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On Some General Inequalities Related to Operator AM-GM Inequality
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1. Introduction

Let B (H) be the C*—algebra of all bounded linear operators on a Hilbert space H. As usual, we reserve
m, M for scalars and I for the identity operator on H. A self adjoint operator A is said to be positive (written
A > 0) if (Ax,x) > 0 for all x € H, while it is said to be strictly positive (written A > 0) if A is positive and
invertible. If A and B are self adjoint, we write B > A in case B— A > 0. The Gelfand map f (t) = f(A) is an
isometrical *—isomorphism between the C*—algebra C (¢ (A)) of continuous functions on the spectrum ¢ (A)
of a self adjoint operator A and the C*-algebra generated by A and the identity operator I. This is called the
functional calculus of A. If f,g € C(0(A)), then f () > g (t) (t € 0 (A)) implies f (A) > g (A) (see [11, p. 3]).
A linear map @ : B(H) — B(K) is positive if P (A) > 0 whenever A > 0. It’s said to be unital if ® () = L.

For any strictly positive operator A, B € B(J#) and 0 < v < 1, we write

-1
ALB=(ATV,B) ", AfB=A}(AEBA}) A}, AVB = (1-1)A+0B.
For the case v = %, we write !, , and V, respectively. We use the same notions for scalars.
It is well-known that the arithmetic—geometric mean inequality (in short, AM-GM inequality), with
respect to operator order, says that
Af,B < AV,B. 1)
The Lowner-Heinz theorem [11, Theorem 1.8] says that if A, B € B (H) are positive, then for0 <p <1,
A<B= AP <PBP. 2)

In general (2) is not true for p > 1.
Lin [7] nicely reduced the study of squared operator inequalities to that of some norm inequalities.
Actually, he found that a reverse of operator AM-GM inequality can be squared

(AVBY? < K(h)*(A#B), (3)
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whenever A, B € B (H) are two positive operators satisfying mI < A, B < MI for some scalars 0 < m < M,
2
and K (h) = (h:i) with h = % It follows from (2) and (3) that

(AVBY < K(h/(A#BY (0<p<2). (4)
It is natural to ask whether inequality (4) is true for p > 2? Recently, an affirmative answer to this question
has been given by Fu and He [2], where it has been proved that
M + m)’
2

(AVBY < (
4r Mm

fmwﬂ

The problem of squaring operator inequalities has been studied extensively in the literature. We refer the
reader to [4, 8-10, 12] as sample of this work.

As mentioned above, Lin’s method was based on some observations about the operator norm and an
arithmetic-geometric mean inequality of Bhatia and Kittaneh (see [7, Lemma 2.2]). This paper intends
to square a reverse of operator AM-GM inequality in a different way. Moreover, we square the operator
Pélya-Szego inequality [6, 10].

2. Main Results

To prove our generalized operator AM-GM inequalities, we need several well known lemmas. The first
lemma is a simple consequence of the Jensen inequality concerning the convexity of certain power function
[11, Theorem 1.4].

Lemma 2.1. (Holder-McCarthy inequality) Let A € B (H) be a positive operator. Then for any unit vector x € H,
(Ax, x)f <(APx,x) (p=1).
The second lemma is the converses of Holder-McCarthy inequality [11, Theorem 1.29].
Lemma 2.2. Let A € B (H) such that mI < A < MI for some scalars 0 < m < M. Then for any unit vector x € H,

<A2x, x> < K(h)(Ax, x)z,

where K (1) = ©0% qpith = M,

The third lemma is a reverse of operator AM-GM inequality, which has been proved in [5, Theorem 1].
Lemma 2.3. Let A, B € B(H) such that mI < A, B < MI for some scalars 0 < m < M. Then forany 0 <v <1,

mVAM
mﬁ,\M

where A = min {v, 1 — v}. In particular,
AVB < K (h)A#B,

where K (h) = % withh = 4.

AV,B < AH,B,

Our first result is a generalization of the inequality (3).

