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Abstract. In this paper, a new compact alternating direction implicit (ADI) difference scheme is proposed
for the solution of two dimensional time fractional diffusion equation. Theoretical considerations are
discussed. We show that the proposed method is fourth order accurate in space and two order accurate
in time. The stability and convergence of the compact ADI method are presented by the Fourier analysis
method. Numerical examples confirm the theoretical results and high accuracy of the proposed scheme.

1. Introduction

Fractional differential equations (FDEs), which deal with derivatives and integrals of any arbitrary real
or complex order, have been highly regarded by researchers. Fractional calculus has a history of more than
300 years, yet its applicability in different domains has been realized recently. In the last three decades,
the subject witnessed a significant growth of research [1, 2]. Recently, fractional differential equations have
been widely used in various fields such as muscular blood vessel modeling [3], non-linear oscillation of
earthquakes [4], control theory [5], financial economics [6], biotechnology [7] and etc [8-11]. Fractional
derivatives model the various dynamical processes and they carry information regarding their present as
well as past states. In order to characterize memory property of complex systems, one needs to employ
the non-integer order derivatives because these operators give a complete description of different physical
processes with dissipation and long-range interaction [12]. There are many numerical methods proposed
for solving the FDEs up to now, e.g., finite difference method [13], spectral methods [14-16], finite element
method [17, 18], RBF [19] and etc. Low-order finite difference schemes are not accurate enough for solving
many problems in science. Recently the focus has shifted to high order compact finite difference methods
[20-23]. The advantage of the high order compact finite difference is that they give high accuracy on
small stencils with greater computational efficiency [24]. The original split type method was introduced
by Peaceman and Rachford in 1955. Their method is called the alternating direction implicit method. Such

schemes split multi-dimensional problems to a series of one-dimensional ones which are much easier to
solve [25].
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So far, various types of fractional derivatives have been studied. In 1835 Liouville considered the
fractional derivative of function f(x), denoted by D* f(x), of order a [26]. After him, Riemann, Grunwald,
Sonine, Hadamard, Marchaud, Hille, Riez, Chen, Burlak, Kalisch, Caputo, Agarwal and others proposed
definitions of the fractional derivatives. A review of definitions for fractional derivatives can be found
in [27]. A compact ADI method for two-dimensional nonlinear reaction-diffusion equations was given
recently in [28], and a compact ADI method for solving two-dimensional Riesz space fractional diffusion
equation proposed in [29].

Caputo and Fabrizio have suggested a new definition of a fractional derivative which we will use in
this paper [30]. In this paper, we consider the following two-dimensional time fractional diffusion equation
describing sub-diffusive phenomena with a non-homogeneous term

CEy _PPu Pu
0 Dtu(x,y,t)—ﬁ+ﬁ+f(x,y,t), (x,y)EQ,OStST, (1)

with the initial condition
ulx, y,0) = w(x, y), (x,y) € Q, (2)
and the Dirichlet boundary conditions

u(Lll Y, t) = (Pl(]// t)/ u(LZI Y, t) = (PZ(y/ t)/
u(x, Ls, t) = P1(x, 1), u(x, Lg, t) = Po(x,1),t = 0, 3)

where QO = (L1, L) X (L3, Ls). Here 0 <y < 1and OCF Di/u denotes the Caputo-Fabrizio fractional derivative
of the function u(x, y, t) defined as:

, M(y) (*ou(x,y,8) -
CFy) _ o(t-s)
o Dyu(x,y,t) =y [) 5 e ds, 4)

where M(y) is a normalization function such that M(0) = M(1) =1and o = %
Our goal is to present a compact ADI scheme to solve (1)-(3) based on the new fractional derivative. The

unconditionally stable result is derived.

The paper is organized as follows. In Section 2, we give a compact ADI difference scheme for two-
dimensional time fractional diffusion equation. Then in Section 3, we present the analysis of stability and
convergence for the presented scheme. In Section 4, some numerical results using the fourth order compact
finite difference scheme are carried out. Finally, this paper ends with conclusions in Section 5.

