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Abstract. In this paper, with the help of measure of noncompactness together with Darbo-type fixed point
theorem, we focus on the infinite system of third-order differential equations

u′′′i + au′′i + bu′i + cui = fi(t,u1(t),u2(t), . . .)

where fi ∈ C(R × R∞,R) is ω-periodic with respect to the first coordinate and a, b, c ∈ R are constants.
The aim of this paper is to obtain the results with respect to the existence of ω-periodic solutions of the
aforementioned system in the Banach sequence space `p (1 ≤ p < ∞) utilizing the respective Green’s
function. Furthermore, some examples are provided to support our main results.

1. Introduction

During the last two decades, infinite systems of differential equations in various forms have been inves-
tigated in several papers. Recently, the concept of measure of noncompactness has been effectively utilized
in sequence spaces (whether classic or non-classic) for various classes of differential equations (see the
book [6] and references therein). Lately, via the technique of measure of noncompactness some researchers
studied the infinite system of second-order differential equations. Aghajani and Pourhadi [2] considered an
infinite system of second-order differential equations in the sequence space `1 by employing the measure
of noncompactness with the help of a Darbo type fixed point theorem. Next, Mohiuddine et al. [12] and
Banaś et al. [7] studied the same infinite system in the setting of sequence space `p.

In 2019, governed by the fundamental solutions, Mursaleen, Pourhadi and Saadati [13] introduced the
Green’s function of the second-order differential equations in general form with respect to boundary con-
ditions and then, in the Banach sequence space `p (1 ≤ p < ∞), they dealt with the solvability of the infinite
system of second-order differential equations while the coefficients are real functions.
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The so-called Meir-Keeler condensing operators have recently attracted great attention in numerous
existence results and this is because of the imposed conditions are significantly weakened. By this idea, the
mentioned system was studied in Banach sequence spaces `1 and c0 [14].

The following infinite system of third-order differential equations over the Banach sequence space c0
was studied in [15]. Inspired by this paper, as the main goal, the authors are interested to study the existence
of ω-periodic solutions of the following infinite system over the space `p (1 ≤ p < ∞)

u′′′i + au′′i + bu′i + cui = fi(t,u1(t),u2(t), . . .), (i ∈N) (1)

such that fi ∈ C(R × R∞,R) is ω-periodic with respect to the first component t and a, b, c ∈ R are constant.
To simplify the notation, we denote fi(t,u) instead of fi(t,u1(t),u2(t), . . .). Utilizing the main results of
Mursaleen and Rizvi [14] together with ones in Aghajani et al. [1] and using the Meir-Keeler condensing
operators we establish some existence results for the infinite system (1). The structure of this paper is as
follows. In Section 2, we gather some basic definitions and preliminaries concerning with the measure
of noncompactness and Meir-Keeler condensing operator. In Section 3, we present some existence results
in the sequence space `p (1 ≤ p < ∞). We also thank to some useful upper bounds of Green’s functions
corresponding to our problem recently obtained by Chen et al. [8]. In final section, some illustrative
examples are provided to show the usefulness of main results.

2. Preliminaries

Suppose E is a Banach space, X and Conv X stand for the closure and the convex closure of X as a subset
of E, respectively. Furthermore, denote byME the family of all nonempty bounded subsets of E and by NE
its subfamily consisting of all relatively compact sets.

In the following definition we recall the notion of measure of noncompactness which has been initially
introduced by Banaś and Goebel [5].

Definition 2.1. [5, Definition 3.1.3] A mapping µ : ME −→ R+ is said to be a measure of noncompactness(MNC,
for short) in E if it satisfies the following conditions:

(i) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE.

(ii) X ⊂ Y⇒ µ(X) ≤ µ(Y).

(iii) µ(X) = µ(X).

(iv) µ(Conv X) = µ(X).

(v) For all λ ∈ [0, 1],

µ(λX + (1 − λ) Y) ≤ λµ(X) + (1 − λ)µ(Y).

(vi) If (Xn)n∈N is a sequence of closed sets fromME such that

Xn+1 ⊂ Xn for all n = 1, 2, . . . and lim
n→∞

µ(Xn) = 0,

then the intersection set

X∞ =

∞⋂
n=1

Xn is nonempty.

The family kerµ described in (i) is said to be the kernel of the measure of noncompactness µ.
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Here, regarding the facts related to condensing operator, Meir-Keeler contraction (MKC) and Meir-Keeler con-
densing operator the readers are requested to see Definitions 2.2, 2.4, 2.5 and 2.7, and Theorems 2.3, 2.6 and
2.8 in [15].

