

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Classification of 3-Dimensional η -Einstein Paracontact Metric Manifolds

Simeon Zamkovoy a, Assen Bojilova

^aUniversity of Sofia "St. Kl. Ohridski", Faculty of Mathematics and Informatics, Blvd. James Bourchier 5, 1164 Sofia, Bulgaria

Abstract. We show that a 3-dimensional η -Einstein paracontact metric manifold is either a manifold with ${\rm tr} h^2=0$, flat or of constant ξ -sectional curvature $k\neq -1$ and constant φ -sectional curvature $-k\neq 1$.

1. Introduction

The assumption that $(M^{2n+1}, \varphi, \xi, \eta, g)$ is a paracontact metric manifold is very weak, since the set of metrics associated to the paracontact form η is huge. Even if the structure is η -Einstein we do not have a complete classification. It is known very little for the geometry of manifolds with n=1 (see [5]). On the other hand if the structure is para-Sasakian, the Ricci operator Q commutes with φ (see [5]), but in general $Q\varphi \neq \varphi Q$ and the problem of the characterization of paracontact metric manifolds with $Q\varphi = \varphi Q$ is open. In [2] Tanno defined a special family of paracontact metric manifolds by the requirement that ξ belongs to the k-nullity distribution of g. These manifolds are not well studied also (see [5]). In this paper, we show that a 3-dimensional paracontact manifold on which $Q\varphi = \varphi Q$ is either a manifold with $trh^2 = 0$, flat or of constant ξ -sectional curvature $k \neq -1$ and constant φ -sectional curvature $-k \neq 1$.

2. Preliminaries

First we will give some known definitons and facts which we use in the next section. A C^{∞} manifold $M^{(2n+1)}$ is said to be *paracontact manifold*, if it carries a global 1–form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere. We assume throughout that all manifolds are connected. Given a paracontact form η , it is well known that there exists a unique vector field ξ , called *characteristic vector field* of η , satisfying $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$ for all vector fields X. A pseudo–Riemannian metric g is said to be an *associated metric* if there exists a tensor field φ of type (1,1) such that

$$d\eta(X,Y) = g(X,\varphi Y), \quad \eta(X) = g(X,\xi), \quad \varphi^2 = Id - \eta \otimes \xi. \tag{2.1}$$

2010 Mathematics Subject Classification. Primary 53D15

Keywords. 3-dimensional paracontact metric manifolds

Received: 02 February 2020; Revised: 22 June 2020; Accepted: 10 July 2020

Communicated by Ljubica Velimirović

S.Z. is partially supported by Contract DN 12/3/12.12.2017 and Contract 80-10-12/18.03.2020 with the Sofia University "St.Kl.Ohridski".

 $A.B.\ is\ partially\ supported\ by\ Contract\ 80-10-209/17.04.2019\ with\ the\ Sofia\ University\ ''St.Kl. Ohridski''.$

Email addresses: zamkovoy@fmi.uni-sofia.bg (Simeon Zamkovoy), bojilov@fmi.uni-sofia.bg (Assen Bojilov)

Using these conditions it is easily obtained that

$$\varphi \xi = 0, \quad \eta \circ \varphi = 0, \quad g(\varphi X, \varphi Y) = -g(X, Y) + \eta(X)\eta(Y). \tag{2.2}$$

The structure (φ, ξ, η, g) is called a *paracontact metric structure*, and a manifold M^{2n+1} with paracontact metric structure (φ, ξ, η, g) is said to be a *paracontact metric manifold*.