2. Compact ADI scheme for 2D time-fractional diffusion equation with Caputo-Fabrizio derivative

The domain QX [0, T] of (1)-(3) is divided into a uniform grid of mesh points (x;, yx, t,) with x; = Ly + jhy,
j=0,1,...,Ny+1, yy = khy, k=0,1,...,N,+1,and t, =nt,n=0,1,...,N. Here N,, N, and N are positive
integers, i, = (Lo — L1)/(Ny + 1) and hy = (Ly — L3)/(N, + 1) are the mesh-widths in x, y, respectively, with
hy/hy, bounded from below and above, and 7 = T/N is the time step.

A discrete approximation to the gF Dtyu(x, y,t) at (xj, yx, t,) can be obtained by the following approxima-



M. Taghipour, H. Aminikhah / Filomat 34:11 (2020), 3609-3626 3611

tion
M@) (" du(xj, yx,s) pottis
SEDYu(xj, yi, ta) = ] _Vy Z?s t=9) s
_ MOy - ft" 3“(3‘]'3/105) o(ta=s) 4
1-y v = dh Js
M
= (y) Z f ik _U(tn_s)ds +R
M( )
_ 2 Z hy, — b Y) dyy + R
1=1
M(y)
= W(dnnu ;(dl-#ln dln)u]k dlnulk +R, ®)
where u’]?k = u(xj, Yx, tn), R is the error term and d, , is obtained as follows:

dl,n — e—()’T(H—l) _ e—a'[(n—l+1).

We introduce the following notation

2 n

Ol Wik T 25+ U
2 ; :
hy hy

We need the following lemmas in derivation of compact finite difference scheme.
Lemma 2.1. Consider the partial differential equation
Pu(x,y,t) 82u(x y,t)
ax? ay?

A fourth-order compact finite difference scheme for this equation is given as

_f(/ / (6)

2 1 o 1 2 8
(h—’2‘+12112 2 y+hg+12h2 O = (35 + 15+ DS+ Ol + Iy, 7)
x y

Proof. Based on the definition of operator 62, we have the following relation for (6) at point (x;, yx, tx)

52 o

2 Wi+ h2 Wi = T = fijr (8)
where

I R TA h; Hunn 1 4

Tk = 1258 * ﬁ(a—yﬁ Oy + hy)- 9)

In order to obtain a fourth-order scheme, the fourth derivatives of u in Eq. (9) should be approximated. Eq.
(6) gives

T~ G - s, - i o
oxtlik ~\ox2  ox2ay2 ik~ p2lik hzhz Wiks
Fup _(Zf_ duy O, o .
Iylic oy Iy ik R e
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By substituting Egs. (10) and (11) in Eq. (9) we get

1 252 22
T;k= O+ 00 fi) — 3 hzy iy + = 1) + Ol + 1), (12)

hence by substituting Eq. (12) in Eq. (8) the lemma is proved. [
Lemma 2.2. Suppose v(t) € C?[0,t,]. Let

ok o(t;) — v(ti-1)
— 4 _ —0(ty—T1)
A= IZ; Ll [ZJ (1) 7 ]e dr,

then

2 3At

24

2
@an” 1o (0|2

OStSt

|A| < |t

Proof. Using the Taylor series expansion with integral remainder, we have

1 n fi’] [f’[ t ot
= — 0"(s)(s — tj_1)ds — v (s)(t; — s)ds e °“Vdr
At ; 1 f1-1 T

- ﬁ i ftl [(s —t1) (e—ff(tn—tz) _ e—ﬁ(tn—S)) —(t—s) (e—o(tn—S) _ e_U(t"‘tl-l)ﬂv"(s)ds
=1 Y

Since,

f " [(S —t1) (e—o(tn—tz) - e—c(t;«—s)) —(t—9) (e—o(tn—s) - e—a(t,,—tzfl))]ds
1

3
— (At)4 —aAt(n— l)( o°At + .- )