We study the solvability of the problem (1) in the sequence space `p (1 ≤ p < ∞).

From the theory of ODEs, the associate homogeneous equation of (1) is

u′′′i + au′′i + bu′i + cui = 0, (i ∈N) (2)

and the related characteristic equation is given by:

λ3 + aλ2 + bλ + c = 0. (3)

All roots of the third-degree polynomial equation (3) are in form of one of the following four cases:

(i) λ1 , λ2 , λ3,

(ii) λ1 = λ2 , λ3,

(iii) λ1 = λ2 = λ3 = λ,

(iv) λ1 = α + iβ, λ2 = α − iβ, λ3 = λ, for α, β, λ ∈ R.

In our investigation the case c = 0 is not included since it would be easy to expand our results to ones
corresponding to this special case. Hence, the roots are presumed non-zero.

In the last decades there appeared numerous articles regarding with the concept of measure of non-
compactness. There are diverse types of well-known measures of noncompactness introduced in several
years ago. One of the most important is the Hausdorff measure of noncompactness (or ball measure of
noncompactness) [10] given by:

γ(X) = inf{ε > 0 | there exists a finite ε-net for X in E}.

It is worth mentioning that Hausdorff measure of noncompactness γ possesses the properties of regularity
(that is, kerγ = NE), semi-additivity, Lipschitzianity, continuity, and some further properties connected with
the linear structure.

3. Solvability of the system (1) in `p

As we know from the literature, the Hausdorff measure of noncompactness of the Banach sequence
space (`p, ‖ · ‖`p ) is formulated by the following relation (cf. [5]):

γ(X) = lim
n→∞

{
sup

(xk)∈X

( ∞∑
k=n

|xk|
p
)1/p}

(4)

for any nonempty and bounded subset X of `p. We recall that `p is a Banach space equipped with norm

‖x‖p = (
∞∑

i=1

|xi|
p)1/p, (1 ≤ p < ∞)

for any real sequence x = (xi).



E. Pourhadi et al. / Filomat 34:11 (2020), 3861–3870 3864

Backing to Eq. (1), it is known that u ∈ C3(R,R∞) is a solution of Eq. (1) if and only if u ∈ C(R,R∞) is a
solution of the following infinite system of integral equations (see also [8]):

ui(t) =

∫ t+ω

t
G(t, s) fi(s,u(s))ds, (i ∈N) (5)

where the Green’s function G(t, s) would be determined later.

In our considerations we impose the following two hypotheses:

(A1) The functions fi : R × R∞ → R are assumed to be ω-periodic with respect to first coordinate. The
operator f : R × `p → `p given by

(t,u) 7→ ( f u)(t) = ( f1(t,u), f2(t,u), . . .)

is such that the class of all functions {( f u)(t)}t∈R is equicontinuous at every point of the space `p;

(A2) The following inequality holds:

| fn(t,u1,u2, . . .)| ≤ 1n(t) + hn(t)|un(t)|,

in which the real functions 1n(t) and hn(t) are supposed to be continuous on R, such that
∑
∞

i=1 |1i(t)|p

converges uniformly on R with supremum value G and let the family (hn(t))n be uniformly bounded
on R by a non-zero constant H.

Now we are prepared to formulate the following results.

Let us first focus the `p-solvability of the problem for the case (i). Assume M is given as defined in [15,
Theorem 3.1], i.e.

M :=
exp(ω|λ1|)

|(λ1 − λ2)(λ1 − λ3)(1 − exp(λ1ω))|
+

exp(ω|λ2|)
|(λ2 − λ1)(λ2 − λ3)(1 − exp(λ2ω))|

+
exp(ω|λ3|)

|(λ3 − λ1)(λ3 − λ2)(1 − exp(λ3ω))|
.

Theorem 3.1. Suppose the assumptions (A1)–(A2) hold and λ1 , λ2 , λ3. Moreover, let ωMH < 1
2 . Then infinite

system (1) has at least one ω-periodic solution u(t) = (uk(t)) such that u(t) ∈ `p, t ∈ R and in addition, the set of all
solutions is compact.

