

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Covering Properties of $C_p(X)$ and $C_k(X)$

J. C. Ferrando^a, M. López-Pellicer^b

^aOperations Research Center, Universidad Miguel Hernández, E-03202 Elche, Spain ^bIUMPA, Professor Emeritus, Universitat Politècnica de València, E-46022 Valencia, Spain

Abstract. Let X be a Tychonoff space. We survey some classic and recent results that characterize the topology or cardinality of X when $C_p(X)$ or $C_k(X)$ is covered by certain families of sets (sequences, resolutions, closure-preserving coverings, compact coverings ordered by a second countable space) which swallow or not some classes of sets (compact sets, functionally bounded sets, pointwise bounded sets) in C(X).

1. Preliminaries

Unless otherwise stated, X will stand for an infinite Tychonoff space. We denote by $C_p(X)$ the linear space C(X) of real-valued continuous functions on X equipped with the pointwise topology τ_p . The topological dual of $C_p(X)$ is denoted by L(X), or by $L_p(X)$ when provided with the weak* topology. We denote by $C_k(X)$ the space C(X) equipped with the compact-open topology τ_k . A family $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of subsets of a set X is a resolution for X if it covers X and verifies that $A_\alpha \subseteq A_\beta$ for $\alpha \leq \beta$. A family of bounded sets in a locally convex space E that swallows the bounded sets is called a fundamental family of bounded sets. Definitions not included in this paper can be found in [6, 18, 49].

2. Countable coverings for $C_p(X)$

The following folklore result can be found in [49, Proposition 9.18]. Velichko's theorem can be found in [1, I.2.1 Theorem] or in [49, Theorem 9.12].

Theorem 2.1. The space $C_v(X)$ admits a fundamental sequence of pointwise bounded sets if and only if X is finite.

Theorem 2.2 (Velichko). *The space* $C_p(X)$ *is covered by a sequence of compact sets if and only if* X *is finite.*

Next theorem extends Velichko's result to relatively countably compact sets.

Theorem 2.3 (Tkachuk-Shakhmatov [75]). $C_p(X)$ is covered by a sequence of relatively countably compact sets if and only if X is finite.

2010 Mathematics Subject Classification. 54C30, 46A03

Keywords. Lindelöf Σ -space, K-analytic space, analytic space, cosmic space

Received: 20 August 2020; Accepted: 04 September 2020

Communicated by Vladimir Rakočević

Research supported by Grant PGC2018-094431-B-I00 of Ministry of Science, Innovation & Universities of Spain.

Email addresses: jc.ferrando@umh.es (J. C. Ferrando), mlopezpe@mat.upv.es (M. López-Pellicer)

Theorem 2.5 below extends Tkachuk-Shakhmatov theorem to pointwise bounded relatively sequentially complete sets. Recall that a sequence $\{f_n\}_{n=1}^{\infty}$ of real-valued functions defined on X is *pointwise eventually constant* [34] if for each $x \in X$ there is a constant f(x) such that $f_n(x) = f(x)$ for all but finitely many $n \in \mathbb{N}$.

Theorem 2.4 (Ferrando-Kąkol-Saxon [34, Theorem 3.1]). $C_p(X)$ *is covered by a sequence of relatively sequentially complete sets if and only if X is a P-space.*

Proof. Assume that $C_p(X) = \bigcup_{n=1}^{\infty} Q_n$ with Q_n relatively sequentially complete for every $n \in \mathbb{N}$ and let $\{f_n\}_{n=1}^{\infty}$ be a uniformly bounded pointwise eventually constant sequence in $C_p(X)$ with limit f in \mathbb{R}^X . Let us denote by $C^b(X)$ the Banach space of all continuous and bounded functions on X equipped with the supremum norm $\|\cdot\|_{\infty}$. Fix k > 0 such that $\sup_{n \in \mathbb{N}} \|f_n\|_{\infty} \le k$.

Since $\{C^b(X) \cap Q_n : n \in \mathbb{N}\}$ is a countable covering of $C^b(X)$, according to the Baire category theorem there is $p \in \mathbb{N}$ such that the closure B_p of $C^b(X) \cap Q_p$ in $C^b(X)$ has an interior point in the norm topology. So, if D denotes the closed unit ball of $C^b(X)$, there are $\epsilon > 0$ and $h \in Q_p$ with $h + \epsilon D \subseteq B_p$. Since $f_n \in kD$ for each $n \in \mathbb{N}$, we have $\{h + \epsilon k^{-1}f_n : n \in \mathbb{N}\} \subseteq B_p$. As $C^b(X) \cap Q_p$ is norm dense in B_p , for each $n \in \mathbb{N}$ there is $g_n \in C^b(X) \cap Q_p$ with $|g_n(x) - (h + \epsilon k^{-1}f_n)(x)| < n^{-1}$ for all $x \in X$. Since $\{h + \epsilon k^{-1}f_n\}_{n=1}^{\infty}$ is a pointwise eventually constant sequence that converges to $h + \epsilon k^{-1}f$, clearly $g_n \to h + \epsilon k^{-1}f$ pointwise on X. Using the fact that Q_p is relatively sequentially complete, it turns out that $h + \epsilon k^{-1}f \in C(X)$. Hence $f \in C(X)$. But, as follows from [34, Theorem 1.1], a Tychonoff space X is a P-space if and only if each uniformly bounded pointwise eventually constant sequence in $C_p(X)$ converges in $C_p(X)$. So, X is a P-space. For the converse note that if X is a P-space, then $C_p(X)$ is sequentially complete [8]. \square

Theorem 2.5 (Ferrando-Kąkol-Saxon [34, Corollary 3.2]). $C_p(X)$ is covered by a sequence of pointwise bounded relatively sequentially complete sets if and only if X is finite.

Proof. If $C_p(X) = \bigcup_{n=1}^{\infty} Q_n$ with each Q_n pointwise bounded and relatively sequentially complete, Theorem 2.4 ensures that X is a P-space. If $\{x_n\}_{n=1}^{\infty}$ is an infinite sequence in X, for each $n \in \mathbb{N}$ there is $\alpha_n > 0$ with $\sup_{g \in Q_n} |g(x_n)| < \alpha_n$. But [49, Lemma 9.5] provides $f \in C(X)$ with $f(x_n) = \alpha_n$, i. e., such that $f \notin Q_n$ for every $n \in \mathbb{N}$, a contradiction. Thus X must be finite. □

Theorem 2.6 (Tkachuk, [69, 3.11 Theorem]). *If* $C_p(X)$ *is covered by a sequence of functionally bounded sets, then* X *is pseudocompact and each countable subset of* X *is closed, discrete and* C^* *-embedded in* X.

Proof. (Sketch) Let us call *σ*-bounded a space which is covered by countably many functionally bounded sets and assume that $C_p(X)$ is *σ*-bounded. If X is not pseudocompact, it contains a closed homeomorphic copy Y of \mathbb{N} , hence C-embedded [39, Problem 3L]. Since the restriction map $T:C_p(X)\to C_p(Y)$ defined by $Tf=f\big|_Y$ is continuous and onto, this implies that $C_p(Y)$ is *σ*-bounded. Hence $C_p(\mathbb{N})=\mathbb{R}^\mathbb{N}$ is covered by a sequence of compact sets and Velichko's theorem ensures that \mathbb{N} must be finite, a contradiction. On the other hand, since $C_p(X,I)=\{f\in C(X):-1\leq f\leq 1\}$ is a retract of $C_p(X)$, it turns out that $C_p(X,I)$ is *σ*-bounded. If Z is a non-closed countable subset of X and $Y\in \overline{Z}\setminus Z$, it is not hard to show that $M=\{f\in C_p(X,I):f(y)=0\}$ is also covered by countably many functionally bounded sets $\{F_n:n\in\mathbb{N}\}$. But one can determine a function $f\in M$ such that $f\notin F_n$ for every $n\in \mathbb{N}$ (see [69, 3.7 Lemma] for details). So, such Z does not exist. Finally, it is well-known that a subspace S of X is C^* -embedded if and only if $\overline{S}^{\beta X}=\beta S$. If each countable set in X is closed, it can be seen that each countable set A is discrete and C^* -embedded if and only if $\overline{A}^{\beta X}=\beta A$, [69, 3.8 Proposition]. With the help of this result one can show that if $C_p(X,I)$ is σ -bounded, every countable subset of X is discrete and C^* -bounded [69, 3.9 Theorem]. \square

3. Uncountable coverings for $C_p(X)$

Recall that X is a *Lindelöf* Σ -space if it is a continuous image of a space that can be perfectly mapped onto a second countable space [1, 57]. Also, X is a Lindelöf Σ -space if and only if is countably K-determined [63], i. e., if there is an upper semi-continuous (usc) map T from a subspace Σ of $\mathbb{N}^{\mathbb{N}}$ into the family $\mathcal{K}(X)$ of compact subsets of *X* such that $\bigcup \{T(\alpha) : \alpha \in \Sigma\} = X$. This is equivalent to saying that (*i*) $\{T(\alpha) : \alpha \in \Sigma\}$ covers X and (ii) if $\alpha_n \to \alpha$ in Σ and $x_n \in T(\alpha_n)$ for every $n \in \mathbb{N}$ the sequence $\{x_n\}_{n=1}^{\infty}$ has a cluster point in $T(\alpha)$. A space X is K-analytic (resp. quasi-Suslin) if there is a map T from $\mathbb{N}^{\mathbb{N}}$ into $\mathcal{K}(X)$ (resp. into the family of countably compact sets in X) such that (i) $\{T(\alpha) : \alpha \in \mathbb{N}^{\mathbb{N}}\}\$ covers X and (ii) if $\alpha_n \to \alpha$ in $\mathbb{N}^{\mathbb{N}}$ and $x_n \in T(\alpha_n)$ for each $n \in \mathbb{N}$ the sequence $\{x_n\}$ has a cluster point contained in $T(\alpha)$ (see [76, I.4.2 and I.4.3]). Each σ -compact (σ -countably compact) space is K-analytic (resp. quasi-Suslin). A space X is analytic if it is a continuous image of $\mathbb{N}^{\mathbb{N}}$. Each analytic space is K-analytic, each K-analytic space is quasi-Suslin and Lindelöf Σ , and each Lindelöf Σ -space is Lindelöf. A family N of subsets of X is a *network* for X if for any $x \in X$ and any open set U in X with $x \in U$ there is some $P \in \mathcal{N}$ such that $x \in P \subseteq U$. The *network* weight nw(X) of X is the least cardinality of a network of X, and a space X is called *cosmic* if $nw(X) = \aleph_0$. Alternatively, X is a cosmic space if and only if it is a continuous image of a separable metric space [56]. So, each analytic space is cosmic. Conversely, every K-analytic cosmic space is analytic [49, Proposition 6.4]. Moreover, $C_p(X)$ is a cosmic space if and only if X is cosmic [56, Proposition 10.5]. A family N of subsets of a space *X* is a *network modulo a family* \mathcal{A} of subsets of *X* if for each open set *V* of *X* and for every $A \in \mathcal{A}$ with $A \subseteq V$ there exists $N \in \mathcal{N}$ such that $A \subseteq N \subseteq V$. A space is Lindelöf Σ if and only if it admits a countable network modulo a covering by compact sets [49, Proposition 3.5]. Hence, every cosmic space is a Lindelöf Σ-space. A space X is angelic if relatively countably compact sets in X are relatively compact and for every relatively compact subset A of X each point of A is the limit of a sequence of A, [36]. A space X is projectively σ -compact if each separable metrizable space Y that is a continuous image of X is σ -compact. Clearly, every σ -bounded space (in the sense of Theorem 2.6) is projectively σ -compact [3, Proposition 1.1], and every projectively σ -compact cosmic space is σ -compact (see [49, Proposition 9.4] or [60]). A space $C_v(X)$ is said to be Lindelöf Σ -framed (or K-analytic-framed) in \mathbb{R}^X if there is a Lindelöf Σ -space (resp. a K-analytic space) *S* in \mathbb{R}^X such that $C(X) \subseteq S$. A family N of subsets of a topological space X is called a cs^* -network at a point $x \in X$ if for each sequence $\{x_n\}_{n=1}^{\infty}$ in X converging to x and for each neighborhood O_x of x there is a set $N \in \mathcal{N}$ such that $x \in N \subseteq O_x$ and the set $\{n \in \mathbb{N} : x_n \in N\}$ is infinite [38]; \mathcal{N} is a cs^* -network in X if \mathcal{N} is a cs^* -network at each point $x \in X$.

Lemma 3.1. *If* $C_p(X)$ *is Lindelöf* Σ -framed in \mathbb{R}^X , then vX is a Lindelöf Σ -space and $C_p(X)$ is angelic.

Proof. First statement after the conditional comes from [59, Theorem 3.5] or [22, Theorem 3]. For the second use the first and [62, Theorem 3], since $C_p(X)$ is angelic whenever $C_p(vX)$ is angelic. \square

Lemma 3.2 (Ferrando-Kąkol, [29, Lemma 1]). Let X be nonempty and Z be a subspace of \mathbb{R}^X . If Z has a countable network modulo a cover \mathcal{B} of Z by pointwise bounded subsets, then $Y = \bigcup \{\overline{B} : B \in \mathcal{B}\}$, closures in \mathbb{R}^X , is a Lindelöf Σ -space such that $Z \subseteq Y \subseteq \mathbb{R}^X$.

Proof. Let $\mathcal{N} = \{T_n : n \in \mathbb{N}\}$ be a countable network modulo a cover \mathcal{B} of Z consisting of pointwise bounded sets. Set $\mathcal{N}_1 = \{\overline{T}_n : n \in \mathbb{N}\}$, $\mathcal{B}_1 = \{\overline{B} : B \in \mathcal{B}\}$, closures in \mathbb{R}^X , and $Y = \cup \mathcal{B}_1$. Let us show that \mathcal{N}_1 is a network in Y modulo the compact cover \mathcal{B}_1 of Y. In fact, if U is a neighborhood in \mathbb{R}^X of \overline{B} , use \overline{B} compactness to get a closed neighborhood V of \overline{B} in \mathbb{R}^X contained in U. Since \mathcal{N} is a network modulo \mathcal{B} in Z there is $n \in \mathbb{N}$ with $B \subseteq T_n \subseteq V \cap Z$, which implies that $\overline{B} \subseteq \overline{T}_n \subseteq U$. According to Nagami's criterion [1, IV.9.1 Proposition], Y is a Lindelöf Σ -space such that $Z \subseteq Y \subseteq \mathbb{R}^X$. \square

Theorem 3.3 (Ferrando-Kakol, [29, Proposition 1]). The following asserts are equivalent

- 1. $C_p(X)$ admits a resolution of pointwise bounded sets.
- 2. $C_v(X)$ is K-analytic-framed in \mathbb{R}^X .

Proof. Let $\{A_\alpha : \alpha \in \mathbb{N}^\mathbb{N}\}$ be a resolution for $C_p(X)$ of bounded sets, denote by B_α the closure of A_α in \mathbb{R}^X and put $Z = \bigcup \{B_\alpha : \alpha \in \mathbb{N}^\mathbb{N}\}$. Clearly each B_α is a compact subset of \mathbb{R}^X and Z is a quasi-Suslin space [11, Proposition 1] such that $C_p(X) \subseteq Z \subseteq \mathbb{R}^X$. As each quasi-Suslin space Z has a countable network modulo a *resolution* \mathcal{B} of Z consisting of countably compact sets (see [20, Proof Theorem 8]) and every countable compact subset of \mathbb{R}^X is pointwise bounded, Lemma 3.2 assures that $Y = \bigcup \{\overline{B} : B \in \mathcal{B}\}$ is a Lindelöf Σ -space, hence Lindelöf, such that $Z \subseteq Y \subseteq \mathbb{R}^X$. As each set \overline{B} with $B \in \mathcal{B}$ is compact, and $\{\overline{B} : B \in \mathcal{B}\}$ is a resolution for Y, again Y is a quasi-Suslin space. Since every Lindelöf quasi-Suslin space is K-analytic and $C_p(X) \subseteq Y \subseteq \mathbb{R}^X$, it turns out that $C_p(X)$ is K-analytic-framed in \mathbb{R}^X . For the converse, note that each K-analytic space has a resolution consisting of compact sets [67]. □

Theorem 3.4 (Arkhangel'skiĭ-Calbrix, [4, Theorem 2.3]). *If* $C_p(X)$ *is* K-analytic-framed in \mathbb{R}^X , then X is projectively σ -compact.