12 24
2 3At
< (At)4(ﬁ—j+),

and e M=) < 1 for1=1,2,...,n and t, = nAt, hence the result will be achieved. O

Now, using the Lemma (2.2) we get

e
M(V) Z f ( M T M Je—g(t,,—s)ds

S 1, y.9) T
M(y) 2 o2 o1
I/t - + ..
7oy o OG- 5

M(y) (' ou(x,y,s) __,_
CFry/ — o(t-s) —
o Diu(x,y,t) =y jo‘ 3 e ds

n

Z e—a’r(n—l) — O(Tz).

=1

Let

g(x, ¥, t), (13)
so Eq. (1) can be written as follows

FPu  u
2t P =g(x,y,t) = f(x, y,1). (14)
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Using lemma (2.1), we can write Eq. (14) at the point (x}, yk, t;) as follows

62 1 2 63 1 2¢2 |, n 6926 62 4

Therefore, from Eq. (5) and lemma (2.2) we have

Rl oo 01 G0\, (88
(E + @(S’céy h2 + 12h2 5x6y ]k E + E +1]x (16)

1 2.8 e
[7/_,[[””“ Z(dlﬂn dzn)u]k dlnu ]] (12+ﬁ+1) j,k+O(h4+72),

where M(y) = 1. Letv = dy”T” then

2 8 52 1 o 1 1 (6% 0
x 0% X 2¢2 Y 2¢2 “x Y 1
(12 T ) “ik ( o2 " 1o 0 o2 120 hz‘5 =g\ttt
= l o1 1(82 &2 A
X
[1;‘ (dm,n—dlln)u].,k+d1,nu].’k]+5(E+ > +1)f +O(H* + ). 17)

Using factorization, we can rewrite Eq. (17) as

1 1 1 1
(1+(E - ?)52)(1 + (E - U—}li)éi)uzk

1 1 ; 1 62 62 n—-1
:(m + vzhzhz)”j,k+ h (12 + = )[Z (d141n — dln)u +d1nu ]
Y

162 &
E(é + — 7 + 1)f + O(h ) (18)

To give a numerical scheme we need to approximate the term (1}14 + thzhz )u}?,k on the right hand side Eq.
(18) and omit the last term. As in paper [31] we use the following approx1mation

2unml =2 1,
u' = ik ik
Jk ul n=1.
ik
Using the Taylor series expansion we have
v 3
u(x]/ Yio tne1) = u(x]/ Yio ta) + TU (x]/ Yiotn) + = (X], Yk, tn) + O(T7),
u(xj, Yr, taz) = u(xj, Yr, tn) + 270 (X}, Yi, tn) + 212 u”(xj, Yk, tn) + O(7 3.

So ufy = 2uf; 1— ’f;z + O(7?). Define p, = vih% and yy, = =, for n = 1, we have

ik hz’

(15 ) 1 (55 - oot = (g + s

62 52 1 52 2
+(ﬁ+ﬁ+l) udy + (—"+—"+1) Y (19)



M. Taghipour, H. Aminikhah / Filomat 34:11 (2020), 3609-3626 3614

and for n > 2, we obtain

(1+( ! yx)62)(1 . uy)(sz) i,

1 N 1 (20
(144+yxyy)(2u ]”k)+dm(ﬁ+—+1)[g (10 — dln)u +d1nu
o2 &2
+—(12+ 2+1)]k (20)

Therefore, for n = 1 and n > 2 we obtain the following compact ADI scheme that is implemented in two
steps

(1 +(% - yx)ai)u]{;;
1 2 6%
=(ﬁ+[uxluy)u§.’,k+( +—/+1)u +v(12+1—'2+1)f]%k,

(IR Tt

(1)
1+ (% — )2 |ur,
= (i + )20 = 2)
5 52 n—1 5 5
+d1(f—2 +3+ 1)[2 (diy10 = dl,n)u;k + dl,,,u?k] + %(‘f—z + %+ 1)f].”k,
, P} 2 : 2
(1 +(% - yy)(sz)u" .
Let the (known) right-hand side of Eq. (21) be denoted by f, then
1% 1 1% N* 1%
Ui + (E - F‘x)(u]nk 2Ug, + Ui” 1k) =f (22)