Theorem 2.4. Let A, B € B (H) such that mI < A, B < MI for some scalars 0 < m < M. Then forany 0 <v <1,

mVAM
mﬂ/\M

2
(AV,B)* < K(h)( ) (At,B), (5)

where K (h) = (hZ,})Z withh = %, and A = min{v, 1 — v}. In particular,

(AVB)? < K(h)*(A#B)’.
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Proof. One can see that Lemma 2.3 implies

mVAM
mjiAM

(AV,Bx, x) < < Af,Bx, x>

for any unit vector x € H. Taking the square in (6), we have

2
\Y

(AV,Bx, x)* < <m AMAtthx, x>

mg, M

_ mV;\M
B mﬁ,\M

< mV)\M
- mﬁ,\M

On the other hand, mI < A, B < MI implies
QI-o)yml<(1-v)A<(1-0v)MI,

)2<AjiZ,Bx, xy

2
) <(AﬁvB)2x,x> (by Lemma 2.1).

and
vml < vB < vMI.

It follows from (8) and (9) that
ml < AV,B < MI.

By applying Lemma 2.2, we get
1
K(h)

Combining (7) and (10) we infer

{(AV,B)’x, x) < (AV,Bx, x)°.

((AV,BYx, %) < K () (%)2 ((A#,B)x, %)

for any unit vector x € H. This completes the proof. [J

Another result of this type is the following one:

3603

(6)

(7)

(10)

Corollary 2.5. Let A, B € B(H) such that mI < A, B < MI for some scalars 0 < m < M. Then forany0 <v <1,

mVAM
mﬁAM

2
(AV,B)* < (K (h)( ) - 1]M21 + (Af,B),

where A = min {v,1 — v}.

Proof. It follows from (5) that

mV M\ )
o —1)(AﬂvB)

2
< [K ) (”NAM ) _ 1)M21,

(AV,B) — (Af,B)” < [K <h>(

mﬂ M
where the second inequality follows from the fact that

AB<MI = A#,B<MIf,MI =ML
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As pointed out by Fujii and Nakamura in their paper [3, Theorem 2], if A € B (H) is a positive operator
such that mI < A < MI for some scalars 0 < m < M, and x € H is a unit vector, then for any p > 1,

(APx,x)y < K (m, M, p){Ax,x), (11)
where
P _ P -1 P\
K (m, M, p) = mMP — MmP (p MP —m (12)

p-DHM-m\ p " mMP — Mm?

We note that K (m, M, —1) = K(m, M, 2) = (M+m) is the original Kantorovich constant.

Now, by employing (11) and applying a éame arguments as in the proof of Theorem 2.4 we reach the

following result.

Corollary 2.6. Let A,B € B(H) such that mI < A, B < MI for some scalars 0 < m < M. Then for any p > 1 and
0<v<l,

TI/ZVAM

(AV.BY < K ) 222 )( b.BY,

where K (m, M, p) is defined as in (12), and A = min {v, 1 — v}.

-1
Since A"V, B! 7:1;\11\\/14‘4 14,B~! and ( 1l:tUB‘l) = A#f,B, it follows that

mVAM

Af,B <
B < mg\M

AlB. (13)

The following result concerning (13) may be stated:

Corollary 2.7. Let A, B € B(H) such that mI < A, B < MI for some scalars 0 < m < M. Then for any p > 1 and
0<v<l,

m )\M
mf M

where K (m, M, p) is defined as in (12), and A = min {v, 1 — v}.

(ABBY < K (m, M, p>( ) (ALBY,

The following result is interesting in itself as well.