Proof. Assume $C_v(X)$ is K-analytic-framed in \mathbb{R}^X . Let Y be a separable metric space that is a continuous image of X, say $f: X \to Y$. Consider the pullback $f^*: \mathbb{R}^Y \to \mathbb{R}^X$ defined by $f^*(g) = g \circ f$, which is a linear homeomorphism onto $f^*(\mathbb{R}^Y)$ with closed range [1, 0.4.6 Proposition]. If S is a K-analytic space such that $C(X) \subseteq S \subseteq \mathbb{R}^X$, then $f^*(C(Y)) \subseteq S \cap f^*(\mathbb{R}^Y)$, which is a *K*-analytic subspace of \mathbb{R}^X , since $S \cap f^*(\mathbb{R}^Y)$ is closed in *S*. Hence $T := (f^*)^{-1}(S) \cap \mathbb{R}^Y$ is a *K*-analytic subspace of \mathbb{R}^Y such that $C(Y) \subseteq T \subseteq \mathbb{R}^Y$, i. e., $C_v(Y)$ is *K*-analytic-framed in \mathbb{R}^Y . So, if \mathbb{R}_+ are the nonnegative real numbers, since there exists a (strictly increasing) homeomorphism from \mathbb{R} onto \mathbb{R}^+ , there exists a K-analytic subspace M of \mathbb{R}_+^Y such that $C^+(Y) := C(Y) \cap \mathbb{R}_+^Y$ is contained in M. Let $\varphi : \mathbb{N}^\mathbb{N} \to \mathcal{K}(M)$, where $\mathcal{K}(M)$ designates the family of compact sets of M, an usc map such that $\bigcup \{ \varphi(\alpha) : \alpha \in \mathbb{N}^{\mathbb{N}} \} = M$. Define $\lambda : \mathbb{N}^{\mathbb{N}} \to \mathbb{R}_{+}^{Y}$ by $\lambda(\alpha) = \inf \varphi(\{\beta \in \mathbb{N}^{\mathbb{N}} : \beta \leq \alpha\})$. As $\{\beta \in \mathbb{N}^{\mathbb{N}} : \beta \leq \alpha\}$ is a compact set in $\mathbb{N}^{\mathbb{N}}$, $\varphi(\{\beta \in \mathbb{N}^{\mathbb{N}} : \beta \leq \alpha\})$ is a compact set in M and the infimum is with respect to the pointwise ordering of \mathbb{R}^Y , hence $\lambda(\alpha)(y) = \inf\{\varphi(\beta)(y) : \beta \leq \alpha\} > 0$ for each $y \in Y$. Clearly $\lambda(\alpha) \leq \lambda(\beta)$ whenever $\beta \leq \alpha$, and if $f \in C^+(Y) \subseteq M$ there is $\gamma \in \mathbb{N}^\mathbb{N}$ such that $f \in \varphi(\gamma)$, so that $\lambda(\gamma) \leq f$. Let (\overline{Y}, d) be a metric compactification of Y. For each $\alpha \in \mathbb{N}^{\mathbb{N}}$ set $K_{\alpha} = \bigcap \{\overline{Y} \setminus B(y, \lambda(\alpha)(y)) : y \in Y\}$, where $B(y, \lambda(\alpha)(y)) = \{z \in \overline{Y} : d(y, z) < \lambda(\alpha)(y)\}$ is the open ball in \overline{Y} of center y and radius $\lambda(\alpha)(y) \ge 0$. Clearly K_{α} is a compact set in $\overline{Y} \setminus Y$, and we claim that $\{K_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a compact resolution for $\overline{Y} \setminus Y$ that swallows the compact sets in $\overline{Y} \setminus Y$. The relation $K_{\alpha} \subseteq K_{\beta}$ comes from $\lambda(\beta) \le \lambda(\alpha)$ whenever $\alpha \le \beta$. In addition, if Q is a compact set in $\overline{Y} \setminus Y$, the function $h : \overline{Y} \to \mathbb{R}_+$ defined by h(y) = d(y,Q) belongs to $C^+(Y)$ when restricted to Y. So, there is $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $\lambda(\gamma) \leq h|_{Y}$. Thus $d(y,z) \geq \lambda(\gamma)(y)$ for every $y \in Y$ and $z \in Q$. In other words, $Q \cap \bigcup \{B(y, \lambda(\alpha)(y)) : y \in Y\} = \emptyset$, which means that $Q \subseteq K_{\gamma}$. In this circumstances, Christensen's theorem [15, Theorem 3.3] shows that $\overline{Y} \setminus Y$ is a Polish space, so an absolute G_{δ} [51, Chapter 6, Problem K]. Consequently, *Y* is an F_{σ} of the compact space \overline{Y} , i. e., *Y* is a σ -compact space. \square

Corollary 3.5. If $C_v(X)$ admits a resolution consisting of pointwise bounded sets, then X is projectively σ -compact.

Proof. This is a straightforward consequence of Theorems 3.3 and 3.4. □

Theorem 3.6 (Ferrando-Kąkol, [29, Corollary 1]). Let X be a cosmic space. $C_p(X)$ has a resolution of pointwise bounded sets if and only if X is σ -compact.

Proof. The 'only if' statement is consequence of Corollary 3.5 and the fact, mentioned earlier, that each projectively σ -compact cosmic space is σ -compact. For the 'if' part note that if $X = \bigcup_{n=1}^{\infty} K_n$ with each K_n compact, the family $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ with

$$A_{\alpha} = \left\{ f \in C(X) : \sup_{x \in K_{n}} \left| f(x) \right| \le \alpha(n), n \in \mathbb{N} \right\}$$

is a resolution for C(X) consisting of pointwise bounded sets. \square

Theorem 3.7 (Calbrix [9, Theorem 2.3.1]). *If* $C_p(X)$ *is analytic, then* X *is* σ *-compact.*

Proof. If $C_p(X)$ is analytic, it is cosmic. Hence X is also a cosmic space [56, Proposition 10.5]. Since $C_p(X)$ is K-analytic, it has a resolution of pointwise bounded sets (actually, of compact sets [67]). So, Theorem 3.6 ensures that X is σ -compact. \square

Corollary 3.8. *If X is metrizable, the following are equivalent.*

- 1. $C_p(X)$ is analytic.
- 2. X is σ -compact.
- 3. $C_p(X)$ has a resolution of pointwise bounded sets.

Proof. 1 ⇒ 2 follows from Theorem 3.7 and, as mentioned above, 2 ⇒ 3 always holds true. On the other hand, if $C_p(X)$ has a resolution of pointwise bounded sets, then $C_p(X)$ is K-analytic-framed in \mathbb{R}^X by Theorem 3.3 and angelic by Lemma 3.1. But if X is metrizable, $C_p(X)$ is angelic if and only if X is separable [49, Corollary 6.10]. Consequently, for metrizable X, the fact that $C_p(X)$ has a resolution of pointwise bounded sets entails that X is a cosmic space. So, Theorem 3.6 yields the implication X is a metrizable X-compact space then X is separable. Thus X-compact space then X-compact space the X-compact space then X-compact space the X-compact space the X-compact space then X-compact space the X-compact s

Corollary 3.9. *If* $C_p(C_p(X))$ *has a resolution consisting of pointwise bounded sets, then* X *is pseudocompact.*

Proof. If *X* is not pseudocompact, then $C_p(X)$ contains a complemented (linearly homeomorphic) copy of \mathbb{R}^ω . If *P* is a continuous linear projection from $C_p(X)$ onto the linear subspace \mathbb{R}^ω the (linear) restriction map $T: C_p(C_p(X)) \to C_p(\mathbb{R}^\omega)$ given by $T\varphi = \varphi|_{\mathbb{R}^\omega}$ is continuous and onto, for if $\psi \in C(\mathbb{R}^\omega)$ then $\psi \circ P \in C(C_p(X))$ and $T(\psi \circ P) = \psi$ due to Pg = g for every $g \in \mathbb{R}^\omega$. Hence *T* carries a resolution from $C_p(C_p(X))$ onto $C_p(\mathbb{R}^\omega)$ made up of pointwise bounded sets. Since \mathbb{R}^ω is metrizable, Corollary 3.8 shows that \mathbb{R}^ω is a *σ*-space, which is not true. □

Theorem 3.10 (Tkachuk [71, 2.8 Theorem]). $C_p(X)$ has a resolution consisting of compact sets if and only if it is *K-analytic*.

Proof. If $C_p(X)$ has a resolution consisting of compact sets, then $C_p(X)$ is a quasi-Suslin space [11, Proposition 1]. But, according to Lemma 3.1, the space $C_p(X)$ is angelic, and every quasi-Suslin angelic space is K-analytic [11]. The converse can be found in [67] or in [49, Theorem 3.2]. \square

The following result was stated and proved by Tkachuk, [71, 3.9 Theorem]. However, it can also be derived as a consequence of Valdivia's closed graph theorem for *K*-analytic spaces [76, Chapter I] (as mentioned in [71]), which is the approach we choose.

Theorem 3.11. Assume $C_p(X)$ is a Baire space. $C_p(X)$ has a resolution of compact sets if and only if X is countable and discrete.

Proof. According to Theorem 3.10, if $C_p(X)$ has a resolution of compact sets then $C_p(X)$ is K-analytic. Hence $C_p(X)$ is a locally convex space which is both Baire and K-analytic, so a separable Fréchet space by [76, I.4.3.(21)]. This forces to $C_p(X) = \mathbb{R}^X$ with X countable. Hence X is countable and discrete. \square

Theorem 3.12 (Arkhangel'skiĭ). *If* $C_p(X)$ *is both Baire and a Lindelöf* Σ *-space, then* X *is countable.*

Proof. Let us prove this result with the additional assumption that X is realcompact. A proof of the general case can be found in [71, 3.8 Theorem]. If $C_p(X)$ is a Baire space, it is barrelled, i. e., each closed absorbing absolutely convex set is a neighborhood of the null function. Hence, by the Buchwalter-Schmets theorem, the functionally bounded sets in X are finite [8] (see also[1, I.3.4 Theorem]). If $C_p(X)$ is a Lindelöf Σ-space, then vX is a Lindelöf Σ-space by Lemma 3.1 (see also [59, Theorem 3.5]). Since by assumption X = vX, it turns out that X is a Lindelöf Σ-space with finite compact sets. Consequently X must be countable [1, IV.6.15 Proposition].

Theorem 3.13. Let $C_p(X)$ be a Baire space. If $C_p(X)$ has a resolution of pointwise bounded sets, then X is countable.

Proof. This follows from a general property of locally convex spaces which assures that each locally convex Baire space E with a resolution of bounded sets is metrizable (see [50, Corollary 1]). Let us try a direct approach. Let $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a resolution for $C_p(X)$ consisting of absolutely convex pointwise bounded sets. Define $\beta(1) = n_1$, $\beta(i+1) = \alpha(i)$ for each $i \in \mathbb{N}$, and set $B_\beta := n_1 \overline{abx(A_\alpha)}$ where $abx(A_\alpha)$ stands for the absolutely convex cover of A_α and the closure is in \mathbb{R}^X . Thus $Z := \bigcup \{B_\beta : \beta \in \mathbb{N}^{\mathbb{N}}\}$ is a linear subspace of \mathbb{R}^X , and each set B_β is compact with $B_\alpha \subseteq B_\beta$ if $\alpha \le \beta$. So, Z is a locally convex Baire space with a resolution of compact sets. By [31, Theorem 1], Z is a separable Fréchet space. Hence $C_p(X)$ is metrizable, so X must be countable. \square

Theorem 3.14. Let X be a paracompact locally compact space. $C_p(X)$ has a resolution of pointwise bounded sets if and only if X is σ -compact.

Proof. As follows from [7, 9.10 Theorem 5] the space *X* is the topological sum $\bigoplus_{\alpha \in A} X_{\alpha}$ of a family { $X_{\alpha} : \alpha \in A$ } of locally compact *σ*-compact (pairwise disjoint) subspaces of *X*. Consequently, $C_p(X) = \prod_{\alpha \in A} C_p(X_{\alpha})$ isomorphically. By the previous equality, $C_p(X)$ contains a copy of \mathbb{R}^A . If $C_p(X)$ has a resolution of pointwise bounded sets, the subspace \mathbb{R}^A of $C_p(X)$ also has a resolution of pointwise bounded sets. Since \mathbb{R}^A is a Baire space, Theorem 3.13 shows that *A* must be countable. So, *X* is *σ*-compact. The converse also holds as shown in the 'if' part of Theorem 3.6. □

The preceding theorem was originally stated as a part of [10, Proposition 2.2] assuming $C_p(X)$ is K-analytic.

Theorem 3.15 (Tkachuk, [71, 3.7 Theorem]). $C_p(X)$ has a resolution of compact sets that swallows the compact sets if and only if X is countable and discrete.

Proof. Assume $\{A_\alpha : \alpha \in \mathbb{N}^\mathbb{N}\}$ is a resolution for $C_p(X)$ of compact sets that swallows the compact sets of $C_p(X)$. We claim that compact subsets of X are finite. Otherwise there exists an infinite compact set K in X. Since, according to Theorem 3.10, $C_p(X)$ is K-analytic, it turns out that $C_p(C_p(X))$ is angelic [24, Theorem 78]. As K is embedded in $C_p(C_p(X))$, it must be a Fréchet-Urysohn compact, so there is a non trivial sequence $\{x_n\}_{n=1}^\infty$ that converges to some $x \in K$. Let $S = \{x_n : n \in \mathbb{N}\} \cup \{x\}$, so that S is a countable compact set, hence metrizable. Thus, there is a linear extender map $\varphi : C_p(S) \to C_p(X)$, i.e., such that $\varphi(f|_S) = f$ for every $f \in C(X)$, which embeds $C_p(S)$ into a closed linear subspace of $C_p(X)$, [5, Proposition 4.1]. Therefore the metrizable space $C_p(S)$ also has a resolution of compact sets that swallows the compact sets in $C_p(S)$. According to Christensen's theorem [24, Theorem 94] this means that $C_p(S)$ is a Polish space. Hence, [1, I.3.3 Corollary] ensures that the compact set S is discrete, hence finite. This contradiction ensures that the compact sets in X are finite.

Since $C_p(X)$ is K-analytic, Lemma 3.1 asserts that vX is a Lindelöf Σ -space. But a Lindelöf Σ -space with finite compact sets is countable [1, IV.6.15 Proposition], so X is countable. On the other hand, if Q is a compact set in $C_p(X)$ there is $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $Q \subseteq A_{\gamma}$. Hence, $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a resolution of compact sets for the metrizable space $C_p(X)$ that swallows the compact sets of $C_p(X)$. So, again $C_p(X)$ is a Polish space by Christensen's theorem, and one more time [1, I.3.3 Corollary] asserts that X is discrete.

For the converse, note that $C_p(X)$ coincides with $\mathbb{R}^{\mathbb{N}}$ whenever X is countable and discrete. Then $\{A_\alpha: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ with $A_\alpha = \{x \in \mathbb{R}^{\mathbb{N}}: |x_n| \leq \alpha_n\}$ is a resolution for $C_p(X) = \mathbb{R}^{\mathbb{N}}$ consisting of compact sets that swallows the compact sets in $\mathbb{R}^{\mathbb{N}}$. \square

Theorem 3.16 (Ferrando-Gabriyelyan-Kąkol [28, Theorem 3.3]). $C_p(X)$ has a resolution of pointwise bounded sets that swallows the pointwise bounded sets if and only if X is countable. In other words, $C_p(X)$ has a fundamental resolution of pointwise bounded sets if and only if X is countable.

Proof. (Sketch) If $C_p(X)$ admits a fundamental resolution of pointwise bounded sets one can fix [28, Theorem 3.3] a countable family of closed sets (some of them may be empty) $\mathcal{K} = \{K_n(\alpha) : n \in \mathbb{N}, \alpha \in \mathbb{N}^{\mathbb{N}}\}$ in X enjoying the properties:

- 1. $K_n(\alpha) \subseteq K_{n+1}(\alpha)$ for every $n \in \mathbb{N}$ and each $\alpha \in \mathbb{N}^{\mathbb{N}}$.
- 2. $K_n(\alpha) \supseteq K_n(\beta)$ for every $n \in \mathbb{N}$ whenever $\alpha \leq \beta$.
- 3. $\bigcup_{n\in\mathbb{N}} K_n(\alpha) = X$ for each $\alpha \in \mathbb{N}^{\mathbb{N}}$.
- 4. For every increasing closed covering $\{V_n : n \in \mathbb{N}\}$ of X there exists $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $K_n(\gamma) \subseteq V_n$ for all $n \in \mathbb{N}$.