Proof. The proof is partially similar to one considered for [15, Theorem 3.1]. Here, we only prefer to consider
the parts dealing with the norm ‖ · ‖c0 which should be replaced by ‖ · ‖p with some manipulations. For any
arbitrary t ∈ R that

‖u(t)‖pp =

∞∑
i=1

∣∣∣∣∣ ∫ t+ω

t
G1(t, s) fi(s,u(s))ds

∣∣∣∣∣p
≤

∞∑
i=1

( ∫ t+ω

t
|G1(t, s) fi(s,u(s))|pds

)1/p( ∫ t+ω

t
ds

)1/q

≤ ω
p
q

∞∑
i=1

∫ t+ω

t
|G1(t, s)|p| fi(s,u(s))|pds
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such that p > 1 is the Hölder conjugate of q, i.e., 1
p + 1

q = 1. Moreover,

‖u(t)‖pp ≤ ω
p
q Mp

∞∑
i=1

∫ t+ω

t
(|1i(s)| + |hi(s)| · |ui(s)|)pds

≤ ω
p
q (2M)p

∫ t+ω

t

∞∑
i=1

(|1i(s)|p + |hi(s)|p · |ui(s)|p)ds

≤ ω
p
q (2M)p(ωG + ωHp

∞∑
i=1

‖ui‖
p
p)

= (2ωM)p(G + Hp
‖u‖pp).

(6)

The case p = 1 is easier and one can simply find out an appropriate bound and fortunately it is the same as
above:

‖u(t)‖1 ≤ 2ωM(G + H‖u‖1).

Now, for any case, assuming an arbitrary positive r0 satisfying

0 < r0 ≤
2ωMG

1/p

p
√

1 − (2ωMH)p

we see that ‖u‖p ≤ r0, that is, u belongs to B0 := B(0, r0), the closed ball centered at 0 = (0, 0, . . .) with radius
r0. Let us consider the operator F = (Fi) defined on C(R,B0) by

(F u)(t) = {(Fiu)(t)} =
{∫ t+ω

t
G1(t, s) fi(s,u(s))ds

}
, t ∈ R, (7)

while u(t) = (ui(t)) ∈ B0 and ui(t) ∈ C(R,R), t ∈ R. Bearing the assumption (A1) in mind, it is evidently
understood that F is continuous on C(R, `p). Clearly, the function F u is also continuous, and (F u)(t) ∈ `p
whenever u(t) = (ui(t)) ∈ `p (see also (6)). Indeed, remind that ( fi(t,u(t))) ∈ `p and

‖( fi(t,u(t)))‖pp =

∞∑
i=1

| fi(t,u(t))|p ≤ 2p
∞∑

i=1

(|1i(t)|p + |hi(t)|p · |ui(t)|p) ≤ 2p(G + Hp
‖u(t)‖pp) < ∞.

Further, this shows that

∞∑
i=1

|(Fiu)(t)|p ≤
∞∑

i=1

∫ t+ω

t
|G1(t, s) fi(s,u(s))|pds

≤ ω
p
q Mp

∞∑
i=1

∫ t+ω

t
‖ fi(s,u(s)))‖ppds

≤ (2ωM)p(G + Hp
‖u‖pp) < ∞.

Finally, it suffices to show that F is a Meir-Keeler condensing operator. To do this, let us consider ε > 0 is
given. We need to find a δ > 0 such that ε ≤ γ(B0) < ε + δ implies γ(F B0) < ε. Now, for the case p > 1,
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formulae (4), (6) and the fact that
∑
∞

i=1 |1i(t)|p converges uniformly yield that

γ(F B0) = lim
n→∞

{
sup

u(t)∈B0

( ∞∑
k=n

∣∣∣∣∣ ∫ t+ω

t
G1(t, s) fk(s,u(s))ds

∣∣∣∣∣p)1/p}
≤ ω

1
q M lim

n→∞

{
sup

u(t)∈B0

( ∞∑
k=n

∫ t+ω

t
(|1k(s)| + |hk(s)| · |uk(s)|)pds

)1/p}
≤ 2ω

1
q M lim

n→∞

{
sup

u(t)∈B0

( ∫ t+ω

t

[
(
∞∑

k=n

|1k(s)|p) +

∞∑
k=n

|hk(s)uk(s)|p
]
ds

)1/p}
≤ 2ωMH lim

n→∞

{
sup

u(t)∈B0

( ∞∑
k=n

|uk|
p
)1/p}

= 2ωMHγ(B0).

(8)

Again, in above, q is the Hölder conjugate of p > 1. For the case p = 1, an analogous upper bound is derived.
Thus, for given ε > 0, and taking δ := (1−2ωMH)ε

2ωMH we infer the following implication:

ε ≤ γ(B0) < ε + δ =⇒ γ(F B0) < ε. (9)

The Eq. (9) implies F is a Meir-Keeler condensing operator given on the set B0 ⊆ `p, which means all
assumptions of [15, Theorem 2.8] are fulfilled, and following the proof of [15, Theorem 3.1] shows that we
are done.