Thus, foreach1 <k <Ny, n=1,2,...,N, a simple tridiagonal system is solved for Uﬁ
After calculating U?Z, we obtain U;’k from

us, + (11—2 — ) (Ul —2U0 + U, ) = U

Foreachl <j<N,,n=1,2,...,N, atridiagonal system of equations is solved for U"

There is an 1mp0rtant pomt that needs to be addressed with regard to the solutlon of the system (22).

When j = 1 or j = N, boundary values for U}“ are required in the form of Uf; or Uy . We can obtain

the required boundary conditions for Uﬁ from the second and fourth equatlons in (21). For example, at the
j=1we get

- 1 " 1
Upx = ( ( 2 (Uy)‘sz)u = ( (E - Hy)éi)(Pl(ykr tn)-
Theorem 2.3. The coefficient matrices in the scheme (21) is invertible.

Proof. 1t is clear that the coefficient matrices for (21) are strictly diagonally dominant. Thus these matrices
are invertible. [
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3. Error analysis

3.1. Stability analysis

To study the stability analysis of the proposed scheme, we use the Fourier method. This method is a very
useful technique for analyzing the stability of a finite difference method. It uses mutually orthogonal vectors
that form a basis for n-dimensional space. Thus the error term can be expanded as a linear combination of
these basis vectors. Let (Il = be the approximate solution of the scheme, and define

n=uy -1,  1<j<N, 1<k<N, 0<n<N,

with corresponding vector
n T
= (G o O,

Thus we have

(14 (55 =) 0 (55 - )3
1 &2 0
= (qgg * pxba )OI Cc + (ﬁ ot 1)ka' (23)

and forn > 2,

(155 = )21+ (55 -

1 22 n-2 1 65 6; v ) 0
(144 + yYyy)é 6 (zc e )+ d_(ﬁ ot 1)[2 i1 = dipn) Gy + dinCy |. (24)

I=1
The Fourier series for C"(x, y) is

0o

L
C"(x’ y) = Z Z pn(mlsz)e moim - Lz Ll +mz£; 33}

My =—00 M]=—00

and the discrete Fourier coefficients are
1

V(L2 = L)(Ls — Ls)

Ly Ly )
f f —i2m{m; L L +mZL4 L3 Cn(é/ )dédn
L3 L,

For any vector Z = (z1,1,z12, . . . rZNx,NV)T/ we define the discrete 2 norm as follows

pn(ma, my) =

121 = (b, T Y 2)"

ll]l

So we have Parseval’s equality for the discrete Fourier transform, that is,

NV Ny
I = Ry )Y 1P

=1 j=1

Ly Lq oo o0
- [ e npdsin= Y Y ot mf

My =—00 1M{=—00
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We can expand CJ’?k into Fourier series, and Because the difference equations are linear, we can analyze the

behavior of the total error by tracking the behavior of an arbitrary nth component. So we can suppose that
the solution of Eq. (23) and Eq. (24) has the following form

i(0x jhy+oykhy)
7

1
"= e
NGV
where o, = 2mi7t/(Ly — L1), 0y = 2mam/(Ly — L3).
Substituting the above expression into Eq. (23) and Eq. (24) and for simplicity we let s; = sin? UxThx ,

o/h
s, = sin’ % (thus 0 <s; <1, i=1,2), then for n = 1 we have

1 1
O O
1 1
= [16yxyyslsz + (1 - 551)(1 - 552)],00,

and for 2 <n < N, we get

(1 4(11.2 ”") )(1 4(l_”y)sz)p”:

[32(& + pixfiy Js1s2 + (d;#)( — 361 s)+ 1)]P”1

nn

[_16(144 T e 1)]pn_2

n-3
1 dl+1n - ,n dl,n
+(—§(51+52)+1 (l=1( ) %po,])

Consequently, we obtain

16 p1y5152 + (1 - %51)(1 - %52) 1o

(1 - %sl + 4pxs1)(1 - %sz + 4yysz) Po= Fpo, @)

p1=

B SZ(ﬁ + yxyy)slsz + (d"'%ﬂi”“”)( — 3(s1+82) + 1)

n=

n-1

(1 — %Sl + 4‘[,13(51)(1 - %Sz + 4Hy52)
~16(gg + praptyasa + (P2 ) (= Sor +52) + 1)

(1 — —31 + 4Hx51)(1 — —sz + 4yysz)

1__(51+52) [nz_?:(dhln_dln) dip ]
- —|pt+ 5—po

Pn-2

+
(1 — —51 + 4/.”51)( §Sz + 4[Jy82) =1 d”r” d”r”
= Z It 2<n<N, (26)
o M

where u = (1 —is1+ 4yxsl)(1 — i+ 4pysz).
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Remark 3.1. The coefficient u satisfies in the following relation 0 < % <3

Now, we can give the following estimate.
Theorem 3.2. Suppose that p, (1 < n < N) are defined by (25) and (26), then for y € (0,1)
pal < (1+ <) Ipol, n=1,2,--+ N,
Proof. We will prove this claim by mathematical induction. For n = 1 we have
o Ct
lp1l = 1=llpol < {1+ — )Ipol.
pil =1l ( - Jip
Assume that
Ct\m
Il < (1+ 7) lol,  m=12,...,n-1,

then we get

< ‘32 ettty Jorse + () - Loy ) + 1)|( Coyr

1- %Sl + 4yxsl)(1 - %52 + 4yy52)

dn—l,n _dn—Z/n

'—16(1}1—4 + pxyy)slsz + (T)( - %(Sl + 52) + 1)
1-4s1+ 4yxsl)(l — 15+ 4/,1_1,52)

N 1-1(s1+5) (1 N Ct )n—l [n_3 (dl+1,n - dl,n)p I+ di,n P |]
_ _— 0 0
(1= 151+ 451 )(1 = L2 + 4puys0) H i\ ’

(1+ %)“‘ﬂpa

48yx}1y5152 + (] - %Sl)(l - %52) (1 N g)n—l| | < (1 4 g)"| |
< (1 ~ %51 +4[Jx51)(1 _ %52 +4yy52) pol = v Pol-

and the proof is completed. [
Theorem 3.3. The compact finite difference scheme (21) is unconditionally stable for y € (0,1).

Proof. Suppose that U" is the approximate solution of (21). Applying Theorem 3.2, Parseval’s equality and
nt < T we obtain
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2
I = Tl = 1C e
Ny Ny
=y Y Y 1P
k=1 j=1
hx \ i(0 i +o,khy)
€ vjhetoy
LZ—L1L4—L3;;¢|p "
3 2
Lz—Ll L4—L3 ;;'p”l
N,
2 CT 2n
1 Lt 2
LZ—L1L4—L3;;‘ + |P0|
Ny, N,
_ by hy, (1 N Ct )Zn |poe!Titakh) 2
Lz - Ll L4 - L3 1% =1 =1
Ct\2 <o -
=(1+ f) N < SFEU0 - 0O, n=1,2,- N,
So that
" =0l < et = i,
which means that the scheme is unconditionally stable. [
3.2. Convergence
We will use the Fourier analysis for the scheme (21).
Forl<j<Nx1<k<NyLetej, =uj—Uj ande” = (] ,ef,,..., 5 y ) R" = (R} , Ry, ..., Ry )T, 1<
n < N. Then
1
oo -l
and forn > 2
1+ (o5 - )02 (14 (5 = )02 et = (e + peet) (265" = ¢2)
13~ Hx)O 12~ Hv)O )ik = \1qq T Hxty ik
1 (62 9
+ dn,n(ﬁ + =+ 1)[2 (d1410 — dln)e]k] + R;?/k. (28)
Similar to the stability we have
Ny N, 0 )
el = ety Y Y e = Y Y dealmi, mo)P, (29)
=1 j=1 Mp=—00 1M1 ==00
and
Ny N, ) )
IR = Iy Y Y IRGE = Y Y I, mo)P. (30)