Then it turns out that the family $\mathcal{N} := \{N_{mn}(\alpha) : m, n \in \mathbb{N}, \alpha \in \mathbb{N}^{\mathbb{N}}\}$, where

$$N_{mn}(\alpha) := \left\{ f \in C(X) : |f(x)| \le \frac{1}{m} \ \forall x \in K_n(\alpha) \right\}$$

and $N_{mn}(\alpha) := \{0\}$ if $K_n(\alpha)$ is empty, is a countable cs^* -network at the origin in $C_p(X)$ (see [28, Proposition 3.2] or [24, Claim 108] for details). So, according to [65, Theorem 2.3], X must be countable. \square

Recall that a locally convex space E is a *quasi-(LB)-space* if E has a resolution consisting of *Banach disks*, i. e., of absolutely convex bounded sets D whose linear span E_D is a Banach space when equipped with the Minkowski functional of D as a norm.

Theorem 3.17 (Valdivia, [77]). *If E is a quasi-(LB)-space, there exists a resolution for E consisting of Banach disks that swallows the Banach disks of E.*

Proof. (Sketch) Let $\{D_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}\$ be a resolution for E consisting of Banach disks. For $(n_1, \ldots, n_k) \in \mathbb{N}^{\mathbb{N}}$ define the absolutely convex set

$$C_{n_1,\ldots,n_k} = \bigcup \{D_\alpha : \alpha \in \mathbb{N}^\mathbb{N}, \alpha(i) = n_i, 1 \le i \le k\}.$$

If $\alpha \in \mathbb{N}^{\mathbb{N}}$ and U a neighborhood of the origin in E it can be easily seen that there exists $k(\alpha, U) \in \mathbb{N}$ such that $C_{\alpha(1),\dots,\alpha(k)} \subseteq kU$. So, if we set $F_{\alpha(1),\dots,\alpha(k)} := \operatorname{span}\left(C_{\alpha(1),\dots,\alpha(k)}\right)$ for every $k \in \mathbb{N}$ and $F_{\alpha} := \bigcap \left\{F_{\alpha(1),\dots,\alpha(k)} : k \in \mathbb{N}\right\}$, the sequence

$$\left\{F_{\alpha}\cap k^{-1}C_{\alpha(1),\dots,\alpha(k)}:k\in\mathbb{N}\right\}$$

is a base of absolutely convex neighborhoods of the origin in the linear subspace F_{α} of a locally convex topology τ_{α} stronger than the relative topology of E. In fact, it turns out that $\{(F_{\alpha}, \tau_{\alpha}) : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a family Fréchet spaces [77, Proposition 21] which covers E. Now, for $\alpha \in \mathbb{N}^{\mathbb{N}}$ set $\overline{\alpha}(i) = \alpha(2i - 1)$ for each $i \in \mathbb{N}$ and define

$$Q_{\alpha} = \bigcap_{k=1}^{\infty} \alpha (2k) \cdot \left(F_{\overline{\alpha}} \cap C_{\overline{\alpha}(1), \dots, \overline{\alpha}(k)} \right)$$

The family $\{Q_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is clearly a resolution for E, and consists of Banach disks. It remains to prove that this family swallows the Banach disks of E. In order to establish this statement, choose a Banach disk D in E and consider the Banach space E_D . Then consider the canonical inclusion $J: E_D \to E$ and put $U_{n_1,\dots,n_k}:=J^{-1}\left(C_{n_1,\dots,n_k}\right)$. As $E_D=\bigcup\{U_{n_1}:n_1\in\mathbb{N}\}$ and $U_{n_1,\dots,n_k}=\bigcup\{U_{n_1,\dots,n_k,n_{k+1}}:n_{k+1}\in\mathbb{N}\}$ for each $k\in\mathbb{N}$, there is $\beta\in\mathbb{N}^{\mathbb{N}}$ such that $\overline{U_{\beta(1),\dots,\beta(k)}}$, closure in E_D , is a neighborhood of the origin in E_D for each E_D for each E_D and E_D for each E_D for each E_D for each E_D for each E_D and E_D for each E_D for

$$D \subseteq m_k \cdot \left(F_{\beta} \cap C_{\beta(1),\dots,\beta(k)} \right)$$

for every $k \in \mathbb{N}$, setting $\gamma(2k) = m_k$ and $\gamma(2k-1) = \beta(k)$ for each $k \in \mathbb{N}$, it follows that $D \subseteq Q_{\gamma}$. \square

Theorem 3.18 (Ferrando-Gabriyelyan-Kąkol [28, Proposition 3.6]). *Let* X *be a* P-space. $C_p(X)$ *has a resolution of pointwise bounded sets if and only if* X *is countable and discrete.*

Proof. If *X* is a *P*-space then $C_p(X)$ is locally complete [34, Theorem 1.1], i. e., each pointwise bounded set is contained in a Banach disk. So, according to Theorem 3.17 there exists a resolution for $C_p(X)$ consisting of Banach disks that swallows the pointwise bounded sets in $C_p(X)$. Hence, *X* is countable by Theorem 3.16. But every countable *P*-space is discrete. \Box

Alternatively, one may use the fact that $C_p(X)$ is a Baire space (note that $C_p(X)$ is pseudocomplete [72, Section 1.5, p. 46] whenever X is a P-space and use [72, Problem 464]). Then apply Theorem 3.13 to conclude that X must be countable, hence discrete.

Recall that a sequence $\{x_n\}_{n=1}^{\infty}$ in a locally convex space E is called *local null* or *Mackey convergent* to zero [52, 28.3] if there is a closed disk B in E such that $x_n \to \mathbf{0}$ in the normed space E_B . Each local null sequence in E is a null sequence.

Theorem 3.19 (Ferrando, [25, Theorem 12]). $C_p(X)$ admits a resolution of convex compact sets that swallows the local null sequences in $C_p(X)$ if and only if X is countable and discrete.

Proof. We may assume that $C_p(X)$ admits a resolution $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of absolutely convex compact sets swallowing the local null sequences in $C_p(X)$. If $T : C_p(vX) \to C_p(X)$ denotes the restriction map $Tg = g|_X$ we proceed as in [49, Proposition 9.14] to show that the family $\mathcal{A} = \{T^{-1}(A_\alpha) : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a resolution for $C_p(vX)$ consisting of (absolutely convex) compact sets, with the additional benefit that \mathcal{A} swallows the local null sequences in $C_p(vX)$. So, we may assume without loss of generality that X is realcompact or, equivalently, that $C_p(X)$ is bornological [8]. Hence, we denote as above by $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ a resolution for $C_p(X)$, with X realcompact, consisting of absolutely convex compact sets that swallows the local null sequences in $C_p(X)$.

Let \mathcal{M} denote the family of all local null sequences in $C_p(X)$. Since $\{A_\alpha : \alpha \in \mathbb{N}^\mathbb{N}\}$ swallows the members of \mathcal{M} , the Mackey* topology $\mu(L(X), C(X))$ of L(X) is stronger than the topology τ_{c_0} on L(X) of the uniform convergence on the local null sequences of $C_p(X)$. As in addition $\sigma(L(X), C(X)) \leq \tau_{c_0}$, we conclude that $(L(X), \tau_{c_0})' = C(X)$. Moreover, since we are assuming that $C_p(X)$ is bornological, its τ_{c_0} -dual $(L(X), \tau_{c_0})$ is complete by [52, 28.5.(1)].

We claim that every compact set in X is finite. Indeed, if K is a compact set in X, the homeomorphic copy $\delta(K)$ of K in $L_p(X)$ is compact, i. e., $\delta(K)$ is a $\sigma(L(X), C(X))$ -compact set in L(X). So, the completeness of $(L(X), \tau_{c_0})$, together with Krein's theorem and the fact that τ_{c_0} is a locally convex topology of the dual pair $\langle L(X), C(X) \rangle$, ensures that the weak* closure $Q = \overline{abx}(\delta(K))$ in L(X), where $abx(\delta(K))$ stands for the absolutely convex hull of $\delta(K)$, is a compact set in $L_p(X)$, hence a strongly bounded set. Since $C_p(X)$ is quasi-barrelled [47, 11.7.3 Corollary], the strongly bounded sets in L(X) are finite-dimensional. Therefore the set $\delta(K)$, as a linearly independent system of vectors in L(X), must be finite. Thus K is finite as well.

Since vX = X is a Lindelöf Σ -space by Lemma 3.1 and as we know each Lindelöf Σ -space with finite compact sets is countable [1, IV.6.15 Proposition], X is countable. So $C_p(X)$ is a metrizable space. But in a metrizable locally convex space, the local null sequences and the null sequences are the same [52, 28.3.(1) c)]. Furthermore, if M is a compact set in the metrizable space $C_p(X)$, then M lies in the closed absolutely convex cover of a null sequence $\{f_n\}_{n=1}^{\infty}$, [52, 21.10.(3)]. So, if $\{f_n\}_{n=1}^{\infty} \subseteq A_{\gamma}$, thanks to the fact that A_{γ} is a closed absolutely convex set, it turns out that $M \subseteq A_{\gamma}$. Therefore $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a compact resolution for $C_p(X)$ that swallows the compact sets of $C_p(X)$. So, $C_p(X)$ is a Polish space by Christensen's theorem [24, Theorem 94]. But then [1, I.3.3 Corollary] asserts that X is discrete. The converse is obvious. \square

Theorem 3.20 (Ferrando, [25, Theorem 16]). $C_p(X)$ has a resolution of absolutely convex pointwise bounded sequentially complete sets that swallows the null sequences if and only if X is countable and discrete.

Proof. It can be readily seen that there is no loss of generality if we assume X to be realcompact. If $C_p(X)$ has a resolution $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of the stated characteristics and $\{f_n\}_{n=1}^{\infty}$ is a null sequence in $C_p(X)$, there is

 $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $f_n \in A_{\gamma}$ for every $n \in \mathbb{N}$. Since $\sum_{i=1}^{n} \xi_i f_i \in A_{\gamma}$ for every $\xi \in \ell_1$ with $\|\xi\|_1 \le 1$ and A_{γ} is sequentially complete, it follows that $\sum_{i=1}^{\infty} \xi_i f_i \in A_{\gamma}$ for every $\xi \in \ell_1$ with $\|\xi\|_1 \le 1$. So, the Banach disk

$$Q := \left\{ \sum_{i=1}^{\infty} \xi_i \, f_i : \xi \in \ell_1, \, \|\xi\|_1 \le 1 \right\}$$

is contained in A_{γ} . Now, it can be proved as in [52, 20.10.(6)] that $Q = \{f_n : n \in \mathbb{N}\}^{00}$, the absolute bipolar of the null sequence $\{f_n : n \in \mathbb{N}\}$. Since each local null sequence is a null sequence, the dual of $(L(X), \tau_{c_0})$ is C(X), so $\sigma(L(X), C(X)) \le \tau_{c_0} \le \mu(L(X), C(X))$. As $C_p(X)$ is bornological, the space L(X) is $\mu(L(X), C(X))$ -complete. So, proceeding as in the proof of Theorem 3.19, with the help of Krein's theorem we establish that each compact set in X is finite. Now, using the fact that the resolution $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ consists of pointwise bounded sets, Lemma 3.1 asserts that X is a Lindelöf Σ -space. Thus X must be countable, [1, IV.6.15 Proposition], so $C_p(X)$ is metrizable.

If M is a compact set in the metrizable space $C_p(X)$, as mentioned above M lies in the closed absolutely convex cover of a null sequence $\{f_n\}_{n=1}^{\infty}$. So, if $\{f_n\} \subseteq A_{\gamma}$ then $M \subseteq A_{\gamma}$. Thus $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a resolution for $C_p(X)$ that swallows the compact sets of $C_p(X)$. Since each set A_{α} is precompact in $C_p(X)$ and sequentially complete, the metrizability of $C_p(X)$ ensures that A_{α} is compact in $C_p(X)$. Hence $C_p(X)$ is a Polish space by Christensen's theorem. Thus X is discrete. The converse is clear, since each (absolutely convex) compact set in $\mathbb{R}^{\mathbb{N}}$ is pointwise bounded and sequentially complete. \square

Another result of this type, which we state without proof is the following.

Theorem 3.21 (Ferrando, [25, Theorem 33]). *Let* X *be first countable.* $C_p(X)$ *has a resolution of pointwise bounded sets that swallows the Cauchy sequences if and only if* X *is countable.*

4. Uncountable coverings for $C_k(X)$

Theorem 4.1 (Ferrando-Moll, [35, Corollary 5]). *The space* $C_k(X)$ *has a resolution consisting of compact sets if and only if it is K-analytic.*

Proof. If $C_k(X)$ has a resolution consisting of compact sets, so does $C_p(X)$. So, Lemma 3.1 and Theorem 3.3 ensure that vX is a Lindelöf Σ-space and $C_p(X)$ is angelic. Therefore $C_k(X)$ is angelic as well [36, 3.3 Theorem]. Since $C_k(X)$ is a quasi-Suslin space, necessarily $C_k(X)$ must be K-analytic [11]. \square

Theorem 4.2 (Gabriyelyan-Kąkol [37, Corollary 2.10]). *Let* X *be metrizable.* $C_k(X)$ *has a resolution of compact sets that swallows the compact sets if and only if* X *is* σ -compact.

Proof. If $C_k(X)$ has a resolution of compact sets, $C_p(X)$ has a resolution of pointwise bounded sets. So, Corollary 3.8 assures that X is σ -compact. Conversely, if $\{K_m : m \in \mathbb{N}\}$ is an increasing sequence of compact sets in X covering X then $\Delta_m = \{(x, x) : x \in K_m\}$ is compact in the metric space $(X \times X, d)$. Hence, the sequence $\{U_{m,n} : n \in \mathbb{N}\}$ where

$$U_{m,n} = \left\{ (x,y) \in X \times X : d\left((x,y), \Delta_m \right) < n^{-1} \right\}$$

is a basis of the system of neighborhoods of Δ_m . Let us encode in each $\alpha \in \mathbb{N}^{\mathbb{N}}$ a whole sequence $\{\alpha_n\}_{n=1}^{\infty}$ of elements of $\mathbb{N}^{\mathbb{N}}$ by considering a bidimensional array whose i^{th} file is formed by coordinates $(\alpha_i(1), \alpha_i(2), \ldots, \alpha_i(n), \ldots)$ of α_i and defining α by setting $\alpha(1) = \alpha_1(1)$, $\alpha(2) = \alpha_1(2)$, $\alpha(3) = \alpha_2(1)$, $\alpha(4) = \alpha_1(3)$, $\alpha(5) = \alpha_2(2)$, $\alpha(6) = \alpha_3(1)$, $\alpha(7) = \alpha_1(4)$, ... and so on. Conversely, given $\alpha \in \mathbb{N}^{\mathbb{N}}$ we may extract a sequence $\{\alpha_n\}_{n=1}^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$ from α as indicated above. Then let A_α be the absolutely convex set

$$\left\{ f \in C(X) : \sup_{(x,y) \in U_{m,\alpha_m(n)}} \left| f(x) - f(y) \right| \le \frac{1}{n}, \sup_{x \in K_m} \left| f(x) \right| \le \alpha_m(1) \ \forall m, n \in \mathbb{N} \right\}.$$

Let $x \in X$ and $\epsilon > 0$ be given. Take $m \in \mathbb{N}$ such that $x \in K_m$ and $1/n < \epsilon$. Setting $U_{m,n}(x) := \{y \in X : (x,y) \in U_{m,n}\}$, each $f \in A_\alpha$ satisfies

$$\sup_{y \in U_{m,\alpha_m(n)}(x)} \left| f\left(x\right) - f\left(y\right) \right| \leq \sup_{\left(z,y\right) \in U_{m,\alpha_m(n)}} \left| f\left(z\right) - f\left(y\right) \right| \leq n^{-1} < \epsilon.$$

As $U_{m,\alpha_m(n)}(x)$ is a neighborhood of x, this means that A_α is equicontinuous at x. So all sets A_α are equicontinuous. In addition, since $\sup_{f \in A_\alpha} |f(z)| \le \alpha_m(1)$ if $z \in K_m$, we see that A_α is pointwise bounded and closed. Hence A_α is a compact set in $C_k(X)$.

On the other hand, if K is a compact set in $C_k(X)$, the fact that X is a $k_{\mathbb{R}}$ -space guarantees that K is equicontinuous (Ascoli's theorem). Since K is equicontinuous at each $x \in K_m$, for each $n \in \mathbb{N}$ there is $\epsilon(m, n, x) > 0$ such that

$$\sup_{y \in B(x, \epsilon(m, n, x))} \left| f(x) - f(y) \right| \le \frac{1}{2n} \tag{1}$$

for all $f \in \mathcal{K}$, where $B(x, \epsilon)$ stands for the open ball of center at x and radius $\epsilon > 0$.

