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Abstract. We show that a 3−dimensional η-Einstein paracontact metric manifold is either a manifold with
trh2 = 0, flat or of constant ξ−sectional curvature k , −1 and constant ϕ-sectional curvature −k , 1.

1. Introduction

The assumption that (M2n+1, ϕ, ξ, η, 1) is a paracontact metric manifold is very weak, since the set of
metrics associated to the paracontact form η is huge. Even if the structure is η−Einstein we do not have a
complete classification. It is known very little for the geometry of manifolds with n = 1 (see [5]). On the
other hand if the structure is para-Sasakian, the Ricci operator Q commutes with ϕ (see [5]), but in general
Qϕ , ϕQ and the problem of the characterization of paracontact metric manifolds with Qϕ = ϕQ is open.
In [2] Tanno defined a special family of paracontact metric manifolds by the requirement that ξ belongs to
the k−nullity distribution of 1. These manifolds are not well studied also (see [5]). In this paper, we show
that a 3−dimensional paracontact manifold on which Qϕ = ϕQ is either a manifold with trh2 = 0, flat or of
constant ξ−sectional curvature k , −1 and constant ϕ-sectional curvature −k , 1.

2. Preliminaries

First we will give some known definitons and facts which we use in the next section. A C∞ manifold
M(2n+1) is said to be paracontact manifold, if it carries a global 1−form η such that η ∧ (dη)n , 0 everywhere.
We assume throughout that all manifolds are connected. Given a paracontact form η, it is well known that
there exists a unique vector field ξ, called characteristic vector field of η, satisfying η(ξ) = 1 and dη(ξ,X) = 0
for all vector fields X. A pseudo–Riemannian metric 1 is said to be an associated metric if there exists a tensor
field ϕ of type (1, 1) such that

dη(X,Y) = 1(X, ϕY), η(X) = 1(X, ξ), ϕ2 = Id − η ⊗ ξ. (2.1)
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Using these conditions it is easily obtained that

ϕξ = 0, η ◦ ϕ = 0, 1(ϕX, ϕY) = −1(X,Y) + η(X)η(Y). (2.2)

The structure (ϕ, ξ, η, 1) is called a paracontact metric structure, and a manifold M2n+1 with paracontact metric
structure (ϕ, ξ, η, 1) is said to be a paracontact metric manifold.

Let £ and R be the Lie differentiation and the curvature tensor respectively. Using £ and R we define the
operators l and h are defined in the following way

lX = R(X, ξ)ξ, h =
1
2

£ξϕ. (2.3)

The tensors h and l of (1, 1)−type are symmetric and satisfy all of the subsequent conditions

lξ = 0, hξ = 0, trh = 0, trhϕ = 0, hϕ = −ϕh. (2.4)

For a paracontact manifold the following statements are fulfilled:

∇Xξ = −ϕX + ϕhX (∇ξξ = 0) (2.5)

∇ξϕ = 0 (2.6)

trl = 1(Qξ, ξ) = −2n + trh2 (2.7)

ϕlϕ + l = −2(ϕ2
− h2) (2.8)

∇ξh = −ϕ − ϕl + ϕh2, (2.9)

where tr is the trace of the operator, Q is the Ricci operator and∇ is the Levi-Civita connection of 1. Detailed
proof of these formulas can be found in [4].

A paracontact metric manifold for which ξ is Killing is called a K-paracontact manifold. A paracontact
structure on M(2n+1) naturally gives rise to an almost paracomplex structure on the product M(2n+1)

× R.
If this almost paracomplex structure is integrable, the given paracontact metric manifold is said to be a
para-Sasakian. Equivalently, (see [4]) a paracontact metric manifold is a para-Sasakian if and only if

(∇Xϕ)Y = −1(X,Y)ξ + η(Y)X, (2.10)

is satisfied for all vector fields X and Y.
It can be easily shown that a 3−dimentional paracontact manifold is para-Sasakian if and only if h = 0.

For further details we refer to [3],[4].
A paracontact metric structure is said to be η−Einstein if

Q = a.id + b.η ⊗ ξ, (2.11)

where a, b are smooth functions on M(2n+1). We also recall that the k−nullity distribution N(k) of a pseudo-
Riemannian manifold (M, 1), for a real number k, is the distribution

Np(k) = {Z ∈ TpM : R(X,Y)Z = k(1(Y,Z)X − 1(X,Z)Y)}, (2.12)

for any X,Y ∈ TpM (see [2]).
Finally, we call ξ-sectional curvature the sectional curvature

K(ξ,X) = εXR(X, ξ, ξ,X),

where |X| = εX = ±1, of a plane section spanned by ξ and the vector X orthogonal to ξ. Moreover the
sectional curvature K(X, ϕX) = −R(X, ϕX, ϕX,X), where |X| = −|ϕX| = ±1, of a plane section spanned by
vectors X and ϕX orthogonal to ξ is called a ϕ-sectional curvature.
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3. Main result

In this section we introduce our main results. Firstly we state the following lemma.

