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1. Introduction

Let B (H) be the C∗–algebra of all bounded linear operators on a Hilbert spaceH . As usual, we reserve
m, M for scalars and I for the identity operator onH . A self adjoint operator A is said to be positive (written
A ≥ 0) if 〈Ax, x〉 ≥ 0 for all x ∈ H , while it is said to be strictly positive (written A > 0) if A is positive and
invertible. If A and B are self adjoint, we write B ≥ A in case B−A ≥ 0. The Gelfand map f (t) 7→ f (A) is an
isometrical ∗–isomorphism between the C∗–algebra C (σ (A)) of continuous functions on the spectrum σ (A)
of a self adjoint operator A and the C∗–algebra generated by A and the identity operator I. This is called the
functional calculus of A. If f , 1 ∈ C (σ (A)), then f (t) ≥ 1 (t) (t ∈ σ (A)) implies f (A) ≥ 1 (A) (see [11, p. 3]).
A linear map Φ : B (H)→ B (K ) is positive if Φ (A) ≥ 0 whenever A ≥ 0. It’s said to be unital if Φ (I) = I.

For any strictly positive operator A,B ∈ B (H ) and 0 ≤ v ≤ 1, we write

A!vB =
(
A−1
∇vB−1

)−1
, A]vB = A

1
2

(
A−

1
2 BA−

1
2

)v
A

1
2 , A∇B = (1 − v) A + vB.

For the case v = 1
2 , we write !, ], and ∇, respectively. We use the same notions for scalars.

It is well-known that the arithmetic–geometric mean inequality (in short, AM-GM inequality), with
respect to operator order, says that

A]vB ≤ A∇vB. (1)

The Löwner–Heinz theorem [11, Theorem 1.8] says that if A,B ∈ B (H) are positive, then for 0 ≤ p ≤ 1,

A ≤ B⇒ Ap
≤ Bp. (2)

In general (2) is not true for p > 1.
Lin [7] nicely reduced the study of squared operator inequalities to that of some norm inequalities.

Actually, he found that a reverse of operator AM-GM inequality can be squared

(A∇B)2
≤ K(h)2(A]B)2, (3)
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whenever A,B ∈ B (H) are two positive operators satisfying mI ≤ A,B ≤ MI for some scalars 0 < m < M,

and K (h) =
(h+1)2

4h with h = M
m . It follows from (2) and (3) that

(A∇B)p
≤ K(h)p(A]B)p (

0 < p ≤ 2
)
. (4)

It is natural to ask whether inequality (4) is true for p ≥ 2? Recently, an affirmative answer to this question
has been given by Fu and He [2], where it has been proved that

(A∇B)p
≤

(
(M + m)2

4
2
p Mm

)p(
A]B

)p.

The problem of squaring operator inequalities has been studied extensively in the literature. We refer the
reader to [4, 8–10, 12] as sample of this work.
As mentioned above, Lin’s method was based on some observations about the operator norm and an
arithmetic-geometric mean inequality of Bhatia and Kittaneh (see [7, Lemma 2.2]). This paper intends
to square a reverse of operator AM-GM inequality in a different way. Moreover, we square the operator
Pólya–Szegö inequality [6, 10].

2. Main Results

To prove our generalized operator AM-GM inequalities, we need several well known lemmas. The first
lemma is a simple consequence of the Jensen inequality concerning the convexity of certain power function
[11, Theorem 1.4].

Lemma 2.1. (Hölder–McCarthy inequality) Let A ∈ B (H) be a positive operator. Then for any unit vector x ∈ H ,

〈Ax, x〉p ≤ 〈Apx, x〉
(
p ≥ 1

)
.

The second lemma is the converses of Hölder–McCarthy inequality [11, Theorem 1.29].

Lemma 2.2. Let A ∈ B (H) such that mI ≤ A ≤MI for some scalars 0 < m < M. Then for any unit vector x ∈ H ,〈
A2x, x

〉
≤ K (h) 〈Ax, x〉2,

where K (h) =
(h+1)2

4h with h = M
m .

The third lemma is a reverse of operator AM–GM inequality, which has been proved in [5, Theorem 1].

Lemma 2.3. Let A,B ∈ B (H) such that mI ≤ A,B ≤MI for some scalars 0 < m < M. Then for any 0 ≤ v ≤ 1,

A∇vB ≤
m∇λM
m]λM

A]vB,

where λ = min {v, 1 − v}. In particular,

A∇B ≤
√

K (h)A]B,

where K (h) =
(h+1)2

4h with h = M
m .

Our first result is a generalization of the inequality (3).