Similarly, with the preserving all notations and conditions in [15], for the rest of paper we have the
following results for the cases (ii)-(iv).

Theorem 3.2 (`p-Solvability for the case (ii)). [15, Theorem 3.4] holds by replacing the upper bound 1 and the
sequence space c0 with 1

2 and `p, respectively.

Theorem 3.3 (`p-Solvability for the case (iii)). [15, Theorem 3.5] holds by replacing the upper bound 1 and the
sequence space c0 with 1

2 and `p, respectively.

Theorem 3.4 (`p-Solvability for the case (iv)). [15, Theorem 3.6] holds by replacing the upper bound 1 and the
sequence space c0 with 1

2 and `p, respectively.

4. Concrete examples

In this section, we provide two examples for the cases (i) and (ii) to illustrate our main results obtained in
the former section. Regarding with the examples, the results for the other cases can be similarly structured.

Example 4.1. Consider the following infinite system of third-order differential equations

u′′′n − 0.601u′′n + 0.0506u′n − 5 · 104un =
1
n

+

∞∑
k=n

|uk(t)| sin 4
3 t

k(n + 50)(10 + (k − n)2|uk(t)|)
, (n ∈N). (10)

Also, assume the notations p1, q1,A3 and B3 as given in [15, Remark 3.2], i.e.
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p1 := (λ2 − λ3) exp(λ3ω) + 2(λ1 − λ3) exp(λ2ω)
+ (λ1 − λ2) exp(λ1ω) + (λ1 − λ3) exp((λ1 + λ2 + λ3)ω),

q1 := (λ1 − λ3) + (λ1 + λ2 − 2λ3) exp((λ2 + λ3)ω) + (2λ1 − λ2 − λ3) exp((λ1 + λ2)ω),

A3 :=
exp(λ1ω)

(λ1 − λ2)(λ1 − λ3)(1 − exp(λ1ω))
+

1
(λ2 − λ3)(λ2 − λ1)(1 − exp(λ2ω))

+
exp(λ3ω)

(λ3 − λ2)(λ3 − λ1)(1 − exp(λ3ω))
,

B3 :=
1

(λ1 − λ2)(λ1 − λ3)(1 − exp(λ1ω))
+

exp(λ2ω)
(λ2 − λ3)(λ2 − λ1)(1 − exp(λ2ω))

+
1

(λ3 − λ2)(λ3 − λ1)(1 − exp(λ3ω))
.

We first note that the function in R.H.S. of (10), say fn(t,u(t)), is continuous at each point in R and for n ∈ N.
Besides, ( fn(t,u(t))) ∈ `2 whenever u(t) = (un(t)) ∈ `2. Furthermore,

∞∑
n=1

| fn(t,u(t))|2 =

∞∑
n=1

(1
n

+

∞∑
k=n

|uk(t)| sin 4
3 t

k(n + 50)(10 + (k − n)2|uk(t)|)

)2

≤

∞∑
n=1

[ 1
n2 +

∞∑
k=n

2|uk(t)|
kn(n + 50)(10 + (k − n)2|uk(t)|)

+

∞∑
n=1

( ∞∑
k=n

|uk(t)|2

(10 + (k − n)2|uk(t)|)2

)( ∞∑
k=n

1
k2(n + 50)2

)]
<
∞∑

n=1

[ 1
n2 +

1
n3

]
+
π2

6
(
π2

6
− 1 −

1
22 −

1
32 − · · · −

1
502 )

×

∞∑
n=1

(
0.01|un(t)|2 +

∞∑
k=n+1

|uk(t)|2

(10 + (k − n)2|uk(t)|)2

)
≤

∞∑
n=1

[ 1
n2 +

1
n3

]
+
π2

6
(
π2

6
− 1 −

1
22 −

1
32 − · · · −

1
502 )

(
0.01‖u(t)‖22 +

∞∑
n=1

1
n4

)
=
π2

6
+ ζ(3) +

π2

6
(
π2

6
− 1 −

1
22 −

1
32 − · · · −

1
502 )