=1 j=1

My =—00 1111 =—00
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Now we assume that e}?k and R;?k are

1
er.l =
# VL LL T

i(0x jhxtaykhy)
7

Cne

1
R" =
ik VL, — L1 VLy — L3

where o, = 2mi7t/(Ly — L1) and 0, = 2mp7t/(Ly — L3).

d, /o)

h
Substituting the above expression into Egs. (27) and (28) and for simplicity we let s; = sin? sz_x ,
oyh
$p = sin? % , (thus 0 <s; <1, i=1,2), then for n = 1 we have
1
1 = pdl, (31)
and forn > 2
32(@ + ‘ux‘uy)5152 + (—d”’”;ﬁl?l'" )( - %(Sl +57) + 1)
Cn = - Cn—1
u
16( 1k + gty Jsr + (e )~ Iy 4 5) +1)
u - Cn—2
1-1(s1+ %) (3 (dy, - d d
N 3(51 +52) Z( 1 l’”)c1+ dn +@, (32)
1 = dn,n dn,n 1

where i = (1 151+ 4pxsl)(1 15+ 4pysz).

Also from convergence of the series in the right hand side of (30), there is a positive constant C, such
that

|d,| < CoLtldi], n=1,2,...,N. (33)

Theorem 3.4. If ¢, be the solutions of equations (31) and (32), then there is positive constants C, and B,, such that
n
TL
lcal < Can(l + ?) ldil, n=1,2,...,N. (34)
Proof. We use the mathematical induction for proof. For n = 1, from Eq. (31) we have
1 L TL
leal < =ldh| £ —Coldh| < Cz(l + —)|d1|-
IS ¢ ®
Now, suppose that

m
L
lewl < CzBm(l + %) iy, m=1,2,...,n—1.
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Using Eq. (32), we have

1 du,n_dn—l,n
o[l o (2
Cul =

T )( - %(51 +57) + 1)
m
‘—16(@ + yxyy)slsz + (—d"’l/”_d”’z"’

n-1
canl(l + E) |
i
L n-1
Can—z(l + %) |da]

1——(51 +87) [" =3 dy

n-1
At = diy
( e 1 )CQBI(1+TL) || + |2
I=1 #

T )( - %(Sl + 52) + 1)

u

Now assume that

C’ = maX{Bl, BZ/ e /Bn—l }/

S0
lcn| < ’32(ﬁ N Hx#y)5152 + (%)( - %(51 +57) + 1) C2C’(1 . E)n—lld1|
i H
’_16(ﬁ " #xyy)slsz " (dld#)( —3(s1+52) + 1)

u

-1
Czcl(l + E) |d1|
H
n-3
L1- -(S1 +57) [

d d L n—1 n
( bn l")CQC'(l n T—) lda| | + C2(1 n —) Ids |
= u It

48( g + Halty)s152 + ( — (s1+s2) + 1 i
< (144 V) m ( 3 )C2C'(1 + %) |d1] +C2(1 + ?) |1

< C2C’(1 + E) |d1| + C2(1 + —) |d1| = Cz(l +C’ )(1 + —) |d1|
U u U

= (C,B, (1 + —) |d1|
U

This completes the proof. [J

Theorem 3.5. The compact ADI finite difference scheme (21) is convergent, and the order of convergence is O(t +h*)

Proof. By Theorem (3.4) and using (29) and (30), we can obtain

n
L nil.
lle"ll < Can(l " %) IRz < C2Bye ™ Ca(z + %),

By remark (3.1) 0 1

= I

% and since nt < T, we obtain

le"llz < C(t + h*), C=CyB,Cse’s .

