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A Classification of 3-Dimensional 7-Einstein Paracontact Metric
Manifolds
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Abstract. We show that a 3—dimensional 7-Einstein paracontact metric manifold is either a manifold with
trh? = 0, flat or of constant £—sectional curvature k # —1 and constant p-sectional curvature —k # 1.

1. Introduction

The assumption that (M?"*!,p, &, 1, ) is a paracontact metric manifold is very weak, since the set of
metrics associated to the paracontact form 7 is huge. Even if the structure is —Einstein we do not have a
complete classification. It is known very little for the geometry of manifolds with n = 1 (see [5]). On the
other hand if the structure is para-Sasakian, the Ricci operator Q commutes with ¢ (see [5]), but in general
Q¢ # ¢Q and the problem of the characterization of paracontact metric manifolds with Q¢ = ¢Q is open.
In [2] Tanno defined a special family of paracontact metric manifolds by the requirement that & belongs to
the k—nullity distribution of g. These manifolds are not well studied also (see [5]). In this paper, we show
that a 3—dimensional paracontact manifold on which Qg = ¢Q is either a manifold with tri? = 0, flat or of
constant £—sectional curvature k # —1 and constant g-sectional curvature —k # 1.

2. Preliminaries

First we will give some known definitons and facts which we use in the next section. A C* manifold
M@+ is said to be paracontact manifold, if it carries a global 1—form 1 such that n A (dn)" # 0 everywhere.
We assume throughout that all manifolds are connected. Given a paracontact form 7, it is well known that
there exists a unique vector field &, called characteristic vector field of 1, satisfying n(&) = 1 and dn(&, X) =0

for all vector fields X. A pseudo-Riemannian metric g is said to be an associated metric if there exists a tensor
field ¢ of type (1,1) such that

(X, Y) = gX,9Y), nX)=9(X &), ¢*=Id-n®E. (2.1)
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Using these conditions it is easily obtained that

pE=0, nop=0, geX @Y)=-g(XY)+nX)nQ). (2.2)

The structure (¢, &, 1, ) is called a paracontact metric structure, and a manifold M>"*! with paracontact metric
structure (¢, &, 1, g) is said to be a paracontact metric manifold.

Let £ and R be the Lie differentiation and the curvature tensor respectively. Using £ and R we define the
operators | and & are defined in the following way

X=RX0E h= 3k, 2.3)
The tensors i and [ of (1, 1)—type are symmetric and satisfy all of the subsequent conditions

I£=0, hé=0, trh=0, trhp =0, he=—-¢h (2.4)
For a paracontact manifold the following statements are fulfilled:

VxE = —pX + phX (Ve& = 0) (2.5)

Vep =0 (2.6)

trl = g(Q&, &) = —2n + tri? (2.7

plp +1=-2(p* - 1?) (2.8)

Veh = - — @l + ph?, (2.9)

where tr is the trace of the operator, Q is the Ricci operator and V is the Levi-Civita connection of g. Detailed
proof of these formulas can be found in [4].

A paracontact metric manifold for which ¢ is Killing is called a K-paracontact manifold. A paracontact
structure on M@"*D naturally gives rise to an almost paracomplex structure on the product M1 x R.
If this almost paracomplex structure is integrable, the given paracontact metric manifold is said to be a
para-Sasakian. Equivalently, (see [4]) a paracontact metric manifold is a para-Sasakian if and only if

(Vxp)Y = —g(X, Y)E + n(Y)X, (2.10)

is satisfied for all vector fields X and Y.

It can be easily shown that a 3—dimentional paracontact manifold is para-Sasakian if and only if & = 0.
For further details we refer to [3]],[4].

A paracontact metric structure is said to be n—Einstein if

Q=aid+bn®E, (2.11)

where 4, b are smooth functions on M@+ We also recall that the k—nullity distribution N(k) of a pseudo-
Riemannian manifold (M, g), for a real number k, is the distribution
Ny(k) ={Z € T,M : R(X,Y)Z = k(g(Y, 2)X — g(X, Z)Y)}, (2.12)
for any X, Y € T,M (see [2]).
Finally, we call &-sectional curvature the sectional curvature
K(é/ X) = GXR(X/ 5/ 5/ X)r

where |X| = ex = +1, of a plane section spanned by & and the vector X orthogonal to £&. Moreover the
sectional curvature K(X, pX) = —R(X, pX, X, X), where |X| = —|pX]| = 1, of a plane section spanned by
vectors X and X orthogonal to ¢ is called a @-sectional curvature.
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3. Main result

In this section we introduce our main results. Firstly we state the following lemma.

Lemma 1. Let M® be a paracontact metric manifold with a paracontact metric structure (p,&,n,g) such that
©Q = Q. Then the function trl is constant everywhere on M°.

Although it was previously proven in [5], we include this complete proof in this paper for completeness
and since we use many of the formulas which appear in it.