Lemma 1. Let M3 be a paracontact metric manifold with a paracontact metric structure (ϕ, ξ, η, 1) such that
ϕQ = Qϕ. Then the function trl is constant everywhere on M3.

Although it was previously proven in [5], we include this complete proof in this paper for completeness
and since we use many of the formulas which appear in it.

Proof. Let us recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold is given by

R(X,Y)Z = 1(Y,Z)QX − 1(X,Z)QY + 1(QY,Z)X − 1(QX,Z)Y− (3.13)

−
scal

2
[
1(Y,Z)X − 1(X,Z)Y

]
,

where scal is the scalar curvature of the manifold.
Using ϕQ = Qϕ, (2.7) and ϕξ = 0 we have that

Qξ = (trl)ξ. (3.14)

From (3.13) and using (2.3) and (3.14), we have that for any X,

lX = QX +

(
trl −

scal
2

)
X + η(X)

(
scal

2
− 2trl

)
ξ (3.15)

and hence ϕQ = Qϕ and ϕξ = 0 give

ϕl = lϕ. (3.16)

As a result of (3.16), (2.8) and (2.9), we obtain

−l = ϕ2
− h2 (3.17)

and hence ∇ξh = 0.
By differentiating (3.17) along ξ and using formula (2.6) and ∇ξh = 0, we find that ∇ξl = 0 and therefore
ξ(trl) = 0. If there exists X ∈ TpM, X , ξ at point p ∈ M3 such that lX = 0, then l = 0 at the point p. In fact
if Y is the projection of X on D = kerη, we have lY = 0, since lξ = 0. Using (3.16) we have lϕY = 0. So
l = 0 at the point p (and thus trl = 0 at the point p). Let us suppose that l , 0 on a neighborhood U of the
point P. Using (3.16) and that ϕ is antisymmetric, we get 1(ϕX, lX) = 0. Hence lX is parallel to X for any X
orthogonal to ξ. It is not hard to see that lX = trl

2 X for any X orthogonal to ξ. Thus for any X, we have

lX =
trl
2
ϕ2X (3.18)

If we use (3.18) and substitute it in (3.15) we receive

QX = aX + bη(X)ξ, (3.19)

where a = scal−trl
2 and b = 3trl−scal

2 . Differentiating (3.19) with respect to Y and using (3.19) and the fact that
∇ξξ = 0 we find

(∇YQ)X = (Ya)X +
[
(Yb)η(X) + b1(X,∇Yξ)

]
ξ + bη(X)∇Yξ. (3.20)

So using ξ(trl) = 0 and ∇ξξ = 0, from (3.20) with X = Y = ξ, we have (∇ξQ)ξ = 0. Also using hϕ = −ϕh, and
(2.5), from (3.20) with X = Y orthogonal to ξ, we get

1((∇XQ)X − (∇ϕXQ)ϕX, ξ) = 0. (3.21)



S. Zamkovoy, A. Bojilov / Filomat 34:11 (2020), 3567–3573 3570

But it is well known that
(∇XQ)X − (∇ϕXQ)ϕX + (∇ξQ)ξ =

1
2

grad(scal),

for any unit vector X orthogonal to ξ. Hence, we easily get from the last two equations that ξ(scal) = 0, and
thus ∇ξQ = 0. Therefore, differentiating (3.13) with respect to ξ and using ∇ξQ = 0, we have ∇ξR = 0. So
from the second identity of Bianchi, we get

(∇XR)(Y, ξ,Z) = (∇YR)(X, ξ,Z). (3.22)

Now, substituting (3.19) in (3.13), we obtain

R(X,Y)Z =
[
γ1(Y,Z) + bη(Y)η(Z)

]
X −

[
γ1(X,Z) + bη(X)η(Z)

]
Y+ (3.23)

+b
[
η(X)1(Y,Z) − η(Y)1(X,Z)

]
ξ,

where γ = scal
2 − trl. For Z = ξ, (3.23) gives

R(X,Y)ξ =
trl
2

[
η(Y)X − η(X)Y

]
. (3.24)

Using (3.24), we obtain (∇XR)(Y, ξ, ξ) =
X(trl)

2 Y, for X,Y orthogonal to ξ. From this and (3.22) for Z = ξ, we
get X(trl)Y = Y(trl)X. Therefore X(trl) = 0 for X orthogonal to ξ, but ξ(trl) = 0, so the function trl is constant
and this completes the proof of the Lemma.