3620
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4. Numerical Results

In this section, we perform some numerical calculations to test the convergence of our scheme. All the
computations are performed using Matlab. In all examples we assume that &, = h, = h and use the error
norm

lle"|l;. = max |u(x;, yx, t.) — U;fk :0<j<N,0<k<N,,

where e;?k = u;?k — U”,. Also we calculated the computational orders of the method presented in this paper
with the following formula

r(t, h) = log, (lle(4, 2h)l;_ /lle(T, W)II;.)-

Example 4.1. We first consider the following equation with the initial and boundary conditions

SFDu(x, y, ) = 24 +3y2 +fx,y,t), 0<x,y<1,0<t<1,

u©,y,t) =0,u(l,y,t) =

u(x,0,t) =0,u(x,1,t) = 0

u(x,y,0)=0
We give exact solution u(x,y,t) = xy(1 — x)(1 — y) sin(t), and for different v, we have different f(x,y,t). Numerical
solution and pointwise errors have been demonstrated in Fig. (1). Table (1) gives the approximation errors and

convergence rates for the fourth order compact difference scheme. We choose different space and time step sizes to
obtain the numerical convergence rate in space.

Numerical solution Pointwise errors
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Figure 1: The plot of numerical solution and pointwise errors at T = 1/256 and hy = hy = 1/32 with = 0.2 for example 4.1.

Example 4.2. Consider the two dimensional time fractional diffusion equation as follows

gFDZu(x,y,t) = gxg + gy‘z‘ + fx,yt),0<xy<1,0<t<1,
u(0,y,t) = t2e¥,u(l,y,t) = 2!V,
u(x,0,t) = t2e*,u(x, 1,t) = t2e**1,
u(x,y,0)=0
The exact solution for this problem is u(x, y, t) = t2¢**V. Table (2) gives the approximation errors and rates of u for

the compact difference scheme of Example (4.2). Results show that the space rates are almost O(h*) and are consistent
with our theoretical analysis. Also Numerical solution and pointwise errors have been demonstrated in Fig. (2).
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Table 1: Error and experiment order of convergence for different values of y, for example 4.1

y h T lle™]l;., Order
01 ; ; 13683e-02 -
0.1 % 7 7.0627¢—04 4.2760
01 & & 56257¢—-05 3.6501
0.1 % 21? 3.3538¢ — 06 4.0682
03 ;1 ; 95564e—-03 -
0.3 % = 2.8612¢—04 5.0618
03 % & 39921e—-05 24989
03 % 2? 2.3441e— 06 4.0900
05 ; ; 50387%-03 -
05 5 3= 4.6054e—04 34516
05 1 o 249320-05 42072
05 % 21? 1.6940e — 06 3.8795
07 3 1 10617e-03 -
07 5§ 3 34366e—04 16273
07 + & 17136e—05 43258
07 % 2# 1.0063¢ — 06 4.0899
09 : 1 1236le-03 -
0.9 % 7= 1.0447¢—04 3.5646
09 + & 1.6022¢-05 42301
09 = = 33166e—07 55942

Numerical solution Pointwise errors
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Figure 2: The plot of numerical solution and pointwise errors at © = 1/256 and hy = hy = 1/32 with = 0.2 for example 4.2.