Theorem 2.4. Let A,B ∈ B (H) such that mI ≤ A,B ≤MI for some scalars 0 < m < M. Then for any 0 ≤ v ≤ 1,

(A∇vB)2
≤ K (h)

(
m∇λM
m]λM

)2(
A]vB

)2, (5)

where K (h) =
(h+1)2

4h with h = M
m , and λ = min {v, 1 − v}. In particular,

(A∇B)2
≤ K(h)2(A]B)2.
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Proof. One can see that Lemma 2.3 implies

〈A∇vBx, x〉 ≤
〈

m∇λM
m]λM

A]vBx, x
〉

(6)

for any unit vector x ∈ H . Taking the square in (6), we have

〈A∇vBx, x〉2 ≤
〈

m∇λM
m]λM

A]vBx, x
〉2

=

(
m∇λM
m]λM

)2〈
A]vBx, x

〉2

≤

(
m∇λM
m]λM

)2 〈(
A]vB

)2x, x
〉

(by Lemma 2.1).

(7)

On the other hand, mI ≤ A,B ≤MI implies

(1 − v) mI ≤ (1 − v) A ≤ (1 − v) MI, (8)

and

vmI ≤ vB ≤ vMI. (9)

It follows from (8) and (9) that

mI ≤ A∇vB ≤MI.

By applying Lemma 2.2, we get

1
K (h)

〈
(A∇vB)2x, x

〉
≤ 〈A∇vBx, x〉2. (10)

Combining (7) and (10) we infer〈
(A∇vB)2x, x

〉
≤ K (h)

(
m∇λM
m]λM

)2 〈(
A]vB

)2x, x
〉

for any unit vector x ∈ H . This completes the proof.

Another result of this type is the following one:

Corollary 2.5. Let A,B ∈ B (H) such that mI ≤ A,B ≤MI for some scalars 0 < m < M. Then for any 0 ≤ v ≤ 1,

(A∇vB)2
≤

K (h)
(

m∇λM
m]λM

)2

− 1

 M2I +
(
A]vB

)2,

where λ = min {v, 1 − v}.

Proof. It follows from (5) that

(A∇vB)2
−

(
A]vB

)2
≤

K (h)
(

m∇λM
m]λM

)2

− 1

 (A]vB
)2

≤

K (h)
(

m∇λM
m]λM

)2

− 1

 M2I,

where the second inequality follows from the fact that

A,B ≤MI ⇒ A]vB ≤MI]vMI = MI.
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As pointed out by Fujii and Nakamura in their paper [3, Theorem 2], if A ∈ B (H) is a positive operator
such that mI ≤ A ≤MI for some scalars 0 < m < M, and x ∈ H is a unit vector, then for any p ≥ 1,

〈Apx, x〉 ≤ K
(
m,M, p

)
〈Ax, x〉p, (11)

where

K
(
m,M, p

)
=

mMp
−Mmp(

p − 1
)

(M −m)

(
p − 1

p
·

Mp
−mp

mMp −Mmp

)p

. (12)

We note that K (m,M,−1) = K (m,M, 2) =
(M+m)2

4Mm is the original Kantorovich constant.
Now, by employing (11) and applying a same arguments as in the proof of Theorem 2.4 we reach the

following result.

Corollary 2.6. Let A,B ∈ B (H) such that mI ≤ A,B ≤ MI for some scalars 0 < m < M. Then for any p ≥ 1 and
0 ≤ v ≤ 1,

(A∇vB)p
≤ K

(
m,M, p

) (m∇λM
m]λM

)p(
A]vB

)p,

where K
(
m,M, p

)
is defined as in (12), and λ = min {v, 1 − v}.

Since A−1
∇vB−1

≤
m∇λM
m]λM A−1]vB−1 and

(
A−1]vB−1

)−1
= A]vB, it follows that

A]vB ≤
m∇λM
m]λM

A!vB. (13)

The following result concerning (13) may be stated:

Corollary 2.7. Let A,B ∈ B (H) such that mI ≤ A,B ≤ MI for some scalars 0 < m < M. Then for any p ≥ 1 and
0 ≤ v ≤ 1,

(
A]vB

)p
≤ K

(
m,M, p

) (m∇λM
m]λM

)p

(A!vB)p,

where K
(
m,M, p

)
is defined as in (12), and λ = min {v, 1 − v}.

The following result is interesting in itself as well.

Proposition 2.8. Let A ∈ B (H) be a positive operator with the spectra contained in the interval J. If f : J→ R is a
convex function, then for any unit vector x ∈ H

〈Apx, x〉 ≤ 〈Ax, x〉p + pα,

where

α = sup
x∈H
‖x‖=1

{
〈Apx, x〉 − 〈Ax, x〉

〈
Ap−1x, x

〉}
.

Proof. It is well known that if f is a convex function on an interval J, then for each point
(
s, f (s)

)
, there exists

a real number Cs such that

f (s) + Cs (t − s) ≤ f (t)

for all t ∈ J. If f is a differentiable at s, then

f (s) + f ′ (s) (t − s) ≤ f (t) . (14)
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Since f (t) = tp (
p ≥ 1

)
is a convex and differentiable function, then from (14) we obtain

sp + psp−1 (t − s) ≤ tp.

Applying functional calculus we get

Ap +
(
ptAp−1

− pAp
)
≤ tpI.