(
0.01‖u(t)‖22 +

π4

90

)
< ∞

where ζ is the Riemann zeta function and ζ(3) ≈ 1.2020569. Now let us prove that (A1) holds. To do this, take an
arbitrary ε > 0 and u(t) = (un(t)), v(t) = (vn(t)) ∈ `2 such that ‖u(t) − v(t)‖2 < δ(ε) := 6(104)ε2

π2 , then for the operator
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f = ( fn) we have

‖( f v)(t) − ( f u)(t)‖22 ≤
∞∑

n=1

( ∞∑
k=n

1
k(n + 50)

·

∣∣∣∣∣ |uk(t)|
(10 + (k − n)2|uk(t)|)

−
|vk(t)|

(10 + (k − n)2|vk(t)|)

∣∣∣∣∣)2

≤

∞∑
n=1

( ∞∑
k=n

1
k2 ·

∞∑
k=n

100
∣∣∣∣∣|uk(t)| − |vk(t)|

∣∣∣∣∣2
(n + 50)2(10 + (k − n)2|uk(t)|)2(10 + (k − n)2|vk(t)|)2

)
≤ 0.01

∞∑
n=1

( ∞∑
k=n

1
k2 ·

∞∑
k=n

|uk(t) − vk(t)|2

(n + 50)2

)
≤
π2

600

∞∑
n=1

( ∞∑
k=n

|uk(t) − vk(t)|2

(n + 50)2

)
=
π2

600

∞∑
n=1

n|un(t) − vn(t)|2

(n + 50)2

≤
π2

6(104)
‖u(t) − v(t)‖2

<
π2δ

6(104)
= ε2

which establishes the required continuity as supposed in (A1). In order to verify hypothesis (A2) we get the following
bound

| fn(t,u(t))| ≤
1
n

+

∣∣∣∣∣ ∞∑
k=n

|uk(t)| sin 4
3 t

k(n + 50)(10 + (k − n)2|uk(t)|)

∣∣∣∣∣
≤

1
n

+
| sin 4

3 t|
n + 50

( 1
10n
|un(t)| +

∞∑
k=n+1

1
k(k − n)2

)
≤

1
n

+
| sin 4

3 t|
n + 50

( 1
10n
|un(t)| + ζ(3)

)
.

Now, taking

1n(t) :=
1
n

+
ζ(3)| sin 4

3 t|
n + 50

, hn(t) :=
| sin 4

3 t|
10n(n + 50)

one can observe that (A2) is satisfied, H = 1
510 and

∑
∞

k=1 |1n(t)|2 < ∞. On the other hand, using the notations in
previous section we see that the roots of the associate homogeneous equation of (10) are λ1 = 0.5, λ2 = 0.1, λ3 = 0.01
and p1 ≈ 15.5096 < q1 ≈ 16.5067. Considering the roots as above, and applying the definition of G1(t, s) we find

A3 = −46.2250 ≤ G1(t, s) ≤ B3 = −36.5363 < 0, for ω = 1.5π.

This shows that the assumption (C1) is satisfied (see [15, Remark 3.2]). Since for any positive integer n the function
fn(t,u(t)) is 1.5π-periodic with respect to the first coordinate t, and ωH|A3| ≈ 0.4271 < 0.5, then all the hypotheses
of Theorem 3.1 are fulfilled. Therefore, the infinite system (10) has a 1.5π-periodic solution u(t) = (un(t)) ∈ `2.

We now present another illustrative example in support of our result for the case (ii).

Example 4.2. Consider the following infinite system of third-order differential equations

u′′′n − 5.2u′′n + 1.01u′n − 0.05un =
e−u2

n(t)

n
−

∞∑
k=n

sin2 uk(t)
k2(n + 25π)(2 + cos t)

, (n ∈N). (11)
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First note that the characteristic equation of the homogeneous equation corresponding to Eq. (11) has the roots
λ1 = λ2 = 0.1, λ3 = 5. This shows that the associate Green’s function of Eq. (11) is as form of G2(t, s) (see [15, Eq.
(3.8)]).

The function fn(t,u(t)) in R.H.S. of (11) is continuous on R, and 2π-periodic with respect to the first coordinate
t for n ∈N. In addition, ( fn(t,u(t))) ∈ `2 whenever u(t) = (un(t)) ∈ `2. Indeed, by the fact that sin2 uk(t) ≤ |uk(t)| we
derive

∞∑
n=1

| fn(t,u(t))|2 ≤
∞∑

n=1

e−2u2
n(t)

n2 +

∞∑
n=1

( ∞∑
k=n

sin2 uk(t)
k2(n + 25π)(2 + cos t)

)2

≤
π2

6
+

1
(2 + cos t)2

∞∑
n=1

( ∞∑
k=n

1
k4

)( ∞∑
k=n

|uk(t)|2

(n + 25π)2

)
≤
π2

6
+

π4

90(2 + cos t)2

∞∑
n=1

( ∞∑
k=n

|uk(t)|2

(n + 25π)2

)
=
π2

6
+

π4

90(2 + cos t)2

∞∑
n=1

n|un(t)|2

(n + 25π)2

≤
π2

6
+

π3

4500(2 + cos t)2 ‖u(t)‖22 < ∞.