Let £ and R be the Lie differentiation and the curvature tensor respectively. Using £ and R we define the operators l and h are defined in the following way

$$lX = R(X, \xi)\xi, \quad h = \frac{1}{2}\pounds_{\xi}\varphi. \tag{2.3}$$

The tensors h and l of (1,1)—type are symmetric and satisfy all of the subsequent conditions

$$l\xi = 0$$
, $h\xi = 0$, $trh\varphi = 0$, $tr\varphi = -\varphi h$. (2.4)

For a paracontact manifold the following statements are fulfilled:

$$\nabla_X \xi = -\varphi X + \varphi h X \, (\nabla_\xi \xi = 0) \tag{2.5}$$

$$\nabla_{\mathcal{E}}\varphi = 0 \tag{2.6}$$

$$trl = q(Q\xi, \xi) = -2n + trh^2$$
(2.7)

$$\varphi l\varphi + l = -2(\varphi^2 - h^2) \tag{2.8}$$

$$\nabla_{\xi} h = -\varphi - \varphi l + \varphi h^2,\tag{2.9}$$

where tr is the trace of the operator, Q is the Ricci operator and ∇ is the Levi-Civita connection of g. Detailed proof of these formulas can be found in [4].

A paracontact metric manifold for which ξ is Killing is called a *K-paracontact manifold*. A paracontact structure on $M^{(2n+1)}$ naturally gives rise to an almost paracomplex structure on the product $M^{(2n+1)} \times \mathbb{R}$. If this almost paracomplex structure is integrable, the given paracontact metric manifold is said to be a *para-Sasakian*. Equivalently, (see [4]) a paracontact metric manifold is a para-Sasakian if and only if

$$(\nabla_X \varphi) Y = -q(X, Y) \xi + \eta(Y) X, \tag{2.10}$$

is satisfied for all vector fields *X* and *Y*.

It can be easily shown that a 3-dimentional paracontact manifold is para-Sasakian if and only if h = 0. For further details we refer to [3],[4].

A paracontact metric structure is said to be η –*Einstein* if

$$Q = a.id + b.\eta \otimes \xi, \tag{2.11}$$

where a, b are smooth functions on $M^{(2n+1)}$. We also recall that the k-nullity distribution N(k) of a pseudo-Riemannian manifold (M, g), for a real number k, is the distribution

$$N_{\nu}(k) = \{ Z \in T_{\nu}M : R(X, Y)Z = k(g(Y, Z)X - g(X, Z)Y) \},$$
(2.12)

for any $X, Y \in T_vM$ (see [2]).

Finally, we call ξ -sectional curvature the sectional curvature

$$K(\xi, X) = \epsilon_X R(X, \xi, \xi, X),$$

where $|X| = \epsilon_X = \pm 1$, of a plane section spanned by ξ and the vector X orthogonal to ξ . Moreover the sectional curvature $K(X, \varphi X) = -R(X, \varphi X, \varphi X, X)$, where $|X| = -|\varphi X| = \pm 1$, of a plane section spanned by vectors X and φX orthogonal to ξ is called a φ -sectional curvature.

3. Main result

In this section we introduce our main results. Firstly we state the following lemma.

Lemma 1. Let M^3 be a paracontact metric manifold with a paracontact metric structure (φ, ξ, η, g) such that $\varphi Q = Q \varphi$. Then the function trl is constant everywhere on M^3 .

Although it was previously proven in [5], we include this complete proof in this paper for completeness and since we use many of the formulas which appear in it.

Proof. Let us recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold is given by

$$R(X,Y)Z = g(Y,Z)QX - g(X,Z)QY + g(QY,Z)X - g(QX,Z)Y - \frac{scal}{2} [g(Y,Z)X - g(X,Z)Y],$$
(3.13)

where scal is the scalar curvature of the manifold.

Using $\varphi Q = Q\varphi$, (2.7) and $\varphi \xi = 0$ we have that

$$Q\xi = (\operatorname{tr}l)\xi. \tag{3.14}$$

From (3.13) and using (2.3) and (3.14), we have that for any X,

$$lX = QX + \left(\text{tr}l - \frac{scal}{2}\right)X + \eta(X)\left(\frac{scal}{2} - 2\text{tr}l\right)\xi$$
(3.15)

and hence $\varphi Q = Q\varphi$ and $\varphi \xi = 0$ give

$$\varphi l = l\varphi. \tag{3.16}$$

As a result of (3.16), (2.8) and (2.9), we obtain

$$-l = \varphi^2 - h^2 \tag{3.17}$$

and hence $\nabla_{\varepsilon} h = 0$.

