-continuous or weak orbitally continuous.

Then f has a unique fixed point, say z. Moreover, f is continuous at the fixed point if and only if lim,_,, m;(x,z) = 0
ot, equivalently, lim,_,, sup d(fz, fx) = 0.

Proof. Let xo be any point in X. Define a sequence {x,} in X recursively by x, = fx,_1, thatis, x, = f"xo. If
Xy = Xp41 for some n then x,, = xy41 = Xp42 = Xp13.. ., thatis, {x,} = {f"xo} is a Cauchy sequence and x, is a
fixed point of f. We can, therefore, assume that x,, # x,.1 for each n. We first proceed for i = 1 and then
using (i) we get
A(xn, xXnv1) = d(fxu-1, fxn) < max{d(x,-1, fxn-1), d(xn, fxn)}
= max{d(x,—-1, Xn), A(Xpn, Xn+1)} = d(Xp-1, X).
Thus {d(x,, x,+1)} is a strictly decreasing sequence of positive real numbers and, hence, tends to a limit » > 0.
Suppose r > 0. Then there exists a positive integer N such that

n>N=r<dx,x.1) <r+0(r). (6)

This yields » < max{d(x,, Xp+1), d(Xp+1, Xpe2)} = max{d(xy, fx,), A(Xns1, fXne1)} < 1+ 0(r), which by virtue of
(iv) yields d(fxy, fxn+1) = (X441, Xns2) < r. This contradicts (6). Hence d(x,,, x4+1) — 0 as n — co. Similarly
it can be shown that {x,} is a Cauchy sequence. Since X is complete, there exists z in X such that x, — z.
Moreover, for each integer p > 1, we have fPx, — z. Also, using (i) it follows easily that f"y — z for any y
in X.

Now suppose that f is k-continuous. Since f*~!x, — t, k continuity of f implies that f*x, — ft. Hence
t = ftas fkx, — t. Therefore, t is fixed point of f.

Next suppose that f* is continuous for some positive integer k. Then, lim, . f*x, = f*t. This yields
fft=tas ffx, > t. Ift # ft we get

dt, ft) = d(f°t, f*0) < max{d(ft, 51, (L, )
A(F, YD) < d(F2, 1) <L < d(t, fD),

a contradiction. Hence t = ft and ¢ is a fixed point of f.

Suppose that f is orbitally continuous. Since x,, — ¢, orbital continuity implies that fx, — ft. This gives
t = ftas fx, — t. Thus t is a fixed point of f.
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Finally, suppose that f is weakly orbitally continuous. Since f"xy — z for each xo, by virtue of weak
orbital continuity of f we get f"yo — z and f""'yy — fz for some o in X. This implies z = fz since
" 1yy — z. Therefore z is a fixed point of f. Uniqueness of the fixed point follows easily.

It is also easy to verify that f is continuous at z if and only if lim,_,, max{d(x, fx),d(z, fz)} = 0 or,
equivalently, lim,_,, sup d(fz, fx) = 0. This can alternatively be stated as:

f is discontinuous at z if and only if lim sup d(fz, fx) > 0.
The proof for the case i = 2 follows similarly. 0O

We now show that Theorem 2.1 characterizes metric completeness.

Theorem 2.2. If every k-continuous or weak orbitally continuous self-mapping of a metric space (X, d) satisfying
conditions (i) and (ii) of Theorem 2.1 has a fixed point for i = 1,2; then X is complete.

Proof. Suppose that every k-continuous or weak orbitally continuous self-mapping of the metric space
X satisfying conditions (i) and (ii) of Theorem 2.1 possesses a fixed point for i = 1 and 2. We show
that X is a complete metric space. If X is not complete, then there exists a Cauchy sequence in X, say
S=1{a, :n=1,2,3..}, consisting of distinct points which does not converge. Let x € X be given. Then,
since x is not a limit point of the sequence S, we have d(x, S — {x}) > 0 and there exists a least positive integer,
say N(x), such that x # an() for each m > N(x) we have

1
d(aN(x),am) < Ed(x, LZN(X)). (7)

Let us define a mapping f : X — X by f(x) = anw). Then, f(x) # x for each x and, using (7), for any x, y in X
we get

d(fx, fy) = d(anw), ane)) < %d(x, an(x)) = d(x, fx) if N(x) < N(y) (8)
or

d(fx, fy) = danw, an) < %d(y,ﬂw(y)) = d(y, fy) if N(x) > N(y). )
This implies that

d(fx, fy) < 5 maxtd(s, ), d(y, fy)). (10)

In other words, given € > 0 we can select 6(¢) = € such that
e <max{d(x, fx),d(y, fy)} <e+06 = d(fx, fy) <e. (11)

It is clear from (10) and (11) that the mapping f satisfies condition (i) and (ii) of Theorem 2.1 fori = 1
and 2. Since the range of f is contained in the non-convergent Cauchy sequence S = {a,}, there exists no
sequence {x,} in X for which the condition fx, — t = f?x, — ft is violated. Therefore, f is a 2-continuous
mapping. In a similar manner it follows that f is weak orbitally continuous. Thus, f is a 2-continuous as
well as weak orbitally continuous self-mapping of X satisfying (i) and (ii) which does not possess a fixed
point. This contradicts our assumption. Hence X is complete. [J

The next example illustrate Theorem 2.1.
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Example 2.3. Let X = [0,2] and d be the usual metric. Define f : X — X by

{1 f osx<1
f(x)‘{o f 1<x<2.

Then f satisfies all the conditions of Theorem 2.1 and has a unique fixed point x = 1; and f is discontinuous at the
fixed point. The mapping f is 2-continuous, f* is continuous and f is also orbitally continuous. It can be easily
verified that

d(fx, fy) =0, 0<max{d(x, fx),d(y, fy)} <1lifx,y<1,
d(fx, fy) =0, 1 <max{d(x, fx),d(y, fy)} <2ifx,y>1,

and d(fx, fy) =1, 1 <max{d(x, fx),d(y, fy)} <2ifx<1,y>1

Therefore, f satisfies condition (ii) with 6(€) = 1 — € ife < 1 and 6(e) = 1 for € > 1. It may also be seen that the
function f in this example does not satisfy the Meir and Keeler (€ — 6) contractive condition, i.e., condition (1).

e < max{d(x, fx),d(y, fy)} <e+06 = d(fx, fy) <e.

Remark 2.4. The above example also satisfies condition (5) fori =1, i.e.,

d(fx, fy) < p(mi(x, y)).

In a recent paper Pant et al [17] obtained a Meir-Keeler type solution of Rhoades problem but their solution
does not satisfy condition (5). This gives rise to following unresolved questions:

Question 1. Does there exist a solution of Rhoades’ problem which satisfies (2) and (3) but not (5)?

Question 2. Does there exist a Meir-Keeler type solution (1) of Rhoades’ problem which also satisfies
©6)?
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