Setting $U = \bigcup_{z \in K_m} B(z, \epsilon(m, n, z)) \times B(z, \epsilon(m, n, z))$, if $(x, y) \in U$ there is $z \in K_m$ such that $x, y \in B(z, \epsilon(m, n, z))$, so $|f(x) - f(y)| \le |f(x) - f(z)| + |f(z) - f(y)| < n^{-1}$ for all $f \in \mathcal{K}$. As $\Delta_m \subseteq U$ there is $r(m, n) \in \mathbb{N}$ with $\Delta_m \subseteq U_{m,r(m,n)} \subseteq U$. Thus

$$\sup_{(x,y)\in U_{m,r(m,n)}}\left|f\left(x\right)-f\left(y\right)\right|\leq\frac{1}{n}.$$

On the other hand, the fact that \mathcal{K} is a compact set for the compact-open topology ensures that for each $m \in \mathbb{N}$ there is $k_m \in \mathbb{N}$ such that $\sup_{f \in \mathcal{K}} \sup_{x \in K_m} |f(x)| \le k_m$. Hence, setting α such that $\alpha_m(n) = r(m, n)$, we may assume that $\alpha_m(1) \ge k_m$. All this says that $\mathcal{K} \subseteq A_\alpha$. As $A_\alpha \subseteq A_\beta$ if $\alpha \le \beta$, the family $\{A_\alpha : \alpha \in \mathbb{N}^\mathbb{N}\}$ is as stated. \square

Corollary 4.3 (Ferrando [23, Proposition 3]). *Let* X *be a metrizable space.* $C_k(X)$ *has a fundamental bounded resolution if and only if* X *is* σ *-compact.*

Proof. If X is σ -compact, Theorem 4.2 ensures that $C_k(X)$ has a resolution consisting of compact sets that swallows the compact sets. So, $C_k(X)$ has a bounded resolution $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ consisting of closed absolutely convex bounded sets. As X is a $k_{\mathbb{R}}$ -space, $C_k(X)$ is complete and consequently each A_α is a Banach disk. So, Theorem 3.17 provides a resolution $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ for $C_k(X)$ consisting of Banach disks that swallows the Banach disks, hence the bounded sets in $C_k(X)$. Thus, $C_k(X)$ has a fundamental bounded resolution. The converse comes from Corollary 3.8. \square

Theorem 4.4 (Christensen [15, Theorem 3.7]). *Let* X *be a separable metric space.* $C_k(X)$ *is analytic if and only if* X *is* σ -compact.

Proof. If $C_k(X)$ is analytic then $C_p(X)$ is analytic as well, so Calbrix's theorem ensures that X is σ -compact. If X is σ -compact then $C_k(X)$ has a resolution of compact sets by Theorem 4.2. Hence $C_k(X)$ is K-analytic by Theorem 4.1. As X is a separable metric space, it is a cosmic space, and so is $C_p(X)$. So, $C_p(X)$ being K-analytic and cosmic is analytic. Hence $C_p(X)$ must be submetrizable by the second statement of [24, Theorem 85] (see [66, Proposition 6.3]). Consequently, $C_k(X)$ is K-analytic and submetrizable, hence analytic by the first statement of [24, Theorem 85]. \square

If \mathcal{N} is a uniformity for a (nonempty) set X, we denote by $\tau_{\mathcal{N}}$ the uniform topology defined by \mathcal{N} . A base $\{U_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of \mathcal{N} is called a \mathfrak{G} -base if $U_{\beta} \subseteq U_{\alpha}$ whenever $\alpha \leq \beta$. There is no loss of generality by assuming that each U_{α} is a symmetric vicinity. On the other hand, if $\{\mathcal{U}_{\lambda}: \lambda \in \Lambda\}$ is the family of all admissible uniformities for a completely regular space (X, τ) , the smallest uniformity \mathcal{U}_{λ_0} that makes all τ -continuous functions $f: X \to \mathbb{R}$ uniformly continuous, is called the *Nachbin uniform structure* of X, [61].

Theorem 4.5 (Ferrando, [21, Theorem 1]). $C_k(X)$ has a resolution consisting of equicontinuous sets if and only if there exists an admissible uniformity for X, larger than or equal to the Nachbin uniformity, with a \mathfrak{G} -base.

Proof. Assume \mathcal{N} is a uniformity for X which contains the Nachbin uniform structure and let $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a \mathfrak{G} -base of \mathcal{N} . If $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence in $\mathbb{N}^{\mathbb{N}}$, encode $\{\alpha_n\}_{n=1}^{\infty}$ in α as indicated in the proof of Theorem 4.2 and define

$$P_{\alpha} = \left\{ f \in C(X) : \sup_{(x,y) \in U_{\alpha_n}} \left| f(x) - f(y) \right| \le \frac{1}{n} \ \forall n \in \mathbb{N} \right\}.$$

We claim that $\{P_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a resolution for $C_k(X)$ consisting of equicontinuous sets. In fact, since if $\alpha \leq \beta$ then $\alpha_n \leq \beta_n$ for every $n \in \mathbb{N}$, clearly $P_{\alpha} \subseteq P_{\beta}$. On the other hand, if $f \in C(X)$, since N is larger than the Nachbin uniformity, f is N-uniformly continuous on X. Bearing in mind that $\{U_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a \mathfrak{G} -base of N, for each $n \in \mathbb{N}$ there exists $\alpha_n \in \mathbb{N}^{\mathbb{N}}$ such that $|f(x) - f(y)| \leq 1/n$ whenever $(x, y) \in U_{\alpha_n}$, which shows that $f \in P_{\alpha}$ for α defined as above. Finally, let us see that each set P_{α} is equicontinuous. Indeed, given $\epsilon > 0$ take $n \in \mathbb{N}$ such that $1/n < \epsilon$. According to the definition of P_{α} there is $\alpha_n \in \mathbb{N}^{\mathbb{N}}$, which we extract from α as explained earlier, such that $|f(x) - f(y)| < \epsilon$ whenever $(x, y) \in U_{\alpha_n}$ and this happens for every $f \in P_{\alpha}$, which shows that P_{α} is uniformly equicontinuous, hence equicontinuous.

For the converse, suppose that $\{P_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a resolution of $C_k(X)$ consisting of equicontinuous sets. For each $\alpha \in \mathbb{N}^{\mathbb{N}}$ define

$$V_{\alpha} = \{(x, y) \in X \times X : \sup_{f \in P_{\alpha}} |f(x) - f(y)| < \alpha (1)^{-1}\}.$$

If $\alpha \leq \beta$ then $P_{\alpha} \subseteq P_{\beta}$, which implies that $V_{\beta} \subseteq V_{\alpha}$. Let us see that $\{V_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a base of some uniformity \mathcal{N} for X. First observe that the diagonal $\Delta(X) = \{(x,x) : x \in X\}$ is contained in each V_{α} , so no V_{α} is empty. On the other hand, clearly $\{V_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a filter-base with $V_{\alpha}^{-1} = V_{\alpha}$. In addition, if $\beta \in \mathbb{N}^{\mathbb{N}}$ satisfies that $\beta \geq \alpha$ with $\beta(1) \geq 2\alpha(1)$ we claim that $V_{\beta} \circ V_{\beta} \subseteq V_{\alpha}$. Indeed, if $(x,y) \in V_{\beta} \circ V_{\beta}$ there is $z \in X$ with (x,z), $(z,y) \in V_{\beta}$. Hence $|f(x) - f(z)| < \beta(1)^{-1}$ and $|f(z) - f(y)| < \beta(1)^{-1}$ for every $f \in P_{\beta}$. So, $|f(x) - f(y)| < 2\beta(1)^{-1} \leq \alpha(1)^{-1}$ for all $f \in P_{\alpha} \subseteq P_{\beta}$, which shows that $(x,y) \in V_{\alpha}$.

Let us check that \mathcal{N} is an admissible uniformity for X, i. e., that $\tau_{\mathcal{N}}$ coincides with the original topology of X. Since X is completely regular, it suffices to show that X and $(X, \tau_{\mathcal{N}})$ have the same continuous functions. Take $f \in C(X)$, pick an arbitrary point $x_0 \in X$ and choose $\epsilon > 0$. Then select $\alpha \in \mathbb{N}^{\mathbb{N}}$ such that $f \in P_{\alpha}$ and $\alpha(1)^{-1} < \epsilon$. Clearly

$$V_{\alpha}(x_0) = \{ y \in X : (x_0, y) \in V_{\alpha} \}$$

is a τ_N -neighborhood of x_0 , and since $|f(x) - f(y)| < \alpha(1)^{-1} < \epsilon$ for every $(x,y) \in V_\alpha$, we have in particular that $|f(x_0) - f(y)| < \epsilon$ for all $y \in V_\alpha(x_0)$. This shows that f is continuous at x_0 under τ_N . Assume conversely that $f \in C(X, \tau_N)$ and fix $x_0 \in X$ and $\epsilon > 0$. Then there is $\alpha \in \mathbb{N}^{\mathbb{N}}$ with $|f(x_0) - f(y)| < \epsilon$ for every $y \in V_\alpha(x_0)$. But, since P_α is equicontinuous at x_0 , there exists a neighborhood V of x_0 of the original topology of X such that $\sup_{h \in P_\alpha} |h(y) - h(x_0)| < \alpha(1)^{-1}$ for every $y \in V$. Hence if $x \in V$ then $\sup_{h \in P_\alpha} |h(x) - h(x_0)| < \alpha(1)^{-1}$, which according to the definition of V_α means that $x \in V_\alpha(x_0)$. This shows that $V \subseteq V_\alpha(x_0)$ and thus $|f(x_0) - f(y)| < \epsilon$ for all $y \in V$. So f is continuous at x_0 under the original topology of X and $f \in C(X)$.

Let us finally check that the uniformity \mathcal{N} generated by the base $\{V_\alpha:\alpha\in\mathbb{N}^\mathbb{N}\}$ is larger than the Nachbin uniformity. We have to prove that every real-valued continuous function on X is \mathcal{N} -uniformly continuous. Now, given $f\in C(X)$ and $\epsilon>0$, taking advantage of the fact that $\{P_\alpha:\alpha\in\mathbb{N}^\mathbb{N}\}$ is a resolution of C(X), we can choose $\gamma\in\mathbb{N}^\mathbb{N}$ such that $\gamma(1)^{-1}<\epsilon$ and $f\in P_\gamma$. Consequently, for each $(x,y)\in V_\gamma$ it happens that $|f(x)-f(y)|<\gamma(1)^{-1}<\epsilon$, which shows that f is \mathcal{N} -uniformly continuous, as stated. \square

Corollary 4.6. Let X be a $k_{\mathbb{R}}$ -space. If $C_k(X)$ is K-analytic then there exists an admissible uniformity for X, larger than or equal to the Nachbin uniformity, with a \mathfrak{G} -base.

Theorem 4.7 (Ferrando-Gabriyelyan-Kąkol, [27, Theorem 1.8]). $C_k(X)$ has a resolution consisting of weakly compact sets that swallows the weakly compact sets if and only if X is countable and discrete.

Proof. First we claim that if $C_k(X)$ has a resolution $\{A_\alpha:\alpha\in\mathbb{N}^\mathbb{N}\}$ consisting of weakly compact sets that swallows the weakly compact sets in $C_k(X)$, each compact set in X is finite. As $C_p(X)$ admits a resolution of compact sets, it is K-analytic by Theorem 3.10, so $C_p(C_p(X))$ is angelic by Lemma 3.1. Hence, each compact set of $X \hookrightarrow C_p(C_p(X))$ is Fréchet-Urysohn. If there exists an infinite compact set K in K, then K contains an infinite convergent sequence that, together with its limit, is homeomorphic to a metrizable compact subset K of K of K of K and K is a continuous linear extender map K of K is a continuous linear extender, i. e., K is the restriction map K of K is a continuous linear extender, i. e., K of K is every K of K of K is ensures that the linear map K is a continuous linear extender, i. e., K of K of K is a Banach space and K is equipped with its weak topology, has closed graph. Since K is a Banach space and K is a resolution of compact sets, the closed graph theorem [31, Theorem 1] ensures that K is K of K of K is continuous, so weakly continuous.

A routine procedure shows that the family $\{\psi^{-1}(A_\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a resolution for the Banach space C(Q) consisting of weakly compact sets. If P is a compact set under the weak topology of $C_k(Q)$, then $\psi(P)$ is a compact set in $C_k(X)$ (weak). Hence, there is a $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $\psi(P) \subseteq A_\gamma$, so that $P \subseteq \psi^{-1}(A_\gamma)$. This means that $\{\psi^{-1}(A_\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$ swallows the compact sets of C(Q) (weak). But it is shown in [55] that for compact Q, if the Banach space C(Q) has a resolution of weakly compact sets that swallows the weakly compact sets, then Q is finite. Thus Q must be a finite set, a contradiction

Finally, since each compact set in X is finite, one has $C_k(X) = C_k(X)$ (weak) = $C_p(X)$. So X must be countable and discrete by Theorem 3.15. \square

A Fréchet space E is called a *Strongly Weakly Countably Generated* (briefly a SWCG) space if every bounded set in $(E', \mu(E', E))$ is metrizable. Equivalently, E is a SWCG space if given a base of closed absolutely convex neighborhoods of zero $\{U_n : n \in \mathbb{N}\}$ with $2U_{n+1} \subseteq U_n$ for each $n \in \mathbb{N}$ there exists an absolutely convex weakly compact set $K \subseteq E$ such that for every weakly compact (absolutely convex) set $L \subseteq E$ and every $n \in \mathbb{N}$ there is $\alpha(n) \in \mathbb{N}$ with $L \subseteq \alpha(n) K + U_n$ [30, Theorem 9]. A Fréchet space E is called *Strongly Weakly K-Analytic* (briefly SWKA) space if $(E, \sigma(E, E'))$ admits a compact resolution that swallows the $\sigma(E, E')$ -compact sets.

If *E* is a Fréchet space with a base of closed absolutely convex neighborhoods of zero $\{U_n : n \in \mathbb{N}\}$ such that $2U_{n+1} \subseteq U_n$ for each $n \in \mathbb{N}$, a resolution $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ for *E* is called *weakly compactly generated* if there exists an absolutely convex weakly compact set *K* such that

$$A_{\alpha} = \bigcap_{n=1}^{\infty} (\alpha(n) K + U_n)$$

for every $\alpha \in \mathbb{N}^{\mathbb{N}}$. Clearly $A_{\alpha} \subseteq A_{\beta}$ whenever $\alpha \leq \beta$, and the condition imposed to the base implies that each A_{α} is closed. Hence $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a weakly compact resolution for E, as follows from [30, Claim 6].

Theorem 4.8. A Fréchet space E is SWCG if and only if E has a weakly compactly generated resolution that swallows the weakly compact sets.

Proof. Assume that E is a SWCG space, and let $\{U_n : n \in \mathbb{N}\}$ be a base of closed absolutely convex neighborhoods of the origin such that $2U_{n+1} \subseteq U_n$ for every $n \in \mathbb{N}$. For every $\alpha \in \mathbb{N}^{\mathbb{N}}$ set $A_\alpha := \bigcap_{n=1}^\infty (\alpha(n)K + U_n)$, where K is the absolute convex weakly compact set mentioned after the definition of SWCG space. Clearly $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a weakly compactly generated resolution for E. If E is a weakly compact set in E, for each E is a weakly compact set in E such that E is a weakly compact set in E is a weakly compact set in E.

Assume conversely that E contains a weakly compactly generated resolution $\{A_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ that swallows the weakly compact sets. Then there exists a weakly compact absolutely convex set Q such that $A_{\alpha} = \bigcap_{n=1}^{\infty} (\alpha(n)Q + U_n)$ for every $\alpha \in \mathbb{N}^{\mathbb{N}}$. If L is any weakly compact set in E there is $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $L \subseteq A_{\gamma}$, hence for each $n \in \mathbb{N}$ one gets $L \subseteq \gamma(n)Q + U_n$. So E is a SWCG space. \square

Theorem 4.9 (Ferrando-Kąkol, [30, Theorem 22]). *If* $C_k(X)$ *is a Fréchet space, the following statements are equivalent*

- 1. $C_k(X)$ is a SWCG space.
- 2. $C_k(X)$ is a SWKA space.
- 3. *X* is countable and discrete.

Proof. Clearly $1 \Rightarrow 2$. Equivalence $2 \Leftrightarrow 3$ is consequence of Theorem 4.7. If X is countable and discrete then $C_k(X) = \mathbb{R}^X$ is reflexive, so $3 \Rightarrow 1$. \square

5. Closure-preserving coverings for $C_v(X)$

A closure-preserving covering of $C_p(X)$ is a generalization of a locally finite covering. A covering \mathcal{F} of a space X is called *closure-preserving* if

$$\overline{\left\{ \int \{F: F \in \mathcal{G}\} = \bigcup \{\overline{F}: F \in \mathcal{G}\} \right\}}$$

for any $G \subseteq \mathcal{F}$.