Proof. Let us recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold is given by
R(X, Y)Z = g(Y, Z)QX - 9(X, 2)QY + g(QY, 2)X — g(QX, Z)Y - (3.13)

scal

2

where scal is the scalar curvature of the manifold.
Using ¢Q = Qg, and @& = 0 we have that

Q& = (trl)é. (3.14)
From (3.13) and using and (3.14), we have that for any X,

[9(Y, 2)X — g(X, 2)Y],

IX = QX + (trl - %‘ll)x +1(X) (%‘ll - 2trl) £ (3.15)

and hence ¢Q = Qg and @& = 0 give

@l =lp. (3.16)
As a result of (3.16), and (2.9), we obtain
~1=¢* -1 (3.17)

and hence V:h = 0.

By differentiating along & and using formula and V:h = 0, we find that VI = 0 and therefore
&(trl) = 0. If there exists X € T,M, X # & at point p € M? such that /X = 0, then [ = 0 at the point p. In fact
if Y is the projection of X on D = kern, we have IY = 0, since I = 0. Using we have lpY = 0. So
I =0 at the point p (and thus tr/ = 0 at the point p). Let us suppose that [ # 0 on a neighborhood U of the
point P. Using and that ¢ is antisymmetric, we get g(¢X, IX) = 0. Hence IX is parallel to X for any X
orthogonal to &. It is not hard to see that IX = 4. X for any X orthogonal to &. Thus for any X, we have

trl

IX = ?pzx (3.18)

If we use (3.18) and substitute it in (3.15) we receive
QX = aX + bn(X)é, (3.19)

where a = w and b = w Differentiating (3.19) with respect to Y and using (3.19) and the fact that
V:& =0we find

(VyQ)X = (Yo)X + [(YD)n(X) + bg(X, VY E)] & + bn(X)VyE. (3.20)

So using &(tr]) = 0 and V& = 0, from (3.20) with X = Y = £, we have (V:Q)& = 0. Also using hp = —@h, and
2.5), from (3.20) with X = Y orthogonal to &, we get

g(VxQ)X — (VpxQ)eX, &) = 0. (3.21)
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But it is well known that 1
(VxQ)X = (VpxQ)pX + (VeQ)<E = > grad(scal),

for any unit vector X orthogonal to . Hence, we easily get from the last two equations that (scal) = 0, and
thus V:Q = 0. Therefore, differentiating (3.13) with respect to & and using V:Q = 0, we have V¢R = 0. So
from the second identity of Bianchi, we get

(VxR)(Y, &, Z) = (VYR)(X, &, Z). (3.22)
Now, substituting in (3.13), we obtain
RX,NZ = [yg(Y, 2) + bn(Nn(2)] X = [yg(X, Z) + bn(X)n(2)] Y+ (3.23)

+b [n(X)g(Y, Z) = n(M)g(X, 2)] &,
where y = £ — . For Z = &, gives

trl

R(X, Y)E = = [1(V)X = (Y] (3.24)

Using (3.24), we obtain (VxR)(Y, ¢, &) = X(;rl) Y, for X, Y orthogonal to &. From this and (3.22)) for Z = &, we
get X(tr])Y = Y(tr])X. Therefore X(trl) = 0 for X orthogonal to &, but &(tr]) = 0, so the function tr/ is constant
and this completes the proof of the Lemma. O

Remark 1. When | = 0 everywhere, then using (3.13), (3.14) and (3.15) we get R(X,Y)E = 0. This together with
Theorem 3.3 in [6]] gives that M? is flat.

Now we can state the following proposition

Proposition 1. [5]] Let M® be a paracontact metric manifold with paracontact metric structure (¢, &, 1, g). Then the
following conditions are equivalent:

i) M® is a n—Einstein;

i) Qp = pQ;

iii) & belongs to the k—nullity distribution.
Next we present our main theorem.

Theorem 1. Let M? be a paracontact metric manifold with paracontact metric structure (¢, &, 1, g) on which Q¢ =
©Q. Then M?® is either a manifold with trh®> = 0, flat or of constant E—sectional curvature k # —1 and constant
@-sectional curvature —k # 1.

Proof. From the proof of Lemma [l|and Remark [1|it follows straightforward that if tr/ = 0, | = 0 it turns out
that M? is flat. By the proof of Lemma(l|it is easy to show that if k = -1, then trl = =2 and by using (2.7), we
have that M? is a manifold with trh? = 0.

Let us firstly consider the case where trl # 0. From Proposition[Ijand it follows that

R(X, )& = k(n(Y)X = n(X)Y), (3.25)
where k = & # —1 and k # 0. This implies that
(Vx)Y = —g(X = hX, V)& + n(Y)(X — hX) (3.26)

as was pointed out by S. Zamkovoy in ([4]). In fact this is true for any 3-dimensional paracontact manifold
([3]). Computing R(X, Y)& from we receive

R(X, V)¢ = =(Vx@)Y + (Vyp)X + (Vxph)Y — (Vyph)X =
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= —(Vx@)Y + (Vyp)X + (Vxp)hY — (Vyp)hX + p(Vxh)Y — p(Vyh)X.
Then using and we obtain either
k(n(Y)X = n(X)Y) = n(X)(Y = hY) = n(Y)(X = hX) + p((Vxh)Y = (Vy1)X).
or
(k+D(MNX = n(X)Y) = —n(XhY + n()hX + @((Vxh)Y = (VY1) X). (3.27)