By differentiating (3.17) along ξ and using formula (2.6) and $\nabla_{\xi}h=0$, we find that $\nabla_{\xi}l=0$ and therefore $\xi(\operatorname{tr}l)=0$. If there exists $X\in T_pM$, $X\neq \xi$ at point $p\in M^3$ such that lX=0, then l=0 at the point p. In fact if Y is the projection of X on $\mathbb{D}=\ker\eta$, we have lY=0, since $l\xi=0$. Using (3.16) we have $l\varphi Y=0$. So l=0 at the point p (and thus $\operatorname{tr}l=0$ at the point p). Let us suppose that $l\neq 0$ on a neighborhood U of the point P. Using (3.16) and that φ is antisymmetric, we get $g(\varphi X, lX)=0$. Hence lX is parallel to X for any X orthogonal to ξ . It is not hard to see that $lX=\frac{\operatorname{tr}l}{2}X$ for any X orthogonal to ξ . Thus for any X, we have

$$lX = \frac{\mathrm{tr}l}{2}\varphi^2X \tag{3.18}$$

If we use (3.18) and substitute it in (3.15) we receive

$$QX = aX + b\eta(X)\xi,\tag{3.19}$$

where $a = \frac{scal - trl}{2}$ and $b = \frac{3trl - scal}{2}$. Differentiating (3.19) with respect to *Y* and using (3.19) and the fact that $\nabla_{\xi} \xi = 0$ we find

$$(\nabla_Y Q)X = (Ya)X + [(Yb)\eta(X) + bq(X, \nabla_Y \xi)]\xi + b\eta(X)\nabla_Y \xi. \tag{3.20}$$

So using $\xi(\text{tr}l) = 0$ and $\nabla_{\xi}\xi = 0$, from (3.20) with $X = Y = \xi$, we have $(\nabla_{\xi}Q)\xi = 0$. Also using $h\varphi = -\varphi h$, and (2.5), from (3.20) with X = Y orthogonal to ξ , we get

$$q((\nabla_X Q)X - (\nabla_{\varphi X} Q)\varphi X, \xi) = 0. \tag{3.21}$$

But it is well known that

$$(\nabla_X Q)X - (\nabla_{\varphi X} Q)\varphi X + (\nabla_{\xi} Q)\xi = \frac{1}{2} \operatorname{grad}(scal),$$

for any unit vector X orthogonal to ξ . Hence, we easily get from the last two equations that $\xi(scal)=0$, and thus $\nabla_{\xi}Q=0$. Therefore, differentiating (3.13) with respect to ξ and using $\nabla_{\xi}Q=0$, we have $\nabla_{\xi}R=0$. So from the second identity of Bianchi, we get

$$(\nabla_X R)(Y, \xi, Z) = (\nabla_Y R)(X, \xi, Z). \tag{3.22}$$

Now, substituting (3.19) in (3.13), we obtain

$$R(X,Y)Z = \left[\gamma g(Y,Z) + b\eta(Y)\eta(Z)\right]X - \left[\gamma g(X,Z) + b\eta(X)\eta(Z)\right]Y +$$
(3.23)

$$+b\left[\eta(X)g(Y,Z)-\eta(Y)g(X,Z)\right]\xi$$

where $\gamma = \frac{scal}{2} - trl$. For $Z = \xi$, (3.23) gives

$$R(X,Y)\xi = \frac{\operatorname{tr}l}{2} \left[\eta(Y)X - \eta(X)Y \right]. \tag{3.24}$$

Using (3.24), we obtain $(\nabla_X R)(Y, \xi, \xi) = \frac{X(trl)}{2}Y$, for X, Y orthogonal to ξ . From this and (3.22) for $Z = \xi$, we get X(trl)Y = Y(trl)X. Therefore X(trl) = 0 for X orthogonal to ξ , but $\xi(trl) = 0$, so the function trl is constant and this completes the proof of the Lemma. \square

Remark 1. When l = 0 everywhere, then using (3.13), (3.14) and (3.15) we get $R(X, Y)\xi = 0$. This together with Theorem 3.3 in [6] gives that M^3 is flat.