Theorem 5.1 (Guerrero, [40, Corollary 2.7]). $C_p(X)$ admits a closure-preserving covering by closed σ -countably compact sets if and only if X is finite.

Proof. First let us suppose that \mathcal{F} is a closure-preserving covering of $C_p(X)$ by closed σ -compact subspaces. Note that X must be pseudocompact. Otherwise $C_p(X)$ has a closed homeomorphic copy of $\mathbb{R}^{\mathbb{N}}$ and hence $C_p(\mathbb{N})$ has a closure-preserving covering \mathcal{G} by closed σ -compact subspaces. As the space $C_p(\mathbb{N})$ is separable, there exists a countable subfamily $\mathcal{G}_0 \subseteq \mathcal{G}$ such that $\bigcup \mathcal{G}_0 = \overline{\bigcup \mathcal{G}_0} = C_p(\mathbb{N})$, which means that $C_p(\mathbb{N})$ is covered by a countable family of compact sets. Thus \mathbb{N} should be finite by Velichko's theorem, a contradiction.

If $f \in C(X)$ we claim that f(X) is finite. Indeed, if Y := f(X) since Y is a separable metric space the space $C_p(Y)$ is separable. On the other hand, as X is pseudocompact and Y is second countable f is an \mathbb{R} -quotient map [72, S.154, Fact 3], so the pullback $f^* : C_p(Y) \to C_p(X)$ defined by $f^*(g) = g \circ f$ embeds $C_p(Y)$ in $C_p(X)$ as a closed subspace [1, 0.4.10 Proposition]. Therefore, $C_p(Y)$ is covered by a closure-preserving family M of closed σ -compact subspaces and there exists a countable subfamily N of M such that $\bigcup N = \overline{\bigcup N} = C_p(Y)$. Again Velichko's theorem implies that Y must be finite.

Since f(X) is finite for every $f \in C(X)$, the space X must be finite. If not there is a countable discrete subspace $D = \{x_n : n \in \mathbb{N}\}$ in X and a countable family of open sets $\{U_n : n \in \mathbb{N}\}$ such that $U_n \cap D = \{x_n\}$ and $\overline{U_i} \cap \overline{U_j} = \emptyset$ if $i \neq j$. So, for each $n \in \mathbb{N}$ there is $f_n \in C(X)$ with $0 \leq f_n \leq 1$ such that $f_n(x_n) = 1$ and $f_n(x) = 0$ if $x \in X \setminus U_n$. Then clearly $f = \sum_{n=1}^{\infty} f_n \in C(X)$ but $f(X) \supseteq D$, which is infinite, a contradiction.

If the closure-preserving covering consists of closed σ -countably compact sets instead of closed σ -compact sets, we get the same conclusion by using the Tkachuk-Shakhmatov theorem instead of Velichko's theorem.

Conversely, \mathbb{R}^n can always be covered by a countable family of compact balls. \square

Theorem 5.2 (Guerrero, [40, Corollary 2.8]). *If* $C_p(X)$ *admits a closure-preserving covering by countably compact sets then* X *is finite.*

Proof. Let \mathcal{F} be a closure-preserving cover of $C_p(X)$ by countably compact sets. If X is not pseudocompact, there is a sequence $\{F_n : n \in \mathbb{N}\}$ in \mathcal{F} with $\bigcup_{n=1}^{\infty} \overline{F_n} \cap \mathbb{R}^{\mathbb{N}} = \mathbb{R}^{\mathbb{N}}$. So, $\mathbb{R}^{\mathbb{N}}$ is covered by a countable family of pseudocompact sets. In this case Theorem 2.6 forces \mathbb{N} to be pseudocompact, a contradiction. So, X is pseudocompact.

Then [1, 3.4.23 Theorem] shows that each member of \mathcal{F} is a compact set. Hence, \mathcal{F} is a closure-preserving cover of $C_v(X)$ by compact sets, and the conclusion follows from the preceding theorem. \square

Lemma 5.3 (Guerrero, [40, Lemma 2.10]). *Let* X *be an infinite compact space. If* $C_p(X)$ *admits a closure-preserving covering by subspaces of density less than or equal to an infinite cardinal* κ *then* $w(X) \leq \kappa$.

Proof. We shall restrict ourselves to the case $\kappa = \aleph_0$, what will be used later. So, assume $C_p(X)$ admits a closure-preserving covering \mathcal{F} by closed separable subspaces. Proceed by contradiction by supposing $w(X) > \aleph_0$. It suffices to consider the case $w(X) = \aleph_1$.

Since $d(C_p(X)) = iw(X) = w(X) = \aleph_1$ [58], there is $\mathcal{F}_0 \subseteq \mathcal{F}$ such that $|\mathcal{F}_0| \leq \aleph_1$ and $C_p(X) = \bigcup \mathcal{F}_0$. This covering can be rewritten as $\{F_\alpha : 0 \leq \alpha < \omega_1\}$, and if we define $G_\alpha = \bigcup \{F_\beta : 0 \leq \beta < \alpha\}$ for every $0 \leq \alpha < \omega_1$, clearly $\mathcal{G} = \{G_\alpha : 0 \leq \alpha < \omega_1\}$ is an increasing closure-preserving covering of $C_p(X)$ by separable subspaces which swallows the separable sets in $C_p(X)$.

As X is embeddable in $[0,1]^{\omega_1}$, let us consider the natural projections $\pi_{\alpha}: X \to [0,1]^{\alpha}$ for $0 \le \alpha < \omega_1$. For each $\alpha < \omega_1$ define $Z_{\alpha} = \pi_{\alpha}(X)$ and set $M_{\alpha} := \pi_{\alpha}^*(C(Z_{\alpha}))$, where $\pi_{\alpha}^*: C_p(Z_{\alpha}) \to C_p(X)$ is the pullback of π_{α} , defined as usual by $\pi_{\alpha}^*(h) = h \circ \pi_{\alpha}$. It can be easily seen that the family $\mathcal{M} = \{M_{\alpha}: 0 \le \alpha < \omega_1\}$ is another increasing covering of $C_p(X)$ such that $d(M_{\alpha}) = w(Z_{\alpha}) \le \aleph_0$. So, for each $\alpha < \omega_1$ there exists $\alpha \le \beta < \omega_1$ with $M_{\alpha} \subseteq G_{\beta}$. Conversely, for each $\beta < \omega_1$ there exists $\beta \le \gamma < \omega_1$ with $\overline{G_{\beta}} \subseteq M_{\gamma}$.

Note that X cannot be embedded in $[0,1]^{\alpha}$ for any $\alpha < \omega_1$, otherwise if $X \hookrightarrow [0,1]^{\gamma}$ then $w(X) = |\gamma| = \aleph_0$, a contradiction. This entails that for each $\alpha < \omega_1$ there exists $\beta < \omega_1$ with $\beta \geq \alpha$ such that both $G_\alpha \subseteq M_\beta$ and the natural projection $\pi_{\alpha,\beta}: Z_\beta \to Z_\alpha$ is not injective. So we may get an increasing sequence of countable ordinals $\{\alpha_n: n \in \mathbb{N}\}$ such that $\overline{G_{\alpha_{2n-1}}} \subseteq M_{2n} \subseteq G_{2n+1}$ and the projection $\pi_{\alpha_{2n-1},\alpha_{2n}}: Z_{\alpha_{2n}} \to Z_{\alpha_{2n-1}}$ is not injective. Let $\gamma := \sup\{\alpha_n: n \in \mathbb{N}\}$ and for each n choose two different points $x_n, y_n \in Z_{\alpha_{2n}} \subseteq Z_\gamma$ with $\pi_{\alpha_{2n-1},\gamma}(x_n) = \pi_{\alpha_{2n-1},\alpha_{2n}}(x_n) = \pi_{\alpha_{2n-1},\alpha_{2n}}(y_n) = \pi_{\alpha_{2n-1},\gamma}(y_n)$.

According to [40, Lemma 2.9] there is $g \in C(Z_{\gamma})$ whose restriction to $\{x_n, y_n : n \in \mathbb{N}\}$ is injective, so that $g(x_n) \neq g(y_n)$ for every $n \in \mathbb{N}$. This means that supp $g \not\subseteq Z_{\alpha_{2n}}$ for all $n \in \mathbb{N}$, in other words, g does not belong to $C(Z_{\alpha_{2n}})$ for any $n \in \mathbb{N}$. Hence, the function $f = \pi_{\gamma}^*(g) \in \pi_{\alpha}^*(C(Z_{\gamma})) = M_{\gamma}$ does not belong to $M_{\alpha_{2n}}$ for any $n \in \mathbb{N}$. Thus $f \notin \bigcup_{n=1}^{\infty} M_{2n} = G_{\gamma}$, the latter equality because both G and G are increasing, $G_{\alpha_{2n-1}} \subseteq M_{\alpha_{2n}} \subseteq G_{\alpha_{2n+1}}$ and G and G are increasing,

On the other hand, let a finite subset *A* of *X* and $\epsilon > 0$ be given. Let

$$U_f = \left\{ h \in M_{\gamma} : \left| h(x) - f(x) \right| < \epsilon, x \in A \right\}$$

be a neighborhood of f in the relative topology of M_{γ} . If $\pi_{\gamma}(x) = \pi_{\gamma}(y)$ for $x, y \in A$ then f(x) = f(y), so we may assume $\pi_{\gamma}(x) \neq \pi_{\gamma}(y)$ for each pair $x, y \in A$. In this case there is $l \in \mathbb{N}$ such that $\pi_{\alpha_{2l},\gamma}$ is one-to-one on $\pi_{\gamma}(A)$. Hence $\pi_{\alpha_{2l}} = \pi_{\alpha_{2l},\gamma} \circ \pi_{\gamma}$ is one-to-one on A. So, we can choose $\varphi \in C(Z_{\alpha_{2l}})$ such that $\varphi(\pi_{\alpha_{2l}}(x)) = f(x)$ for each $x \in A$.

Since $h := \varphi \circ \pi_{\alpha_{2l}} = \pi_{\alpha_{2l}}^*(\varphi) \in M_{2l} \subseteq M_{\gamma}$, clearly $h \in U_f$. So, $f \in \overline{M_{2l}}$ and consequently $f \in \overline{M_{2l}} \subseteq \overline{G_{\alpha_{2n+1}}} \subseteq G_{\alpha_{2n+3}} \subseteq G_{\gamma}$, a contradiction. \square

Theorem 5.4 (Guerrero, [40, Corollary 2.13]). Let X be an infinite compact space. $C_p(X)$ admits a closure-preserving covering by separable subspaces if and only if X is metrizable.

Proof. If X is a compact metrizable space, then $C_p(X)$ is separable. Let D be a countable dense subspace of $C_p(X)$. For every $f \in C(X)$ put $D_f := D \cup \{f\}$. Then clearly $\mathcal{F} = \{D_f : f \in C(X)\}$ is a closure-preserving covering of $C_p(X)$ by separable subspaces. Conversely, if the space $C_p(X)$ admits a closure-preserving covering by separable subspaces, Lemma 5.3 with $\kappa = \aleph_0$ yields $w(X) \le \aleph_0$. Since X is compact, this implies that X must be metrizable. □

Theorem 5.5 (Guerrero, [40, Corollary 2.14]). Let X be an infinite compact space. $C_p(X)$ admits a closure-preserving covering by second countable subspaces if and only if X is countable.

Proof. If $C_p(X)$ admits a closure-preserving covering by second countable subspaces, then $C_p(X)$ admits a closure-preserving cover by separable subspaces. Hence X is metrizable by the previous theorem and,

consequently, $C_p(X)$ is separable. This clearly implies that $C_p(X)$ has indeed a countable covering by second countable subspaces, so we may apply [70, Corolary 1.7] to guarantee that X is countable. \square

For the following lemma, given a function $f \in C^b(X)$ and a number $\epsilon > 0$ let

$$I(f,\epsilon) = \left\{ g \in C^b(X) : \left\| f - g \right\|_{\infty} \le \epsilon \right\}.$$

Lemma 5.6 (Guerrero-Tkachuk [43, Proposition 2.1 (a)]). *If* \mathcal{F} *is a closure-preserving covering of* $C_p(X)$ *by closed subspaces, there exist* $F \in \mathcal{F}$ *and* $f \in C^b(X)$ *such that* $I(f, \epsilon) \subseteq F$ *for some* $\epsilon > 0$.

Proof. We claim that the family $\{F \cap C^b(X) : F \in \mathcal{F}\}$ is also a closure-preserving covering by closed subspaces of the Banach space $C^b(X)$ equipped with the supremum-norm $\|\cdot\|_{\infty}$. Indeed, since the Banach topology τ_u is stronger than the pointwise topology, denoting $C^b(X)$ by G, if $\mathcal{F}' \subseteq \mathcal{F}$ one has

$$\bigcup_{F\in\mathcal{F}'}F\cap G=G\cap\overline{\bigcup_{F\in\mathcal{F}'}F^{\tau_p}}\supseteq G\cap\overline{\bigcup_{F\in\mathcal{F}'}F\cap G^{\tau_p}}\supseteq\overline{\bigcup_{F\in\mathcal{F}'}F\cap G}^{\tau_u}\supseteq\bigcup_{F\in\mathcal{F}'}F\cap G.$$

By [68, Theorem 2.5] there exist $F \in \mathcal{F}$ and $f \in C^b(X)$ for which there is an open ball

$$B(f,\delta) = \left\{ g \in C^b(X) : \left\| f - g \right\|_{\infty} < \delta \right\}$$

centered at f in the Čech-complete space $(C^b(X), \|\cdot\|_{\infty})$, such that $B(f, \delta) \subseteq F \cap G$. Hence, if $\epsilon = \delta/2$ we get $I(f, \epsilon) \subseteq F$. \square

Theorem 5.7 (Guerrero-Tkachuk [43, Corollary 2.5]). *If* \mathcal{P} *is a hereditary topological property and* $C_p(X)$ *has a closure-preserving cover* \mathcal{F} *by closed subspaces such that each* $F \in \mathcal{F}$ *has property* \mathcal{P} *, both* $C_p(X, [0, 1])$ *and* $C_p(X)$ *have property* \mathcal{P} .

Proof. Under these hypotheses we claim that some $F \in \mathcal{F}$ contains a homeomorphic copy of $C_p(X)$. By Lemma 5.6 there exist $F \in \mathcal{F}$ and $f \in C^b(X)$ such that $I(f, \epsilon) \subseteq F$ for some $\epsilon > 0$. Then the map $\varphi : C_p(X, [0,1]) \to C_p^b(X)$ defined by

$$\varphi(g) = 2\epsilon \left(g - \frac{1}{2}\right) + f$$

is a homeomorphism such that $\varphi(C(X,[0,1])) = I(f,\epsilon)$. Since F has the hereditary property \mathcal{P} , the set $I(f,\epsilon)$ also has property \mathcal{P} and consequently $C_p(X,[0,1])$ has property \mathcal{P} . But $C_p(X,[0,1])$ contains $C_p(X,(0,1))$, which is homeomorphic to $C_p(X)$. So $C_p(X)$ also has property \mathcal{P} . \square

Theorem 5.8 (Guerrero-Tkachuk [43, Theorem 2.7]). Let \mathcal{P} be a closed hereditary topological property. If $C_p(X)$ has a closure-preserving cover \mathcal{F} by closed subspaces such that each $F \in \mathcal{F}$ has property \mathcal{P} , then $C_p(X, [0, 1])$ has property \mathcal{P} .

Proof. Again Lemma 5.6 provides $F \in \mathcal{F}$ and $f \in C^b(X)$ such that $I(f, \epsilon) \subseteq F$ for some $\epsilon > 0$. By the proof of Theorem 5.7 the subspace $I(f, \epsilon)$ of $C_p^b(X)$ is homeomorphic to $C_p(X, [0, 1])$ and closed in F, so $C_p(X, [0, 1])$ has property \mathcal{P} . \square

Remark 5.9. Applications of the preceding results. Theorem 5.7 applies for instance to the Fréchet-Urysohn property and metrizability. Theorem 5.8 applies to K-analyticity, Lindelöf Σ -property and normality. Concerning realcompactness, if $C_p(X)$ has a closure-preserving cover \mathcal{F} by closed subspaces such that each $F \in \mathcal{F}$ is realcompact, Theorem 5.8 ensures that the space $C_p(X, [0, 1])$ is realcompact. Since C(X, (0, 1)) can be obtained from $C_p(X, [0, 1])$ by throwing out a union of G_δ -subsets of $C_p(X, [0, 1])$, it turns out that C(X, (0, 1)) is realcompact (see [72, Problem 408]). Hence $C_p(X)$ is realcompact.