Next we consider the case in which k > —1. In this case the operator & is diagonalizable (see [1]). Now
let X be a unit eigenvector of & (i.e. |X| = ex = +1), say hX = AX, X L &. Since trh? = 2(k+ 1), A = + Vk + 1
and hence is a constant. Setting Y = ¢X, (3.27) yields

PUVx)PX — (Vyxh)X) = 0.
From which we receive the following equation
P(=AVxpX — hVx@pX — AVyx X + hV,xX) = 0. (3.28)
Let us recall that ph + hp = 0. Now we take the inner product of with X and obtain
Ag(VexX, pX) = 0.
Since A # 0 (k > —1) and X is unit, V,xX is orthogonal to both X and ¢X and hence collinear with &. Now
N(VexX) = g(Vpx X, &) = =9(X, Vpx&) = —g(—X — hX, X) = ex(A + 1).

Therefore we receive
V(,,XX = €X(A + l)é

Similarly if we take the inner product of (3.28) with ¢X it follows that
VxpX = ex(A —1)&

and in turn VxX = 0 and
[X, pX] = —2exé.

Now from the form of the curvature tensor (3.23), we have

RX, pX)pX = —ex (%ﬂl - trl) pX

and by direct computation using Vx& = (A — 1)pX,
R(X, (pX)X = va(PXx - V(vaxx - V[X,({,X]X =

= GX(/\ + 1)VX45 + ZEXV(EX = €X(/\2 - 1)Vx(§ + Zexng.
Thus

A2—1  scal
o[

and hence -1y Z
- sca
[&X] = (T - T)

Now computing R(&, X)&, by ((8.25)) and by direct computation, we have

—(A* = 1)X = Ve(—pX + phX) — V( ap &=

-t px
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A-17  scal
2 4

:(A—l)(pV5X+( )(X+hX)=

= ((/\ —12A+1) - /\%HZ)X

from which
scal = 2(A% - 1) = 2k.

From (3.25) and (3.23) it follows that for the {—sectional curvature K(X, &) and ¢@-—sectional curvature
K(X, X) are equal to
KX, &)=k and KX, ¢X)=-k

respectively as was desired.
Let us now consider the case in which k < —1. As it was shown in (see [1]) the operator ¢h is
diagonalizable. Now let X be a unit eigenvector of ph (i.e. |X| = ex = 1), say phX = AX, X L &. Since

trh> =2(k+1),A = + \/m and hence is a constant. We denote Y = ¢X (3.27). Hence
(Vxph)pX — (Voxph)X =0
from which we receive
—AVx@X — phVxpX — AV,x X + phV,x X = 0. (3.29)
Taking the inner product of with X and recalling that ph + hp = 0, we have
Ag(Vex X, pX) = 0.
Since A # 0 (k < —1) and X is unit, V,xX is orthogonal to both X and ¢X and hence collinear with &. Now
N(VexX) = g(VpxX, &) = =g(X, Vyx&) = —g(~¢*X + phpX, X) = ex.

Therefore
VoxX = exé.

Similarly taking the inner product of (3.29) with X yields
Vx(pX = —GXE

and in turn VxX = —exA¢& and
[X, pX] = —2exé.

Now from the form of the curvature tensor (3.23), we have

scal

R(X, pX)pX = —ex (7 - trl) pX

and by direct computation using Vx& = —pX + AX,
R(X, (pX)X = VXV(P)(X - V(vaXX - V[X,(pX]X'

Thus

A24+1  scal
VeX = - X
3 ( > 4)<P

and hence

221 scal
[&,X] = —/\X—( T+ %)(px
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We compute R(&, X)&, using ((3.25) and by direct computation, we have

A1 scdl
2 4

(A2 +1)X = Ve(=pX + AX) + AVxE + ( )v(pxg =

A2—1  scal
5 + T) (_X - A@X) =

= —@Vgx + AV&X + AVx& + (

2
= (A2 +1)X + (—A —ZA(%HI + %))@(

from which
scal = =2(A% + 1) = 2k.
As a conclusion from and we see that
KX, &)=k and KX, ¢X)=-k
as desired. [J
Now we can state the following definition

Definition 1. A paracontact metric structure (@, &, 1, g) is said to be locally ¢p— symmetric if (pz(VwR)(X, Y,7Z) =0,
for all vector fields W, X, Y, Z orthogonal to &.

The next theorem was proved in detail in [5]

Theorem 2. Let M? be a paracontact metric manifold with Qp = Q. Then M3 is locally p—symmetric if and only
if the scalar curvature scal of M? is constant.

Remark 2. Using (3.20) with trl = const., we obtain the following formula
2|VQP* = |gradscall* — (3trl — scal)*(4 + trl) (3.30)
which is valid on any paracontact metric manifold M> with Qg = ¢Q.

From Theorem |2} we get the following

Corollary 1. A locally p—symmetric paracontact metric manifold M® is a manifold with either scal = 3trl, scal = —12
or trl = —4.
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