Now we can state the following proposition

Proposition 1. [5] Let M^3 be a paracontact metric manifold with paracontact metric structure (φ, ξ, η, g) . Then the following conditions are equivalent:

- *i)* M^{3} *is a* η –Einstein;
- *ii)* $Q\varphi = \varphi Q$;
- iii) ξ belongs to the k-nullity distribution.

Next we present our main theorem.

Theorem 1. Let M^3 be a paracontact metric manifold with paracontact metric structure (φ, ξ, η, g) on which $Q\varphi = \varphi Q$. Then M^3 is either a manifold with $trh^2 = 0$, flat or of constant ξ -sectional curvature $k \neq -1$ and constant φ -sectional curvature $-k \neq 1$.

Proof. From the proof of *Lemma* 1 and *Remark* 1 it follows straightforward that if trl = 0, l = 0 it turns out that M^3 is flat. By the proof of *Lemma* 1 it is easy to show that if k = -1, then trl = -2 and by using (2.7), we have that M^3 is a manifold with $trl^2 = 0$.

Let us firstly consider the case where $trl \neq 0$. From *Proposition* 1 and (2.12) it follows that

$$R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y),\tag{3.25}$$

where $k = \frac{\operatorname{tr} l}{2} \neq -1$ and $k \neq 0$. This implies that

$$(\nabla_X \varphi) Y = -g(X - hX, Y)\xi + \eta(Y)(X - hX) \tag{3.26}$$

as was pointed out by S. Zamkovoy in ([4]). In fact this is true for any 3-dimensional paracontact manifold ([3]). Computing $R(X, Y)\xi$ from (2.5) we receive

$$R(X,Y)\xi = -(\nabla_X \varphi)Y + (\nabla_Y \varphi)X + (\nabla_X \varphi h)Y - (\nabla_Y \varphi h)X =$$

$$= -(\nabla_X \varphi)Y + (\nabla_Y \varphi)X + (\nabla_X \varphi)hY - (\nabla_Y \varphi)hX + \varphi(\nabla_X h)Y - \varphi(\nabla_Y h)X.$$

Then using (3.25) and (3.26) we obtain either

$$k(\eta(Y)X - \eta(X)Y) = \eta(X)(Y - hY) - \eta(Y)(X - hX) + \varphi((\nabla_X h)Y - (\nabla_Y h)X).$$

or

$$(k+1)(\eta(Y)X - \eta(X)Y) = -\eta(X)hY + \eta(Y)hX + \varphi((\nabla_X h)Y - (\nabla_Y h)X). \tag{3.27}$$

Next we consider the case in which k > -1. In this case the operator h is diagonalizable (see [1]). Now let X be a unit eigenvector of h (i.e. $|X| = \epsilon_X = \pm 1$), say $hX = \lambda X$, $X \perp \xi$. Since $\operatorname{tr} h^2 = 2(k+1)$, $\lambda = \pm \sqrt{k+1}$ and hence is a constant. Setting $Y = \varphi X$, (3.27) yields

$$\varphi((\nabla_X h)\varphi X - (\nabla_{\varphi X} h)X) = 0.$$

From which we receive the following equation

$$\varphi(-\lambda \nabla_X \varphi X - h \nabla_X \varphi X - \lambda \nabla_{\varphi X} X + h \nabla_{\varphi X} X) = 0. \tag{3.28}$$

Let us recall that $\varphi h + h\varphi = 0$. Now we take the inner product of (3.28) with X and obtain

$$\lambda g(\nabla_{\varphi X}X, \varphi X) = 0.$$

Since $\lambda \neq 0$ (k > -1) and X is unit, $\nabla_{\varphi X} X$ is orthogonal to both X and φX and hence collinear with ξ . Now

$$\eta(\nabla_{\varphi X}X) = g(\nabla_{\varphi X}X,\xi) = -g(X,\nabla_{\varphi X}\xi) = -g(-X-hX,X) = \epsilon_X(\lambda+1).$$