Corollary 5.10 (Guerrero-Tkachuk [43, Proposition 2.20]). *If* X *is a Lindelöf* Σ -space and $C_p(X)$ *has a closure-preserving cover by closed Lindelöf* Σ -subspaces then $C_p(X)$ *is a Lindelöf* Σ -space.

Proof. According to Theorem 5.8, $C_p(X, [0,1])$ must be a Lindelöf Σ-space. So [1, IV.9.17 Theorem] ensures that $C_p(X)$ is a Lindelöf Σ-space. \square

6. Domination by a second countable space

Given a Tychonoff space M, a family of sets \mathcal{A} of another Tychonoff space X is said to be M-ordered (or ordered by M) if $\mathcal{A} = \{A_K : K \in \mathcal{K}(M)\}$, where $\mathcal{K}(M)$ denotes the family of all compact sets in M, and $P \subseteq Q$ in M implies $A_P \subseteq A_Q$. The space X is said to be M-dominated (or dominated by the space M) if X has an M-ordered covering \mathcal{A} consisting of compact sets (an M-ordered covering).

Theorem 6.1 (Cascales-Orihuela-Tkachuk, [14, 2.1(a) Theorem]). Every Lindelöf Σ -space is dominated by a second countable space.

Proof. An equivalent definition of Lindelöf Σ -space says that X is a Lindelöf Σ -space if and only if there exists a second countable space M and a compact-valued usc map $T:M\to \mathcal{K}(X)$ such that $\bigcup \{T(x):x\in M\}=X$. If K is a compact set in M, define $A_K=\bigcup \{T(x):x\in K\}$. Clearly $\mathcal{A}=\{A_K:K\in \mathcal{K}(M)\}$ is an M-ordered cover consisting of compact sets. \square

The class of spaces dominated by second countable spaces has good stability properties [14, 2.1 Theorem].

Theorem 6.2 (Cascales-Orihuela-Tkachuk, [14, 2.2 Proposition]). *The following relations are equivalent for a Tychonoff space X.*

- 1. *X* has a resolution consisting of compact sets.
- 2. X is $\mathbb{N}^{\mathbb{N}}$ -dominated.
- 3. *X* is dominated by a Polish space.

Proof. $1 \Rightarrow 2$. Let $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a resolution for X of compact sets. If $P \in \mathcal{K}(\mathbb{N}^{\mathbb{N}})$, define $\alpha_P \in \mathbb{N}^{\mathbb{N}}$ by $\alpha_P(i) = \max \pi_i(P)$, where $\pi_i : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is the canonical i^{th} -projection. Clearly $\alpha_P \leq \alpha_Q$ if $P \subseteq Q$ and if we set $A_P := A_{\alpha_P}$ for every $P \in \mathcal{K}(\mathbb{N}^{\mathbb{N}})$, then $\mathcal{A} = \{A_P : P \in \mathcal{K}(\mathbb{N}^{\mathbb{N}})\}$ is an $\mathbb{N}^{\mathbb{N}}$ -ordered family of compact sets which covers X. The latter because if $x \in X$ there is $y \in \mathbb{N}^{\mathbb{N}}$ with $x \in A_{\gamma}$, and the set $Q_y := \{\alpha \in \mathbb{N}^{\mathbb{N}} : \alpha(i) \leq y(i) \ \forall i \in \mathbb{N}\}$ is compact in $\mathbb{N}^{\mathbb{N}}$ and verifies that $\alpha_{Q_y} = y$. So $x \in A_{Q_y}$. $2 \Rightarrow 1$. Let $\{A_P : P \in \mathcal{K}(\mathbb{N}^{\mathbb{N}})\}$ be an $\mathbb{N}^{\mathbb{N}}$ -ordered compact cover of X. If $y \in \mathbb{N}^{\mathbb{N}}$ let $Q_y \in \mathcal{K}(\mathbb{N}^{\mathbb{N}})$ be the

 $2 \Rightarrow 1$. Let $\{A_P : P \in \mathcal{K}(\mathbb{N}^{\mathbb{N}})\}$ be an $\mathbb{N}^{\mathbb{N}}$ -ordered compact cover of X. If $\gamma \in \mathbb{N}^{\mathbb{N}}$ let $Q_{\gamma} \in \mathcal{K}(\mathbb{N}^{\mathbb{N}})$ be the previously defined set that verifies the equality $\alpha_{Q_{\gamma}} = \gamma$. Then the family $\mathcal{A} = \{A_{\gamma} : \gamma \in \mathbb{N}^{\mathbb{N}}\}$ with $A_{\gamma} := A_{Q_{\gamma}}$ verifies that $A_{\gamma} \subseteq A_{\delta}$ if $\gamma \leq \delta$. Moreover, \mathcal{A} covers X. For if $x \in X$ there is $P \in \mathcal{K}(\mathbb{N}^{\mathbb{N}})$ with $x \in A_P$. So, if $\sigma(i) = \max \pi_i(P)$ for every $i \in \mathbb{N}$ then $A_P \subseteq A_{\sigma}$ and hence $x \in A_{\sigma}$. Therefore \mathcal{A} is a resolution for X by compact sets.

 $2\Rightarrow 3$ is clear. Finally, if X is dominated by a Polish space M, there is an M-ordered compact cover $\mathcal{H}=\{A_K:K\in\mathcal{K}(M)\}$. Since M is a Polish space, there is an open continuous map $\varphi:\mathbb{N}^\mathbb{N}\to M$ from $\mathbb{N}^\mathbb{N}$ onto M. Consider the family $\mathcal{F}=\{A_{\varphi(Q_\alpha)}:\alpha\in\mathbb{N}^\mathbb{N}\}$. If $x\in X$ there is a compact set K in M such that $x\in A_K$ and there exists $P\in\mathcal{K}(\mathbb{N}^\mathbb{N})$ such that $\varphi(P)=K$ [18, 5.5.8]. If $\sigma(i)=\max\pi_i(P)$ for every $i\in\mathbb{N}$ then $P\subseteq Q_\sigma$ and hence $K=\varphi(P)\subseteq\varphi(Q_\sigma)$ so that $x\in A_{\varphi(Q_\sigma)}$. Hence \mathcal{F} covers X and clearly \mathcal{F} is a $\mathbb{N}^\mathbb{N}$ -ordered compact covering for X. So X is $\mathbb{N}^\mathbb{N}$ -dominated. This shows that X is X is

Theorem 6.3 (Cascales-Orihuela-Tkachuk, [14, 2.4 Corollary]). $C_p(X)$ is dominated by a Polish space if and only if it is K-analytic.

Proof. If $C_p(X)$ is dominated by a Polish space, by the previous theorem $C_p(X)$ has a resolution consisting of compact sets. So $C_p(X)$ is K-analytic by Theorem 3.10. Conversely, if $C_p(X)$ is K-analytic, it has a resolution of compact sets [67]. Thus, according to Theorem 6.2, $C_p(X)$ is dominated by a Polish space. \square

Lemma 6.4. If X is dominated by a second countable space, X has a countable network modulo a covering by countably compact sets and $C_v(X)$ is Lindelöf Σ -framed in \mathbb{R}^X .

Proof. If X is dominated by a second countable space M, the first statement of the consequent follows from [14, 2.6 Proposition], where one should notice that the fact that M is second countable is critical. The second follows from [71, 2.7 Proposition]. \square

Theorem 6.5 (Cascales-Orihuela-Tkachuk, [14, 2.15 Theorem]). $C_p(X)$ *is dominated by a second countable space if and only if it is a Lindelöf* Σ *-space.*

Proof. Sufficiency is Theorem 6.1. For the necessity assume that $\{F_K : K \in \mathcal{K}(M)\}$ is an M-ordered compact covering of $C_p(X)$. Apply Lemma 6.4 to show that $C_p(C_p(X))$ is Lindelöf Σ-framed in \mathbb{R}^X and then Lemma 3.1 to get that $vC_p(X)$ is a Lindelöf Σ-space. Then apply [1, IV.9.5 Theorem] to conclude that vX is also a Lindelöf Σ-space, which guarantees that the space $C_p(vX)$ is angelic [25, Theorem 78].

If $T: C_p(vX) \to C_p(X)$ denotes the restriction map $Tf = f|_{X'}$ it can be easily seen that $\{G_K : K \in \mathcal{K}(M)\}$, where $G_K = T^{-1}(F_K)$ is an M-ordered compact covering of $C_p(vX)$. Since $C_p(vX)$ is dominated by a second countable space, Lemma 6.4 asserts that $C_p(vX)$ has a countable network modulo a covering by compact subsets. But $C_p(vX)$ angelicity ensures that $C_p(vX)$ has a countable network modulo a covering by compact sets. So, according to [1, IV.9.1 Proposition], $C_p(vX)$ is a Lindelöf Σ -space. Consequently $C_p(X)$, as a continuous image of a Lindelöf Σ -space, is also a Lindelöf Σ -space. \square

Domination of each subspace of $C_p(X)$ by a second countable space also leads to some interesting properties. We state the following theorem without proof (see [14] for details).

Theorem 6.6 (Cascales-Orihuela-Tkachuk, [14, 2.18 Proposition]). *If every subspace of* $C_p(X)$ *is dominated by a second countable space, then* $C_p(X)$ *is cosmic.*

A Tychonoff space X is *strongly dominated* by M if there exists an M-ordered compact covering \mathcal{F} of X that swallows the compact sets in X. Strong domination by second countable spaces has been extensively studied in [14, 41, 45, 74]. Under CH it is shown in [14, 3.10 Theorem] that, for compact X, if $C_p(X)$ is strongly dominated by a second countable space, X must be countable. The CH is removed in [41], where it is proved that, assuming $C_p(X)$ is a strongly dominated by a second countable space, if X is separable, scattered, second countable, compact or pseudocompact, then X is countable. Theorem 6.8 below extends this result to all Tychonoff spaces.

Lemma 6.7 (Guerrero-Tkachuk, [45, Lemma 3.4.5]). Let X be an uncountable Lindelöf Σ -space. Assume $C_p(X)$ is strongly dominated by a second countable space M, and let $\{F_K : K \in \mathcal{K}(M)\}$ be an M-ordered compact covering of $C_p(X)$ that swallows the compact sets in $C_p(X)$. Then there exists a family $Q = \{Q_K : K \in \mathcal{K}(M)\}$ of compact sets of \mathbb{R}^X such that $Q_K \subseteq Q_L$ if $K \subseteq L$ and $\bigcup Q$ contains the linear subspace $\Sigma(X)$ of all countable supported functions of \mathbb{R}^X .

Proof. If $K \in \mathcal{K}(M)$, let $a_K(x) = \inf\{g(x) : g \in F_K\}$ and $b_K(x) = \sup\{g(x) : g \in F_K\}$. Letting

$$Q_K = \prod_{x \in X} \left[a_K(x) , b_K(x) \right],$$

the family $Q = \{Q_K : K \in \mathcal{K}(M)\}$ consists of compact sets in \mathbb{R}^X and clearly verifies that $Q_K \subseteq Q_L$ if $Q \subseteq L$. We claim that $\Sigma(X) \subseteq \bigcup Q$.

Choose $f \in \Sigma(X)$ and denote by $A = \{x_i : i \in \mathbb{N}\}$ the countable support of f. By Theorem 6.5 we know that $C_p(X)$ is a Lindelöf Σ -space, hence [64, Theorem 5.4] provides a retraction $r: X \to F$ such that $A \subseteq F$ and $|F| \le \aleph_0$. If $F = \{y_n : n \in \mathbb{N}\}$, put $U_1 = F$ and $U_{n+1} = F \setminus \{y_1, \ldots, y_n\}$ for each $n \in \mathbb{N}$. Clearly, the family $\{U_n : n \in \mathbb{N}\}$ consists of F-open sets and is point-finite in F, i. e., each $x \in F$ belongs at most to finitely-many sets U_n . Moreover $y_n \in U_n$ for every $n \in \mathbb{N}$. Since F is a retract of X, it follows that the family $\{V_n : n \in \mathbb{N}\}$, where $V_n := r^{-1}(U_n)$ for each $n \in \mathbb{N}$, consists of open sets in X, is point-finite in X and verifies that $y_n \in V_n$

for every $n \in \mathbb{N}$. If $x_i = y_{n_i}$ and we set $W_i = V_{n_i}$ for each $i \in \mathbb{N}$, the family $\{W_i : i \in \mathbb{N}\}$ consists of open sets in X, is point-finite in X and verifies that $x_i \in W_i$ for every $i \in \mathbb{N}$.

For each $i \in \mathbb{N}$ choose $f_i \in C(X)$ with $0 \le f_i \le 1$ such that $f_i(x_i) = 1$ and $f_i(X \setminus W_i) = \{0\}$ and define $g_i = |f(x_i)| \cdot f_i$ and $h_i = -|f(x_i)| \cdot f_i$. As the family $\{W_i : i \in \mathbb{N}\}$ is point-finite, the set $P = \{g_i, h_i : i \in \mathbb{N}\} \cup \{\}$, where here stands for the identically null function on X, is compact in $C_p(X)$. Consequently, there exists some $K \in \mathcal{K}(M)$ such that $P \subseteq F_K$, which means that $g(x) \in [a_K(x), b_K(x)]$ for each $g \in P$. Since $f(x_i)$ coincides with $g_i(x_i)$ or with $h_i(x_i)$, clearly $f(x_i) \in [a_K(x_i), b_K(x_i)]$ for each $i \in \mathbb{N}$, whereas if $x \notin A$ then $f(x) = 0 \in [a_K(x), b_K(x)]$ since $e \in P \subseteq F_K$. Therefore $e \in Q_K$ and the proof is over. \square

Theorem 6.8 (Guerrero-Tkachuk, [45, Theorem 3.4]). $C_p(X)$ *is strongly dominated by a second countable space if and only if X is countable.*

Proof. Suppose that $C_p(X)$ is strongly dominated by a second countable space and let $\{F_K : K \in \mathcal{K}(M)\}$ be an M-ordered compact covering of $C_p(X)$ that swallows the compact sets in $C_p(X)$. Proceeding by contradiction, assume that X is uncountable. By [41, Theorem 3.10] there is no loss of generality if we assume that X is a Lindelöf Σ -space. So, according to Lemma 6.7, there exists a family $Q = \{Q_K : K \in \mathcal{K}(M)\}$ of compact sets in \mathbb{R}^X such that $Q_K \subseteq Q_L$ if $Q \subseteq L$ and $Y = \bigcup Q$ contains the linear subspace $\Sigma(X)$ of countable supported functions of \mathbb{R}^X .

It is not hard to see that this implies that there exists a Lindelöf Σ-space Z such that $Y \subseteq Z \subseteq \mathbb{R}^X$, so that $\Sigma(X) \subseteq Z$. But $\Sigma(X)$ is not Lindelöf Σ-framed in \mathbb{R}^X if X is uncountable [45, Proposition 3.1].

In [45, Theorem 3.9] it is showed that, for compact X, if $C_p(X, [0, 1])$ is strongly dominated by a second countable space, then X is countable. In [74] the requirement of compactness of X is relaxed by the following result, which we state without proof.

Theorem 6.9 (Tkachuk, [74, 3.7 Theorem]). Let X be a Lindelöf Σ -space. If $C_p(X, [0, 1])$ is strongly dominated by a second countable space, then X is countable.

7. Some examples

Example 7.1. If Ω is a nonempty open subset of \mathbb{R}^n , both the space $\mathcal{D}(\Omega)$ of test functions equipped with its usual inductive limit topology and the space of distributions $\mathcal{D}'(\Omega)$ endowed with the Mackey* topology $\mu(\mathcal{D}'(\Omega), \mathcal{D}(\Omega))$, which coincides with the strong topology $\beta(\mathcal{D}'(\Omega), \mathcal{D}(\Omega))$ (see [46, Chapter 4]), are analytic. The first statement is consequence of the fact that the inductive limit of a sequence of Fréchet-Montel spaces is analytic, the second follows from the fact that the strong dual of an inductive limit of a sequence of Fréchet-Montel locally convex spaces is also analytic (see [76, I.4.4.(21) and I.4.4.(23)]).