Proposition 2.8. Let A € B(H) be a positive operator with the spectra contained in the interval J. If f : ] = Risa
convex function, then for any unit vector x € H

(APx,x) < (Ax, x) + pa,
where
a = sup {(A”x, x) — (Ax, x) <A”_1x, x>} .
xeH

llxll=1

Proof. Itis well known that if f is a convex function on an interval ], then for each point (s, f (s)), there exists
a real number C; such that

fE)+C(t=s)< f ()
for all t € J. If f is a differentiable at s, then

fE+f () E=s)<f(D). (14)
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Since f (t) = ## (p > 1) is a convex and differentiable function, then from (14) we obtain
s¥ +ps”’1 (t—s)<t.
Applying functional calculus we get
AP + (piEA”_1 - pA’”) <L
Hence for any unit vector x € H,
(APx,x) + (pt (AP1x,x) — p(APx, x)) < . (15)

Now, since the spectra of (Ax, x), contained in the interval J, by replacing t by (Ax, x) in (15), we infer (see
also [1, Theorem 2.1])

(APx,x) + (p(Ax, x) (A" 12, x) — p (APx, x)) < (Ax, 2).
On the other hand, by Lemma 2.1, we know that

(AP, x) = (Ax, x) (AP 1x,x) 2 0,
Therefore,

(APx,x)y — (Ax, x) <A’”‘1x, x> < ilellg {(A”x, x) — (Ax, x) <A’”‘1x, x>}
[lx[[=1
Consequently,
(APx, x) < (Ax, x)P + pa
which completes the proof of this proposition. [

We now present our next main result.

Theorem 2.9. Let A,B € B (H) such that mI < A,B < MI for some scalars 0 < m < M. Then for any p > 1 and
0<v<l,

mv/\M
mﬁ,\M

(AV,BY < ( )p(AﬁvB)’” +ppl,

where A = min {0, 1 — v} and

B =sup {((AVoBYx,x) — (AV,Bx,x) (AV,BY x,x)}.

xeH
[Ixll=1
Furthermore,
(A$,B) < (";m )p<A!UB>” +ypl,
where
y = sug {((AﬂvB)px, x> — (A}, Bx, x) <(AﬁUB)p_1x, x>}
X€EY

[lxl1=1
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Proof. Employing Proposition 2.8 for two inequalities

mV)\M

AV, Bx, x) <
( X, X) (miiAM

)p ((At.BYx,x),

and

mV/\M

(Af,Bx, x) < ( -

)P {((A%,BYx,x).

O

It has been shown in [6], that if A, B € B(H) are two positive operators satisfying mI < A, B < MI for
some scalars 0 < m <M, and @ : B(H) — B (H) is a unital positive linear map, then

D (A) #® (B) < VK (h)D (A#B). (16)
Remark 2.10. We give a simple proof of (16). One can write

D (A) D (B) < D(A)VD(B)  (by (1))
= @ (AVB)

<o ( \/K(h)AﬂB) (by Lemma 2.3)
= JK (W) (A$B)

D (A) #® (B) < @ (A) VD (B) < VK ()P (A#B)

which actually refines the inequality (16).
We next present the generalizations of (16).

Theorem 2.11. Let A, B € B(H) such that mI < A, B < MI for some scalars 0 < m < M. Then for any p > 1,

(P (A) 4 (B))' < K(h)K (m, M, p) D(ALBY, 17)
and

(@ (A) 0 (B)Y — D(ALBY’ < (K(1)*K (m, M, p) = 1) M1, (18)
where K (m, M, p) is defined as in (12).
Proof. It follows from (16) that

(®(A) P (B) x,x) < K(h)*(® (ALB) x, x)’

, 19
< K(h)? (@(AﬁB)”x, x> )

for any unit vector x € H.
Since ml < A,B < MI and @ is a unital positive linear mapping, then mI < ®(A),®(B) < MI. Thus,
ml < @ (A) @ (B) < MI. Hence from (11),

(@ () §0 (B))'x,x) < K (1, M, p) (@ (A) § (B) x, x)" (20)
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for any unit vector x € H. Combining (19) and (20), we get the desired inequality (17).
For (18),

(@ (A) o (B)) - D(AEB)’ < (K(h)?K (m, M, p) — 1) D(ALBY
< (K1) K (m, M, p) = 1) MPLL
where we have used the fact that
ml < ® (Af#B) < MI.

O
It is immediate to see from (17) and (18) that

(@ (A) §0 (B))” < K(h)*D(AEBY’,
and

(@ (A) 0 (B))® — D(AfB)” < (K(h)* — 1) MPL.
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