Hence for any unit vector x ∈ H ,

〈Apx, x〉 +
(
pt

〈
Ap−1x, x

〉
− p 〈Apx, x〉

)
≤ tp. (15)

Now, since the spectra of 〈Ax, x〉, contained in the interval J, by replacing t by 〈Ax, x〉 in (15), we infer (see
also [1, Theorem 2.1])

〈Apx, x〉 +
(
p 〈Ax, x〉

〈
Ap−1x, x

〉
− p 〈Apx, x〉

)
≤ 〈Ax, x〉p.

On the other hand, by Lemma 2.1, we know that

〈Apx, x〉 − 〈Ax, x〉
〈
Ap−1x, x

〉
≥ 0.

Therefore,

〈Apx, x〉 − 〈Ax, x〉
〈
Ap−1x, x

〉
≤ sup

x∈H
‖x‖=1

{
〈Apx, x〉 − 〈Ax, x〉

〈
Ap−1x, x

〉}
Consequently,

〈Apx, x〉 ≤ 〈Ax, x〉p + pα

which completes the proof of this proposition.

We now present our next main result.

Theorem 2.9. Let A,B ∈ B (H) such that mI ≤ A,B ≤ MI for some scalars 0 < m < M. Then for any p ≥ 1 and
0 ≤ v ≤ 1,

(A∇vB)p
≤

(
m∇λM
m]λM

)p(
A]vB

)p
+ pβI,

where λ = min {v, 1 − v} and

β = sup
x∈H
‖x‖=1

{〈
(A∇vB)px, x

〉
− 〈A∇vBx, x〉

〈
(A∇vB)p−1x, x

〉}
.

Furthermore,

(
A]vB

)p
≤

(
m∇λM
m]λM

)p

(A!vB)p + γpI,

where

γ = sup
x∈H
‖x‖=1

{〈(
A]vB

)px, x
〉
−

〈
A]vBx, x

〉 〈(
A]vB

)p−1x, x
〉}
.



R. Safshekan, A. Farokhinia / Filomat 34:11 (2020), 3601–3607 3606

Proof. Employing Proposition 2.8 for two inequalities

〈A∇vBx, x〉p ≤
(

m∇λM
m]λM

)p 〈(
A]vB

)px, x
〉
,

and

〈
A]vBx, x

〉p
≤

(
m∇λM
m]λM

)p 〈
(A!vB)px, x

〉
.

It has been shown in [6], that if A,B ∈ B (H) are two positive operators satisfying mI ≤ A,B ≤ MI for
some scalars 0 < m < M, and Φ : B (H)→ B (H) is a unital positive linear map, then

Φ (A) ]Φ (B) ≤
√

K (h)Φ
(
A]B

)
. (16)

Remark 2.10. We give a simple proof of (16). One can write

Φ (A) ]Φ (B) ≤ Φ (A)∇Φ (B) (by (1))
= Φ (A∇B)

≤ Φ
(√

K (h)A]B
)

(by Lemma 2.3)

=
√

K (h)Φ
(
A]B

)
i.e.,

Φ (A) ]Φ (B) ≤ Φ (A)∇Φ (B) ≤
√

K (h)Φ
(
A]B

)
which actually refines the inequality (16).

We next present the generalizations of (16).

Theorem 2.11. Let A,B ∈ B (H) such that mI ≤ A,B ≤MI for some scalars 0 < m < M. Then for any p ≥ 1,(
Φ (A) ]Φ (B)

)p
≤ K(h)

p
2 K

(
m,M, p

)
Φ
(
A]B

)p, (17)

and (
Φ (A) ]Φ (B)

)p
−Φ

(
A]B

)p
≤

(
K(h)

p
2 K

(
m,M, p

)
− 1

)
MpI, (18)

where K
(
m,M, p

)
is defined as in (12).

Proof. It follows from (16) that〈
Φ (A) ]Φ (B) x, x

〉p
≤ K(h)

p
2
〈
Φ

(
A]B

)
x, x

〉p

≤ K(h)
p
2
〈
Φ
(
A]B

)px, x
〉 (19)

for any unit vector x ∈ H .
Since mI ≤ A,B ≤ MI and Φ is a unital positive linear mapping, then mI ≤ Φ (A) ,Φ (B) ≤ MI. Thus,
mI ≤ Φ (A) ]Φ (B) ≤MI. Hence from (11),〈(

Φ (A) ]Φ (B)
)px, x

〉
≤ K

(
m,M, p

) 〈
Φ (A) ]Φ (B) x, x

〉p (20)
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for any unit vector x ∈ H . Combining (19) and (20), we get the desired inequality (17).
For (18),(

Φ (A) ]Φ (B)
)p
−Φ

(
A]B

)p
≤

(
K(h)

p
2 K

(
m,M, p

)
− 1

)
Φ
(
A]B

)p

≤

(
K(h)

p
2 K

(
m,M, p

)
− 1

)
MpI.

where we have used the fact that

mI ≤ Φ
(
A]B

)
≤MI.

It is immediate to see from (17) and (18) that(
Φ (A) ]Φ (B)

)2
≤ K(h)2Φ

(
A]B

)2,

and (
Φ (A) ]Φ (B)

)2
−Φ

(
A]B

)2
≤

(
K(h)2

− 1
)

M2I.
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