Example 7.2. The space $C_p(Z)$ with Z being the set of all weak P-points of \mathbb{N}^* . If X is a Tychonoff space, a point $x \in X$ is called a weak P-point of X if $x \notin \overline{A}$ for any countable set $A \subseteq X \setminus \{x\}$. Every P-point of X is a weak P-point of X. The subspace Z of all weak P-points of the remainder $\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$ of the Stone-Čech compactification $\beta \mathbb{N}$ of \mathbb{N} is dense in \mathbb{N}^* [53], so it is infinite. But the space $C_p(Z)$ is covered by a sequence of pseudocompact sets (i. e., $C_p(Z)$ is σ -pseudocompact) [2, 6.4 Example]. By Theorem 2.6, the space Z is pseudocompact (see [2, 6.3 Proposition] for a direct proof of this property) and each countable subset of Z is closed, discrete and C^* -embedded in Z. Note that $C_p(Z)$ is not σ -compact, otherwise Z would be finite by Velichko's theorem.

Example 7.3. The Sorgenfrey line S is a (hereditarily) Lindelöf space which is not a Lindelöf Σ-space, since $S \times S$ is not Lindelöf. Hence Lemma 3.1 prevents the space $C_p(S)$ to have a resolution consisting of pointwise bounded sets.

Example 7.4. The space $C_p(\mathbb{N}^{\mathbb{N}})$ is not K-analytic-framed in $\mathbb{R}^{\mathbb{N}^{\mathbb{N}}}$. By Corollary 3.8 the space $C_p(\mathbb{N}^{\mathbb{N}})$ is not analytic and does not admit a resolution of pointwise bounded sets. Hence, $C_p(\mathbb{N}^{\mathbb{N}})$ is not K-analytic-framed in $\mathbb{R}^{\mathbb{N}^{\mathbb{N}}}$ because of Theorem 3.3.

- **Example 7.5.** The spaces $C_k(\mathbb{R})$ and $C_k(\mathbb{Q})$. Both spaces have a resolution of compact sets that swallows the compact sets by virtue of Theorem 4.2. By Theorem 4.3 they also have a fundamental resolution of bounded sets, and according to Theorem 4.4 both spaces are analytic.
- **Example 7.6.** The spaces $C_p(\mathbb{R})$ and $C_p(\mathbb{Q})$. Although both spaces have a resolution of compact sets, according to Theorem 3.15 they do not have a resolution of compact sets that swallows the compact sets. The space $C_p(\mathbb{Q})$ has a fundamental resolution of pointwise bounded sets but, as follows from Theorem 3.16, such a resolution lacks in $C_p(\mathbb{R})$.
- **Example 7.7.** Let \mathbb{N} be equipped with the discrete topology and choose $p \in \beta \mathbb{N} \setminus \mathbb{N}$. Then $X := \mathbb{N} \cup \{p\}$ with the relative topology of $\beta \mathbb{N}$ is a non discrete space with finite compact sets, hence hemicompact. So, $C_p(X)$ is analytic by Theorem 4.4, and $C_k(X)$ is a Fréchet space with a resolution of compact sets that swallows the compact sets by Theorem 4.2.
- **Example 7.8.** The space ω_1 of countable ordinals with the order topology. It is essentially well-known that if $\aleph_1 = \mathfrak{d}$ (the dominating cardinal) the space ω_1 has a resolution of compact sets that swallows the compact sets in ω_1 . However ω_1 is not even a μ -space, since ω_1 is pseudocompact but not compact.
- **Example 7.9.** The space $C_p(\omega_1)$. Clearly $C_p(\omega_1)$ is not analytic because of Theorem 3.7. Actually, $C_p(\omega_1)$ does not admit a resolution of compact sets, since every topological space with a resolution of compact sets has countable extent (closed discrete sets are countable) [49, Corollary 3.5] whereas the extent of $C_p(\omega_1)$ is uncountable. Consequently, $C_p(\omega_1)$ is not K-analytic although, as is well-known, it is a Lindelöf space. Note that ω_1 is pseudocompact, hence projectively σ -compact.
- **Example 7.10.** *If* $C_k(X)$ *admits a resolution of convex compact sets that swallows the local null sequences,* X *need not be countable or discrete.* If X is an infinite σ -compact metric space, then $C_k(X)$ has a resolution $\{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of compact sets that swallows the compact sets (hence the local null sequences) of $C_k(X)$ by virtue of Theorem 4.2. But, if one looks at the proof of this theorem, the sets A_α are absolutely convex. So, $C_k(\mathbb{R})$ has a resolution of absolutely convex compact sets that swallows the local null sequences.
- **Example 7.11.** *A K-analytic not analytic* C_p -space. Let X be the Reznichenko compact space mentioned in [2, 7.14 Example]. This is a Talagrand compact space with a point p such that $X = \beta Y$ with $Y = X \setminus \{p\}$. Hence Y is a pseudocompact not realcompact space, so that X = vY. Since $C_p(Y)$ is a continuous image of $C_p(X)$, the space $C_p(Y)$ is K-analytic. $C_p(Y)$ is not analytic by Theorem 3.7.
- **Example 7.12.** The space $C_p(L(\aleph_1))$, where $L(\aleph_1)$ is the Lindelöfication of the discrete space of cardinality \aleph_1 . Since $L(\aleph_1)$ is a P-space, $C_p(L(\aleph_1))$ is Baire. So, by Theorem 3.13, $C_p(L(\aleph_1))$ lacks a resolution of pointwise bounded sets. As $L(\aleph_1)$ is a Lindelöf P-space, it is projectively σ -compact [3, Proposition 2.2]. Hence, the converse of Corollary 3.5 fails.
- **Example 7.13.** The space $C_p(L(\aleph_1), [0,1])$. Under CH the space $C_p(L(\aleph_1), [0,1])$ has a compact resolution [71, 2.10 Example]. Since $C_p(L(\aleph_1), [0,1])$ is countably compact but not compact, $C(L(\aleph_1), [0,1])$ is not a μ -space, hence it is not K-analytic.
- **Example 7.14.** $C_p(X)$ need not be Lindelöf if $C_p(X, [0,1])$ is a Lindelöf Σ-space. If X is a discrete space of cardinality \aleph_1 then $C_p(X, [0,1]) = [0,1]^{\omega_1}$ is compact, but $C_p(X) = \mathbb{R}^{\omega_1}$ is not Lindelöf. If both vX and $C_p(X, [0,1])$ are Lindelöf Σ-spaces, then $C_p(X)$ is a Lindelöf Σ-space (see [1, IV.9.17 Proposition] or [73, Problem 217]).
- **Example 7.15.** Neither $\mathbb{R}^{\mathbb{N}}$ nor C_p ([0,1]) admits a closure-preserving covering by functionally bounded subspaces. Otherwise, since both spaces are separable and the closure of a functionally bounded set is also functionally bounded, both would admit a countable covering by (closed) functionally bounded subspaces. So, Theorem 2.6 would require \mathbb{N} to be pseudocompact, which is not, and every countable set in [0,1] should be closed, which is neither the case since [0,1] is uncountable and separable.

Example 7.16 (Okunev, [59, Example 2.7]). There exists a σ -compact space X such that $C_p(X)$ is not Lindelöf. If Y is the subspace of $[0,1]^{\omega_1}$ consisting of all function of finite support and $g \in [0,1]^{\omega_1}$ is the constant function g(t) = 1 for every $t \in \omega_1$, define $X = Y \cup \{g\}$. Then $C_p(X)$ is such space. Note that $g \in \overline{Y}$ but no countable subset of Y contains g in its closure, so that X has uncountable tightness f(X). Hence f(X) is not a Lindelöf space because of Asanov's theorem f(X) is f(X). Theorem f(X) has a bounded resolution. So, according to Theorem 3.3, f(X) is f(X) is f(X) is f(X) is not f

Example 7.17 (Guerrero-Tkachuk, [43, Example 3.8]). There exists a σ -compact space X such that $C_p(X)$ is not Lindelöf but it contains a dense σ -compact subspace M. Let Z be the subspace of $\{0,1\}^{\omega_1}$ consisting of those functions of finite support and define the function g as in the previous example. The space $X = Z \cup \{g\}$ is as promised. For each $f \in C(X)$ put $M_f := M \cup \{f\}$. Then $\mathcal{F} = \{M_f : f \in C(X)\}$ is a closure-preserving cover of $C_p(X)$ by σ -compact subspaces. This shows that the closedness condition of the sets of the closure-preserving covering in the statement of Theorem 5.1 cannot be dropped.

8. Further research

If $\Delta = \{(x, x) : x \in X\}$ is the diagonal of $X \times X$, much research has been developed on the (strong) domination of the space $(X \times X) \setminus \Delta$ by a second countable space. We provide a brief account of this investigation, but first let us point out a couple of facts.

In first place, according to [18, Excercise 4.2.B] a compact space X is metrizable if and only if Δ is a G_{δ} -set in $X \times X$. On the other hand, for compact X, if $C_p(X,[0,1])$ is a Lindelöf Σ -space, clearly $C_p(X)$ is also a Lindelöf Σ -space. Hence Baturov's theorem [1, III.6.1 Theorem] shows that for every subspace Y of $C_p(C_p(X))$ the extent ext(Y) of Y equals the Lindelöf number l(Y) of Y. As X^n is embedded in $L_p(X)$, for each $n \in \mathbb{N}$, as a closed subspace [72, Problem 337], so in $C_p(C_p(X))$, clearly $X^2 \setminus \Delta$ is embedded in $C_p(C_p(X))$. Consequently, one gets $l(X^2 \setminus \Delta) = ext(X^2 \setminus \Delta)$. On the other hand, since each space which is dominated by a second countable space has countable extent [14, 2.1 (h) Theorem], if $(X \times X) \setminus \Delta$ is dominated by a second countable space, it follows that $l(X^2 \setminus \Delta) = \aleph_0$, i. e., $(X \times X) \setminus \Delta$ is a Lindelöf space. This implies that Δ is a G_{δ} -set in $X \times X$, so Δ must be metrizable.

The first result on this subject is [13, Theorem 1], whence it follows that, for compact X, if the space $(X \times X) \setminus \Delta$ is strongly $\mathbb{N}^{\mathbb{N}}$ -dominated (equivalently, strongly dominated by a Polish space) then X is metrizable. This extends to the following.

Theorem 8.1 (Cascales-Muñoz-Orihuela [12, Corollary 22]). For a compact space X the following statements are equivalent.

- 1. X is metrizable.
- 2. $(X \times X) \setminus \Delta$ is strongly dominated by a Polish space.
- 3. $(X \times X) \setminus \Delta$ is strongly dominated by a separable metric space.

For strong domination of a Tychonoff space by a second countable space, one has

Theorem 8.2 (Guerrero-Tkachuk, [45, Corollary 3.6]). *If* $(X \times X) \setminus \Delta$ *is strongly dominated by a second countable space, then X is cosmic.*

Since each compact cosmic space is metrizable, one gets again

Corollary 8.3 (Cascales-Orihuela-Tkachuk, [14, 3.11 Theorem]). A compact space X is metrizable if and only if $(X \times X) \setminus \Delta$ is strongly dominated by a second countable space.

In [74, Example 4.6] it is shown that under MA the space $(X \times X) \setminus \Delta$ with X non-metrizable, first countable, compact space, is strongly dominated by a countable space (with a unique non-isolated point). So, under MA, for compact X strong domination of $(X \times X) \setminus \Delta$ by a countable space does not imply the metrizability of X.

In [16] it is shown that under CH a compact space X is metrizable whenever $(X \times X) \setminus \Delta$ is dominated by a Polish space. This result was extended to ZFC in [17] as follows.

Theorem 8.4 (Dow-Hart, [17, Theorem 8]). A compact space X is metrizable if and only if $(X \times X) \setminus \Delta$ is dominated by a Polish space.

Under CH one may change the Polish space domination of the previous theorem into second countable domination.

Theorem 8.5 (Guerrero-Tkachuk, [44, 3.3 Corollary]). *Under CH a compact space X is metrizable if and only if* $(X \times X) \setminus \Delta$ *is dominated by a second countable space.*

Recently, the following ZFC result has been published.

Theorem 8.6 (Feng, [19, Theorem 5.3]). *Let* X *be a compact space. If* $(X \times X) \setminus \Delta$ *is dominated by the space* \mathbb{Q} *, then* X *is metrizable.*

Since [44], when $(X \times X) \setminus \Delta$ is dominated by a space M, it is usual to say that X has an M-diagonal. With this new terminology and since the space \mathbb{P} of irrationals is homeomorphic to the Polish space $\mathbb{N}^{\mathbb{N}}$, Theorems 8.4 and 8.6 can be stated as follows.

Theorem 8.7. Let X be a compact space X. If X has either a \mathbb{P} -diagonal or a \mathbb{Q} -diagonal, then X is metrizable.

The following result is a proper extension of Theorem 8.1.

Theorem 8.8 (Guerrero, [42, Theorem 2.3]). *If* M *is a separable metric space, every compact space with an* M*-diagonal is metrizable.*

In [44, Theorem 3.4 (a)] it is shown that under CH if a Tychonoff space X has a second countable diagonal, then X is cosmic. The following result show that the preceding statement also holds in ZFC.

Theorem 8.9 (Guerrero, [42, Corollary 2.4]). *For a Tychonoff space* X, *if* $(X \times X) \setminus \Delta$ *is dominated by a second countable space, then* X *is cosmic.*

Since, as mentioned earlier, each compact cosmic space is metrizable, this solves in the positive the following question originally posed by Cascales, Orihuela and Tkachuk in [14].

Problem 8.10 (Guerrero-Tkachuk, [44, Question 4.1]). *Let* X *be a compact space. If* $(X \times X) \setminus \Delta$ *is dominated by a second countable space, is it true in ZFC that* X *metrizable?*

It is proved in [70] that if $C_p(X)$ is covered by a countable family of countably tight sets, then $C_p(X)$ has countable tightness. In [78] is shown that a compact space with a closure-preserving covering by finite sets must be Eberlein compact. Related research about domination and strong domination of a space X by a locally compact second countable space X, by an X-hyperbounded space X (i. e., an space in which the closure of each X-compact subspace is compact) or by a X-hemicompact space X (for a given infinite cardinal X) can be found in [48].

On the other hand, the bidual M(X) of $C_p(X)$ equipped with the relative topology of \mathbb{R}^X has recently deserved some attention in relation to the distinguished property of $C_p(X)$ (see [33] and references therein), after the discovering that not always M(X) coincides with \mathbb{R}^X (in fact, it can be shown that $M(X) = \mathbb{R}^X$ exactly when $C_p(X)$ is distinguished, which is not always the case). Let us mention the following result (from which Theorem 3.16 is a straightforward consequence).

Theorem 8.11 (Ferrando, [25, Theorem 28]). *The bidual of* $C_p(X)$ *has a resolution consisting of pointwise bounded sets if and only if* X *is countable.*

9. Some open problems

Theorem 2.4 asserts that if $C_p(X)$ is covered by a sequence of relatively sequentially complete sets, then X is a P-space.

Problem 9.1. If $C_k(X)$ is covered by a sequence of weakly relatively sequentially complete sets, is X is a P-space?

Theorem 2.5 states that if $C_p(X)$ is covered by a sequence of pointwise bounded relatively sequentially complete sets, then X is finite.

Problem 9.2. If $C_k(X)$ is covered by a sequence of bounded weakly relatively sequentially complete sets, must X be finite?

By Corollary 3.5 if $C_p(X)$ has a resolution consisting of pointwise bounded sets, then X is projectively σ -compact. On the other hand, according to [26, Theorem 3.1] the space X is σ -compact if and only if there exists a metrizable locally convex topology τ on C(X) such that $\tau_p \leq \tau \leq \tau_k$. If τ is a metrizable locally convex topology on C(X) stronger than τ_p certainly $C_p(X)$ has a resolution consisting of pointwise bounded sets, but if X is a μ -space the τ_k -closures of a fundamental system of τ -neighborhoods of the origin in C(X) define a metrizable locally convex topology η on C(X) coarser than τ_k because of the Nachbin-Shirota theorem. In other words, if X is a μ -space and there is a metrizable locally convex topology τ on C(X) such that $\tau_p \leq \tau$, there exists a metrizable locally convex topology η on C(X) such that $\tau_p \leq \tau_k$. So, the following makes sense.

Problem 9.3 (Kąkol). Assume that X is a μ -space. If $C_p(X)$ has a resolution consisting of pointwise bounded sets, is there always a stronger metrizable locally convex topology τ on C(X) such that $\tau_p \le \tau \le \tau_k$?

Observe that a positive answer to this question, also gives a positive answer to the following question.

Problem 9.4. Assume that X is a μ -space. Is it true that $C_p(X)$ has a resolution consisting of pointwise bounded sets if and only if X is σ -compact? Equivalently, is it true that $C_p(X)$ is K-analytic-framed in \mathbb{R}^X if and only if X is σ -compact?