Therefore we receive

$$\nabla_{\varphi X} X = \epsilon_X (\lambda + 1) \xi.$$

Similarly if we take the inner product of (3.28) with φX it follows that

$$\nabla_X \varphi X = \epsilon_X (\lambda - 1) \xi$$

and in turn $\nabla_X X = 0$ and

$$[X, \varphi X] = -2\epsilon_X \xi.$$

Now from the form of the curvature tensor (3.23), we have

$$R(X, \varphi X)\varphi X = -\epsilon_X \left(\frac{scal}{2} - trl\right)\varphi X$$

and by direct computation using $\nabla_X \xi = (\lambda - 1) \varphi X$,

$$R(X, \varphi X)X = \nabla_X \nabla_{\varphi X} X - \nabla_{\varphi X} \nabla_X X - \nabla_{[X, \varphi X]} X =$$

$$= \epsilon_X(\lambda + 1)\nabla_X \xi + 2\epsilon_X \nabla_\xi X = \epsilon_X(\lambda^2 - 1)\nabla_X \xi + 2\epsilon_X \nabla_\xi X.$$

Thus

$$\nabla_{\xi} X = \left(\frac{\lambda^2 - 1}{2} - \frac{scal}{4}\right) \varphi X$$

and hence

$$[\xi, X] = \left(\frac{(\lambda - 1)^2}{2} - \frac{scal}{4}\right) \varphi X.$$

Now computing $R(\xi, X)\xi$, by ((3.25)) and by direct computation, we have

$$-(\lambda^2-1)X=\nabla_\xi(-\varphi X+\varphi hX)-\nabla_{\left(\frac{(\lambda-1)^2}{2}-\frac{scal}{4}\right)\varphi X}\xi=$$

S. Zamkovoy, A. Bojilov / Filomat 34:11 (2020), 3567-3573

$$= (\lambda - 1)\varphi \nabla_{\xi} X + \left(\frac{(\lambda - 1)^2}{2} - \frac{scal}{4}\right)(X + hX) =$$

$$= \left((\lambda - 1)^2(\lambda + 1) - \lambda \frac{scal}{2}\right)X$$

from which

$$scal = 2(\lambda^2 - 1) = 2k.$$

From (3.25) and (3.23) it follows that for the ξ -sectional curvature $K(X, \xi)$ and φ -sectional curvature $K(X, \varphi X)$ are equal to

$$K(X, \xi) = k$$
 and $K(X, \varphi X) = -k$

respectively as was desired.

Let us now consider the case in which k < -1. As it was shown in (see [1]) the operator φh is diagonalizable. Now let X be a unit eigenvector of φh (i.e. $|X| = \epsilon_X = \pm 1$), say $\varphi h X = \lambda X$, $X \perp \xi$. Since $\operatorname{tr} h^2 = 2(k+1)$, $\lambda = \pm \sqrt{-(k+1)}$ and hence is a constant. We denote $Y = \varphi X$ (3.27). Hence

$$(\nabla_X \varphi h) \varphi X - (\nabla_{\varphi X} \varphi h) X = 0$$

from which we receive

$$-\lambda \nabla_{X} \varphi X - \varphi h \nabla_{X} \varphi X - \lambda \nabla_{\varphi X} X + \varphi h \nabla_{\varphi X} X = 0. \tag{3.29}$$

Taking the inner product of (3.29) with φX and recalling that $\varphi h + h\varphi = 0$, we have

$$\lambda g(\nabla_{\varphi X} X, \varphi X) = 0.$$

Since $\lambda \neq 0$ (k < -1) and X is unit, $\nabla_{\varphi X} X$ is orthogonal to both X and φX and hence collinear with ξ . Now

$$\eta(\nabla_{\varphi X}X) = g(\nabla_{\varphi X}X, \xi) = -g(X, \nabla_{\varphi X}\xi) = -g(-\varphi^2X + \varphi h \varphi X, X) = \epsilon_X.$$