To verify (A1), take an arbitrary ε > 0 and u(t) = (un(t)), v(t) = (vn(t)) ∈ `2 such that ‖u(t) − v(t)‖2 < δ(ε) :=

(16M2 +
π3

1125
)−1ε2, then for the operator f = ( fn) and utilizing the fact |a + b|p ≤ 2p(|a|p + |b|p) we have

‖( f u)(t) − ( f v)(t)‖22 ≤
∞∑

n=1

( e−u2
n(t)

n
−

e−v2
n(t)

n
−

∞∑
k=n

[ sin2 uk(t)
k2(n + 25π)(2 + cos t)

−
sin2 vk(t)

k2(n + 25π)(2 + cos t)

])2

≤ 4
∞∑

n=1

|
e−u2

n(t)
− e−v2

n(t)

n
|
2 + 4

∞∑
n=1

∣∣∣∣∣ ∞∑
k=n

sin2 uk(t) − sin2 vk(t)
k2(n + 25π)(2 + cos t)

∣∣∣∣∣2
≤ 4

∞∑
n=1

|
[un(t) − vn(t)](−2ηn(t)e−η2

n(t))
n

|
2 + 4

∞∑
n=1

∣∣∣∣∣ ∞∑
k=n

sin2 uk(t) − sin2 vk(t)
k2(n + 25π)(2 + cos t)

∣∣∣∣∣2
for an appropriate sequence of functions ηn(t) using the mean value theorem. Since un(t), vn(t) ∈ `2 one can find an
upper bound M, sufficiently large, satisfying the following:

‖( f u)(t) − ( f v)(t)‖22 ≤ 16M2
‖u(t) − v(t)‖22 + 4

∞∑
n=1

[
(
∞∑

k=n

1
k4 ) · (

∞∑
k=n

|uk(t) − vk(t)|2

(n + 25π)2 )
]

≤ 16M2
‖u(t) − v(t)‖22 +

4π4

90

∞∑
n=1

[ ∞∑
k=n

|uk(t) − vk(t)|2

(n + 25π)2

]
= 16M2

‖u(t) − v(t)‖22 +
4π4

90

∞∑
n=1

n|un(t) − vn(t)|2

(n + 25π)2

≤ 16M2
‖u(t) − v(t)‖22 +

π3

1125
‖u(t) − v(t)‖22

< δ(16M2 +
π3

1125
) < ε2.
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which shows (A1) is satisfied. On the other hand, to verify (A2) we see

| fn(t,u(t))| =
∣∣∣∣∣ e−u2

n(t)

n
−

∞∑
k=n

sin2 uk(t)
k2(n + 25π)(2 + cos t)

∣∣∣∣∣
≤

1
n

+

∞∑
k=n

sin2 uk(t)
k2(n + 25π)(2 + cos t)

=
1
n

+
sin2 un(t)

n2(n + 25π)(2 + cos t)
+

∞∑
k=n+1

sin2 uk(t)
k2(n + 25π)(2 + cos t)

≤ 1n(t) + hn(t)|un(t)|

where

1n(t) :=
1
n

+
π2

6(n + 25π)(2 + cos t)
, hn(t) :=

1
n2(n + 25π)(2 + cos t)

.

Obviously, 1n(t) ∈ `2 and H = 1
1+25π . Moreover, according to (C5) (to see this condition and the notations used below

we refer [15]):

λ3 > λ2 = λ1 > 0, exp(0.2π) ≈ 1.8745 < 1 + 9.8π ≈ 31.7876, A5 = −5.8443 ≤ G2(t, s) ≤ B5 = −1.6293 < 0

which together with ωH|A5| =
2π(5.8443)

1 + 25π
≈ 0.4616 < 1

2 implies all conditions of Theorem 3.2 are fulfilled and the
infinite system (11) has at least one 2π-periodic solution u(t) = (uk(t)) such that u(t) ∈ `2, t ∈ R.
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