Remark 1. When l = 0 everywhere, then using (3.13), (3.14) and (3.15) we get R(X,Y)ξ = 0. This together with
Theorem 3.3 in [6] gives that M3 is flat.

Now we can state the following proposition

Proposition 1. [5] Let M3 be a paracontact metric manifold with paracontact metric structure (ϕ, ξ, η, 1). Then the
following conditions are equivalent:

i) M3 is a η−Einstein;
ii) Qϕ = ϕQ;
iii) ξ belongs to the k−nullity distribution.

Next we present our main theorem.

Theorem 1. Let M3 be a paracontact metric manifold with paracontact metric structure (ϕ, ξ, η, 1) on which Qϕ =
ϕQ. Then M3 is either a manifold with trh2 = 0, flat or of constant ξ−sectional curvature k , −1 and constant
ϕ-sectional curvature −k , 1.

Proof. From the proof of Lemma 1 and Remark 1 it follows straightforward that if trl = 0, l = 0 it turns out
that M3 is flat. By the proof of Lemma 1 it is easy to show that if k = −1, then trl = −2 and by using (2.7), we
have that M3 is a manifold with trh2 = 0.

Let us firstly consider the case where trl , 0. From Proposition 1 and (2.12) it follows that

R(X,Y)ξ = k(η(Y)X − η(X)Y), (3.25)

where k = trl
2 , −1 and k , 0. This implies that

(∇Xϕ)Y = −1(X − hX,Y)ξ + η(Y)(X − hX) (3.26)

as was pointed out by S. Zamkovoy in ([4]). In fact this is true for any 3-dimensional paracontact manifold
([3]). Computing R(X,Y)ξ from (2.5) we receive

R(X,Y)ξ = −(∇Xϕ)Y + (∇Yϕ)X + (∇Xϕh)Y − (∇Yϕh)X =
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= −(∇Xϕ)Y + (∇Yϕ)X + (∇Xϕ)hY − (∇Yϕ)hX + ϕ(∇Xh)Y − ϕ(∇Yh)X.

Then using (3.25) and (3.26) we obtain either

k(η(Y)X − η(X)Y) = η(X)(Y − hY) − η(Y)(X − hX) + ϕ((∇Xh)Y − (∇Yh)X).

or

(k + 1)(η(Y)X − η(X)Y) = −η(X)hY + η(Y)hX + ϕ((∇Xh)Y − (∇Yh)X). (3.27)

Next we consider the case in which k > −1. In this case the operator h is diagonalizable (see [1]). Now
let X be a unit eigenvector of h (i.e. |X| = εX = ±1), say hX = λX, X ⊥ ξ. Since trh2 = 2(k + 1), λ = ±

√
k + 1

and hence is a constant. Setting Y = ϕX, (3.27) yields

ϕ((∇Xh)ϕX − (∇ϕXh)X) = 0.

From which we receive the following equation

ϕ(−λ∇XϕX − h∇XϕX − λ∇ϕXX + h∇ϕXX) = 0. (3.28)

Let us recall that ϕh + hϕ = 0. Now we take the inner product of (3.28) with X and obtain

λ1(∇ϕXX, ϕX) = 0.

Since λ , 0 (k > −1) and X is unit, ∇ϕXX is orthogonal to both X and ϕX and hence collinear with ξ. Now

η(∇ϕXX) = 1(∇ϕXX, ξ) = −1(X,∇ϕXξ) = −1(−X − hX,X) = εX(λ + 1).

Therefore we receive
∇ϕXX = εX(λ + 1)ξ.

Similarly if we take the inner product of (3.28) with ϕX it follows that

∇XϕX = εX(λ − 1)ξ

and in turn ∇XX = 0 and
[X, ϕX] = −2εXξ.

Now from the form of the curvature tensor (3.23), we have

R(X, ϕX)ϕX = −εX

(
scal

2
− trl

)
ϕX

and by direct computation using ∇Xξ = (λ − 1)ϕX,

R(X, ϕX)X = ∇X∇ϕXX − ∇ϕX∇XX − ∇[X,ϕX]X =

= εX(λ + 1)∇Xξ + 2εX∇ξX = εX(λ2
− 1)∇Xξ + 2εX∇ξX.

Thus

∇ξX =

(
λ2
− 1
2
−

scal
4

)
ϕX

and hence

[ξ,X] =

(
(λ − 1)2

2
−

scal
4

)
ϕX.

Now computing R(ξ,X)ξ, by ((3.25)) and by direct computation, we have

−(λ2
− 1)X = ∇ξ(−ϕX + ϕhX) − ∇(

(λ−1)2
2 −

scal
4

)
ϕX
ξ =
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= (λ − 1)ϕ∇ξX +

(
(λ − 1)2

2
−

scal
4

)
(X + hX) =

=

(
(λ − 1)2(λ + 1) − λ

scal
2

)
X

from which
scal = 2(λ2

− 1) = 2k.