Therefore

$$\nabla_{\varphi X}X=\epsilon_X\xi.$$

Similarly taking the inner product of (3.29) with *X* yields

$$\nabla_X \varphi X = -\epsilon_X \xi$$

and in turn $\nabla_X X = -\epsilon_X \lambda \xi$ and

$$[X, \varphi X] = -2\epsilon_X \xi.$$

Now from the form of the curvature tensor (3.23), we have

$$R(X, \varphi X)\varphi X = -\epsilon_X \left(\frac{scal}{2} - trl\right)\varphi X$$

and by direct computation using $\nabla_X \xi = -\varphi X + \lambda X$,

$$R(X, \varphi X)X = \nabla_X \nabla_{\varphi X} X - \nabla_{\varphi X} \nabla_X X - \nabla_{[X, \varphi X]} X.$$

Thus

$$\nabla_{\xi} X = -\left(\frac{\lambda^2 + 1}{2} + \frac{scal}{4}\right) \varphi X$$

and hence

$$[\xi,X] = -\lambda X - \left(\frac{\lambda^2-1}{2} + \frac{scal}{4}\right) \varphi X.$$

We compute $R(\xi, X)\xi$, using ((3.25)) and by direct computation, we have

$$(\lambda^{2} + 1)X = \nabla_{\xi}(-\varphi X + \lambda X) + \lambda \nabla_{X}\xi + \left(\frac{\lambda^{2} - 1}{2} + \frac{scal}{4}\right)\nabla_{\varphi X}\xi =$$

$$= -\varphi\nabla_{\xi}X + \lambda\nabla_{\xi}X + \lambda\nabla_{X}\xi + \left(\frac{\lambda^{2} - 1}{2} + \frac{scal}{4}\right)(-X - \lambda\varphi X) =$$

$$= (\lambda^{2} + 1)X + \left(-\lambda - 2\lambda\left(\frac{scal}{4} + \frac{\lambda^{2}}{2}\right)\right)\varphi X$$

from which

$$scal = -2(\lambda^2 + 1) = 2k.$$

As a conclusion from (3.25) and (3.23) we see that

$$K(X, \xi) = k$$
 and $K(X, \varphi X) = -k$

as desired. \Box

Now we can state the following definition

Definition 1. A paracontact metric structure (φ, ξ, η, g) is said to be locally φ – symmetric if $\varphi^2(\nabla_W R)(X, Y, Z) = 0$, for all vector fields W, X, Y, Z orthogonal to ξ .

The next theorem was proved in detail in [5]

Theorem 2. Let M^3 be a paracontact metric manifold with $Q\varphi = \varphi Q$. Then M^3 is locally φ -symmetric if and only if the scalar curvature scal of M^3 is constant.

Remark 2. Using (3.20) with trl = const., we obtain the following formula

$$2|\nabla Q|^2 = |\operatorname{grad} \operatorname{scal}|^2 - (3\operatorname{tr} l - \operatorname{scal})^2(4 + \operatorname{tr} l) \tag{3.30}$$

which is valid on any paracontact metric manifold M^3 with $Q\varphi = \varphi Q$.

From Theorem 2, we get the following

Corollary 1. A locally φ -symmetric paracontact metric manifold M^3 is a manifold with either scal = 3trl, scal = -12 or trl = -4.

Acknowledgments

S.Z. is partially supported by Contract DN 12/3/12.12.2017 and Contract 80-10-12/18.03.2020 with the Sofia University "St.Kl.Ohridski".

A.B. is partially supported by Contract 80-10-209/17.04.2019 with the Sofia University "St.Kl.Ohridski".

References

- [1] B. Cappelletti-Montano, I. Küpeli Erken, C. Murathan, Nullity conditions in paracontact geometry, Diff. Geom. Appl. 30 (2012), 665-693, 3571, 3572
- S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40:3, 441-448 (1988). 3567, 3568
- [3] J.Welyczko, Para-CR Structures on almost Paracontact Metric Manifolds, Result. Math. 54, 377-387, (2009). 3568, 3570
- [4] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann Glob Anal Geom. 36, 37-60, (2009). 3568, 3570
- [5] S. Zamkovoy, Notes on a class of paracontact metric 3-manifolds, arXiv:1707.05248, (2017). 3567, 3569, 3570, 3573
- [6] S. Zamkovoy, V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire de l'universite de Sofia "St. Kl. Ohridski" faculte de mathematiques et informatique 100, 27-34, (2011). 3570