According to Theorem 3.16, the space $C_p(X)$ has a resolution of pointwise bounded sets that swallows the pointwise bounded sets if and only if X is countable.

Problem 9.5. *If* $C_p(X)$ *has a resolution of pointwise bounded sets that swallows the compact sets, is* X *countable?*

If *X* is first countable, Theorem 3.21 asserts that $C_p(X)$ has a resolution of pointwise bounded sets that swallows the Cauchy sequences if and only if *X* is countable.

Problem 9.6. *If* $C_p(X)$ *has a resolution of pointwise bounded sets that swallows the Cauchy sequences, is X countable?*

In Theorem 2.5 it is shown that $C_p(X)$ is covered by a sequence of pointwise bounded relatively sequentially complete sets if and only if X is finite.

Problem 9.7. *If* $C_p(X)$ *has a resolution of pointwise bounded relatively sequentially complete sets that swallows the pointwise bounded relatively sequentially complete sets, is X countable?*

Theorem 2.6 shows that if $C_p(X)$ is covered by a sequence of functionally bounded sets, X is pseudocompact and each countable set in X is closed, discrete and C^* -embedded.

Problem 9.8. *If* $C_p(X)$ *has a resolution of functionally bounded sets that swallows the functionally bounded sets, is* X *countable and discrete?*

If X is metrizable, according to Theorem 4.2 the space $C_k(X)$ has a resolution of compact sets that swallows the compact sets if and only if X is σ -compact.

Problem 9.9. Characterize in terms of the topology of X those spaces $C_k(X)$ which admit a resolution of compact sets that swallows the compact sets.

If X is metrizable, Theorem 4.3 shows that $C_k(X)$ has a resolution of bounded sets that swallows the bounded sets if and only if X is σ -compact, and in [23, Theorem 8] is proved that $C_k(X)$ has a resolution of bounded sets that swallows the bounded sets if and only if X is a so-called *cn-space* [23, p. 3].

Problem 9.10. *Is there a nicer characterization in terms of the topology of* X *of those spaces* $C_k(X)$ *which admit a resolution of bounded sets that swallows the bounded sets.*

By Theorem 6.9, if X is a Lindelöf Σ -space and $C_p(X, [0, 1])$ is strongly dominated by a second countable space, then X is countable. So $C_p(X)$ is metrizable and separable, i. e., $C_p(X)$ is cosmic. Consequently $C_p(X)$ is a Lindelöf Σ -space.

Problem 9.11 (Guerrero-Tkachuk, [45, Question 4.1]). Suppose that $C_p(X, [0, 1])$ is dominated by a second countable space. Must $C_p(X, [0, 1])$ be a Lindelöf Σ -space?

Problem 9.12 (Guerrero-Tkachuk, [45, Question 4.2]). *If* X *is metrizable and* $C_p(X, [0, 1])$ *is dominated by a second countable space, must* $C_p(X, [0, 1])$ *be a Lindelöf* Σ *-space?*

Problem 9.13 (Guerrero-Tkachuk, [45, Question 4.3]). If X is Lindelöf and $C_p(X, [0, 1])$ is dominated by a second countable space, must $C_p(X, [0, 1])$ be a Lindelöf Σ -space?

Recalling again Theorem 3.16, the following natural question makes sense.

Problem 9.14. Let M be a second countable space. If $C_p(X)$ is covered by an M-ordered family $\mathcal{A} = \{A_K : K \in \mathcal{K}(M)\}$ consisting of pointwise bounded sets that swallows the pointwise bounded sets in $C_p(X)$, must X be countable?

Problem 9.15 (Guerrero-Tkachuk, [44, 4.4 Question]). *If* X *is a compact space with a \sigma-compact diagonal, is* X *metrizable?*

Problem 9.16 (Guerrero-Tkachuk, [44, 4.5 Question]). *If* X *is a compact space with a Lindelöf* Σ *diagonal, is* X *metrizable?*

Problem 9.17 (Tkachuk, [74, 5.6 Question]). *Is it true in ZFC that for any compact first countable space X there exists a countable space M that strongly dominates* $(X \times X) \setminus \Delta$?

Problem 9.18 (Guerrero, [42, Problem 4.1]). *Let* X *be a compact space. If* $(X \times X) \setminus \Delta$ *is dominated by a metric space, is* X *metrizable?*

In [25, Corollary 22] it is shown that for *X* realcompact, the weak* bidual M(X) of $C_p(X)$ is a Lindelöf Σ-space if and only if *X* is countable.

Problem 9.19. *May we drop the condition that* X *is realcompact in the previous statement?*

References

- [1] A. V. Arkhangel'skiĭ, Topological function spaces, number 78 in Mathematics and its Applications, Kluwer Academic Publishers. Dordrecht, Boston, London (1992).
- [2] A. V. Arkhangel'skiĭ, *C_p*-Theory, in Recent Progress in General Topology (M. Hušek and J. Van Mill, Eds.). pp. 1–56, Elsevier (1992).
- [3] A. V. Arkhangel'skiĭ, Projective σ -compactness, ω_1 -caliber, and C_p -spaces, Topology and its Applications, 104 (2000) 13–26.
- [4] A. V. Arkhangel'skiĭ, J. Calbrix, A characterization of *σ*-compactness of a cosmic space *X* by means of subspaces of *R*^X, Proceedings of the American Mathematical Society, 127 (1999) 2497–2504.
- [5] V. V. Arkhangel'skiĭ, M. Choban, The extension property of Tychonoff spaces and generalized retracts, Comptes Rendus de l'Académie Bulgare des Sciences, 41 (1988), 5–7.
- [6] V. I. Bogachev, O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer Monographs in Mathematics, Springer (2017).
- [7] N. Bourbaki, Elements of Mathematics. General Topology, Part I, Chapters 1-4, Hermann, Paris (1966).
- [8] H. Buchwalter, J. Schmets, Sur quelques propiétés de l'espace $C_s(T)$, Journal de Mathématiques Pures et Appliquées, 52 (1973) 337–352
- [9] J. Calbrix, Espaces K_{σ} et espaces des applications continues, Bulletin de la Société Mathématique de France, 113 (1985) 183–203.
- [10] M. A. Canela, Operator and Function Spaces which are K-analytic, Portugaliae Mathematica, 42 (1982) 203–218.
- [11] B. Cascales, On K-analytic locally convex spaces, Archiv der Mathematik, 49 (1987) 232–244.
- [12] B. Cascales, M. Muñoz, J. Orihuela, The number of K-determination of topological spaces, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 106 (2012) 341–357.
- [13] B. Cascales, J. Orihuela, On compactness in locally convex spaces. Mathematische Zeitschrift, 195 (1987) 365–381.
- [14] B. Cascales, J. Orihuela, V. V. Tkachuk, Domination by second countable spaces and Lindelöf Σ-property, Topology and its Applications, 158 (2011) 204–214.
- [15] J. P. R. Christensen, Topology and Borel Structure, number 10 in Mathematics Studies, North-Holland, Amsterdam (1974).
- [16] A. Dow, D. Guerrero Sánchez, Domination conditions under which a compact space is metrizable, Bulletin of the Australian Mathematical Society, 91 (2015) 502–507.
- [17] A. Dow, K. P. Hart, Compact spaces with a P-diagonal. Indagationes Mathematicae, 27 (2016) 721–726.
- [18] R. Engelking, General Topology, Heldermann Verlag, Berlin (1989).
- [19] Z. Feng, Spaces with a Q-diagonal, Fundamenta Mathematicae, 245 (2019) 305–320.
- [20] J. C. Ferrando, Two new properties of the space $C_p(X)$, Topology and its Applications, 154 (2007) 1799–1803.
- [21] J. C. Ferrando, On uniform spaces with a small base and K-analytic $C_c(X)$ spaces, Topology and its Applications, 193 (2015) 77–83.
- [22] J. C. Ferrando, Some characterizations for vX to be Lindelöf Σ or K-analytic in terms of $C_p(X)$, Topology and its Applications, 156 (2009) 823–830.
- [23] J. C. Ferrando, A characterization of the existence of a fundamental bounded resolution for the space $C_c(X)$ in terms of X, Journal of Function Spaces, (2018) Art. ID 8219246, 5 pp.
- [24] J. C. Ferrando, Descriptive topology for analysts, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114 (2020) Paper No. 107, 34 pp.
- [25] J. C. Ferrando, Existence of nice resolutions in $C_p(X)$ and its bidual often implies metrizability of $C_p(X)$, Topology and its Applications, 282 (2020) 107322, 12pp.
- [26] J. C. Ferrando, S. Gabriyelyan, J. Kakol, Metrizable-like locally convex topologies on *C*(*X*), Topology and its Applications, 230 (2017) 105–113.
- [27] J. C. Ferrando, S. Gabriyelyan, J. Kakol, Functional characterizations of countable Tychonoff spaces, Journal of Convex Analysis, 26 (2019) 753–760.
- [28] J. C. Ferrando, S. Gabriyelyan, J. Kąkol, Bounded sets structure of $C_p(X)$ and quasi-(DF)-spaces, Mathematische Nachrichten, 292 (2019) 2602–2618.
- [29] J. C. Ferrando, J. Kąkol, A note on spaces $C_p(X)$ K-analytic-framed in \mathbb{R}^X , Bulletin of the Australian Mathematical Society, 78 (2008) 141–146.
- [30] J. C. Ferrando, J. Kakol, Weak compactness and metrizability of Mackey*-bounded sets in Fréchet spaces, Acta Mathematica Hungarica, 157 (2019) 254–268.
- [31] J. C. Ferrando, J. Kąkol, M. López-Pellicer, A revised closed graph theorem for quasi-Suslin spaces, Czechoslovak Mathematical Journal, 59 (2009) 1115–1122.
- [32] J. C. Ferrando, J. Kąkol, M. López-Pellicer, Spaces C(X) with ordered bases, Topology and its Applications, 208 (2016) 30–39.
- [33] J. C. Ferrando, J. Kąkol, Leiderman, A., S. A. Saxon, Distinguished $C_p(X)$ spaces, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 115, (2021) Paper No. 27, 18 pp.
- [34] J. C. Ferrando, J. Kąkol, S. A. Saxon, Characterizing P-spaces in terms of $C_p(X)$, Journal of Convex Analysis, 22 (2015) 905–915.
- [35] J. C. Ferrando, Moll, S., On quasi-Suslin $C_c(X)$ spaces, Acta Mathematica Hungarica, 118 (2008) 149–154.
- [36] K. Floret, Weakly compact sets, number 801 in Lecture Notes in Mathematics, Springer, Berlin, Heidelberg (1980).
- [37] S. Gabriyelyan, J. Kakol, Free locally convex spaces with a small base. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111 (2017) 575–585.
- [38] Z. M. Gao, 8-space is invariant under perfect mappings, Questions and Answers in General Topology, 5 (1987) 271–279.
- [39] L. Gillman, L. M. Jerison, Rings of continuous functions, Van Nostrand, Princeton (1960).
- [40] D. Guerrero Sánchez, Closure-preserving covers in function spaces, Commentationes Mathematicae Universitatis Carolinae, 51 (2010) 693–703.

- [41] D. Guerrero Sánchez, Domination by metric spaces, Topology and its Applications, 160 (2013) 1652–1658.
- [42] D. Guerrero Sánchez, Spaces with an M-diagonal, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114 (2020) Paper no. 16, 9 pp.
- [43] D. Guerrero Sánchez, V. V. Tkachuck, Dense subspaces vs closure-preserving covers of functions spaces, Topology Proceedings, 39 (2012) 219–234.
- [44] D. Guerrero Sánchez, V. V. Tkachuck, Domination by a Polish space of the complement of the diagonal of *X* implies that *X* is cosmic, Topology and its Applications, 212 (2016) 81–89.
- [45] D. Guerrero Sánchez, V. V. Tkachuck, If $C_p(X)$ is strongly dominated by a second countable space, then X is countable. Journal of Mathematical Analysis and Applications, 454 (2017) 533–541.
- [46] J. Horváth, Topological Vector Spaces and Distributions, Dover Publications, Mineola, New York (2012).
- [47] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart (1981).
- [48] D. Jardón, Domination by countably compact spaces and hyperspaces, Topology and its Applications, 253 (2019) 38–47.
- [49] J. Kąkol, W. Kubiś, M. López-Pellicer, Descriptive Topology in Selected Topics of Functional Analysis, Springer, New York (2011).
- [50] J. Kakol, M. López-Pellicer, Compact coverings for Baire locally convex spaces, Journal of Mathematical Analysis and Applications, 332 (2007) 965–974.
- [51] J. L. Kelly, General Topology, Dover Publications, Mineola, New York (2017).
- [52] G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, Heidelberg, New York (1983).
- [53] K. Kunen, Weak *P*-points in *N**, in The Mathematical Legacy of Eduard Čech (M. Katětov and P. Simon, Editors), pp. 100–108, Birkhäuser, Basel (1993).
- [54] R. A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, number 1315 in Lecture Notes in Mathematics, Springer-Verlag, Berlin (1988).
- [55] S. Mercourakis, E. Stamati, A new class of weakly *K*-analytic Banach spaces, Commentationes Mathematicae Universitatis Carolinae, 47 (2006) 291–312.
- [56] E. Michael, N₀-spaces, Journal of Mathematics and Mechanics 15 (1966) 983–1002.
- [57] K. Nagami, Σ-spaces, Fundamenta Mathematicae, 61 (1969) 169-192.
- [58] N. Noble, The density character of function spaces. Proceedings of the American Mathematical Society, 42 (1974) 228-233.
- [59] O. G. Okunev, On Lindelöf Σ-spaces of continuous functions in the pointwise topology, Topology and its Applications, 49 (1993) 149–166.
- [60] O. G. Okunev, On analyticity in cosmic spaces, Commentationes Mathematicae Universitatis Carolinae, 34 (1993) 185–190.
- [61] N. Onuchic, The Nachbin uniform structure, Transactions of the American Mathematical Society, 90 (1959) 369–382.
- [62] J. Orihuela, Pointwise compactness in spaces of continuous functions, Journal of the London Mathematical Society, 36 (1987) 143–152.
- [63] C. A. Rogers, J. E. Jayne (Eds.), Analytic Sets, Academic Press (1980).
- [64] R. Rojas-Hernández, V. V. Tkachuk, A monotone version of Sokolov property and monotone retractibility in function spaces, Journal of Mathematical Analysis and Applications, 412 (2014) 125–137.
- [65] M. Sakai, Function spaces with a countable cs*-network at a point, Topology and its Applications, 156 (2008) 117–123.
- [66] M. Talagrand, Sur la structure borélienne des espaces analytiques, Bulletin des Sciences Mathématiques, 101 (1977) 415–422.
- [67] M. Talagrand, Espaces de Banach faiblement K-analytiques, Annals of Mathematics. Second Series, 110 (1979) 407–438.
- [68] T. Terada, Y. Yajima, Closure-preserving covers by nowhere dense sets, Bulletin of the Polish Academy of Sciences. Mathematics, 42 (1994) 21–27.
- [69] V. V. Tkachuk, The space $C_p(X)$: decomposition into a countable union of bounded subspaces and completeness properties, Topology and its Applications, 22 (1986) 241–253.
- [70] V. V. Tkachuk, The decomposition of $C_p(X)$ into a countable union of subspaces with "good" properties implies "good" properties of $C_p(X)$, Transactions of the Moscow Mathematical Society, 55 (1994) 239–248.
- [71] V. V. Tkachuk, A space $C_p(X)$ is dominated by irrationals if and only if it is K-analytic, Acta Mathematica Hungarica, 107 (2005) 253–265.
- [72] V. V. Tkachuk, A C_p-theorem Problem Book. Topological and Function Spaces, Springer (2011).
- [73] V. V. Tkachuk, A C_v-theorem Problem Book. Compactness in Function Spaces, Springer (2015).
- [74] V. V. Tkachuk, Strong domination by countable and second countable spaces, Topology and its Applications, 228 (2017) 318–326.
- [75] V. V. Tkachuk, D. B. Shakhmatov, When is the space $C_p(X)$ σ -countably compact?, Vestnik Moskovskogo Universiteta. Seriya I. Matematika, Mekhanika, 41 (1986) 70–72.
- [76] M. Valdivia, Topics in locally convex spaces, number 67 in Notas de Matemática, North Holland. Amsterdam, New York, Oxford (1982)
- [77] M. Valdivia, Quasi-*LB*-spaces, Journal of the London Mathematical Society, 35 (1987) 149–168.
- [78] N. N. Yakovlev, On bicompacta in Σ-products and related spaces, Commentationes Mathematicae Universitatis Carolinae, 21 (1980) 263–283.