From (3.25) and (3.23) it follows that for the ξ−sectional curvature K(X, ξ) and ϕ−sectional curvature
K(X, ϕX) are equal to

K(X, ξ) = k and K(X, ϕX) = −k

respectively as was desired.
Let us now consider the case in which k < −1. As it was shown in (see [1]) the operator ϕh is

diagonalizable. Now let X be a unit eigenvector of ϕh (i.e. |X| = εX = ±1), say ϕhX = λX, X ⊥ ξ. Since
trh2 = 2(k + 1), λ = ±

√
−(k + 1) and hence is a constant. We denote Y = ϕX (3.27). Hence

(∇Xϕh)ϕX − (∇ϕXϕh)X = 0

from which we receive

−λ∇XϕX − ϕh∇XϕX − λ∇ϕXX + ϕh∇ϕXX = 0. (3.29)

Taking the inner product of (3.29) with ϕX and recalling that ϕh + hϕ = 0, we have

λ1(∇ϕXX, ϕX) = 0.

Since λ , 0 (k < −1) and X is unit, ∇ϕXX is orthogonal to both X and ϕX and hence collinear with ξ. Now

η(∇ϕXX) = 1(∇ϕXX, ξ) = −1(X,∇ϕXξ) = −1(−ϕ2X + ϕhϕX,X) = εX.

Therefore
∇ϕXX = εXξ.

Similarly taking the inner product of (3.29) with X yields

∇XϕX = −εXξ

and in turn ∇XX = −εXλξ and
[X, ϕX] = −2εXξ.

Now from the form of the curvature tensor (3.23), we have

R(X, ϕX)ϕX = −εX

(
scal

2
− trl

)
ϕX

and by direct computation using ∇Xξ = −ϕX + λX,

R(X, ϕX)X = ∇X∇ϕXX − ∇ϕX∇XX − ∇[X,ϕX]X.

Thus

∇ξX = −

(
λ2 + 1

2
+

scal
4

)
ϕX

and hence

[ξ,X] = −λX −
(
λ2
− 1
2

+
scal

4

)
ϕX.
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We compute R(ξ,X)ξ, using ((3.25)) and by direct computation, we have

(λ2 + 1)X = ∇ξ(−ϕX + λX) + λ∇Xξ +

(
λ2
− 1
2

+
scal

4

)
∇ϕXξ =

= −ϕ∇ξX + λ∇ξX + λ∇Xξ +

(
λ2
− 1
2

+
scal

4

)
(−X − λϕX) =

= (λ2 + 1)X +

(
−λ − 2λ

(
scal

4
+
λ2

2

))
ϕX

from which
scal = −2(λ2 + 1) = 2k.

As a conclusion from (3.25) and (3.23) we see that

K(X, ξ) = k and K(X, ϕX) = −k

as desired.

Now we can state the following definition

Definition 1. A paracontact metric structure (ϕ, ξ, η, 1) is said to be locally ϕ− symmetric ifϕ2(∇WR)(X,Y,Z) = 0,
for all vector fields W,X,Y,Z orthogonal to ξ.

The next theorem was proved in detail in [5]

Theorem 2. Let M3 be a paracontact metric manifold with Qϕ = ϕQ. Then M3 is locally ϕ−symmetric if and only
if the scalar curvature scal of M3 is constant.

Remark 2. Using (3.20) with trl = const., we obtain the following formula

2|∇Q|2 = |gradscal|2 − (3trl − scal)2(4 + trl) (3.30)

which is valid on any paracontact metric manifold M3 with Qϕ = ϕQ.

From Theorem 2, we get the following

Corollary 1. A locallyϕ−symmetric paracontact metric manifold M3 is a manifold with either scal = 3trl, scal = −12
or trl = −4.
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[1] B. Cappelletti-Montano, I. Küpeli Erken, C. Murathan, Nullity conditions in paracontact geometry, Diff. Geom. Appl. 30 (2012),
665-693. 3571, 3572

[2] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40:3, 441-448 (1988). 3567, 3568
[3] J.Welyczko, Para-CR Structures on almost Paracontact Metric Manifolds, Result. Math. 54, 377-387, (2009). 3568, 3570
[4] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann Glob Anal Geom. 36, 37-60, (2009). 3568, 3570
[5] S. Zamkovoy, Notes on a class of paracontact metric 3-manifolds, arXiv:1707.05248, (2017). 3567, 3569, 3570, 3573
[6] S. Zamkovoy, V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire de

l’universite de Sofia ”St. Kl. Ohridski” faculte de mathematiques et informatique 100, 27-34, (2011). 3570


	Introduction
	Preliminaries
	Main result