Example 4.3. Consider the following equation

SEDYu(x, y, t) = 327”2‘ + giy'; +fx,y,t), 0<x,y<1,0<t<1,

u©,y,t) =0,ul,y,t) =0,

u(x,0,t) =0,u(x,1,t) =0,

u(x, y,0) = sin(mx) sin(mty).
We give exact solution u(x,y,t) = (t* + 1)sin(nx) sin(ry), and for different y, we have different f(x,y,t). The
maximum absolute errors and their estimated convergence rates approximated by the compact ADI method are shown

in Table (3). The numerical results of Example (4.3) are provided to show that the proposed approximation method is
computationally efficient.
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Table 2: Error and experiment order of convergence for different values of y, for example 4.2

Numerical solution

Yy

) SR
N
TS

y h T lle™]l;., Order
01 § ; 2286e-02 -
0.1 % = 12102e-03 4.2411
01 & & 89767e—05 3.7529
0.1 % 2? 5.5718¢ — 06  4.0010
03 ;1 ; 19328e-02 -
03 3 i 1.0779e—-03 4.1640
03 1 & 66135e—05 4.0267
03 3 21? 4.1376¢ — 06  3.9985
05 3 7 14057e-02 -
05 5 i 7.0760e—04 43122
05 1 7 40324e-05 4.1332
05 = 2? 2.5167¢ - 06  4.0020
07 : 1 52053¢-03 -
07 5 3 12603¢—04 53681
07 % & 62757¢—06 43278
07 3 2? 3.6523¢ — 07  4.1029
09 : 1 16284e-02 -
0.9 % +  1.1551e—03 3.8174
09 = & 7.6274e—-05 3.9207
09 5 5= 4.8040e—06 3.9889
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Figure 3: The plot of numerical solution and pointwise errors at T = 1/256 and hy = hy = 1/32 with y = 0.2 for example 4.3.

Example 4.4. In this example the new compact ADI scheme is used to solve the following equation

SEDYu(x, y, t) = 327”2‘+§iy‘2‘+f(x,y,t), O<xy<1l 0<t<1,

u(0,y,t) =0,u(l,y,t)=0,
u(x,0,t) =0,u(x,1,t) =0,

u(x,y,0) = x*(1 — x)3 sin(my)e* 2.

The exact solution for this problem is u(x, y,t) = (t* + 1)x*(1 — x)® sin(rty)e*™%Y. Numerical results for time and space
withy = 0.1,0.3,0.5,0.7,0.9 are presented in Table (4), respectively. Figure (4) shows the numerical solutions and

pointwise errors.
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Table 3: Error and experiment order of convergence for different values of y, for example 4.3

y h T lle™]l;., Order
01 ; ; 5340%-01 -
0.1 % = 2.8900e —02  4.2079
01 £ & 21592-03 37425

1 1

01 5 g5 15036e-04 38440
03 3 1 4731le-01 -

03 3 i 27209 -02 4.1200
03 1 7 19246e-03 3.8214
03 3 21? 1.7690e — 04  3.4435
05 3§ 7 398l4e-01 -

05 5 3= 22690e—02 4.1331
05 + &4 17522¢—-03 3.6948
05 = 2? 2.1784¢ - 04 3.0078
07 § 1 3.048%-01 -

07 5 3 1500le—02 4.3451
07 + &4 143220-03 3.3888
07 3 2? 2.2312¢ - 04 2.6823
09 : 1 1815-01 -

0.9 % & 51344¢-03 5.1724
09 + &4 35669 —04 38474
09 & 5= 44063¢—05 3.0170

Numerical solution Pointwise errors
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Figure 4: The plot of numerical solution and pointwise errors at T = 1/256 and hy = hy = 1/32 with y = 0.2 for example 4.4.

5. Conclusions

In this paper, we constructed a high-order compact alternating direction implicit method for the solution
of two dimensional time-fractional diffusion equation with Caputo-Fabrizio derivative. The time fractional
derivative of the mentioned equation approximated by a scheme of order O(7?) and spatial derivatives
replaced with a fourth order compact difference scheme. We prove that the scheme is unconditionally
stable for y € (0,1). Numerical results confirmed the theoretical results of the proposed scheme, i.e the
scheme has fourth order of accuracy in space.
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Table 4: Error and experiment order of convergence for different values of y, for example 4.4

Yy h T lle™]l;., Order
01 § ;1 97182¢-02 -
0.1 % = 7.9542¢—03 3.6109
01 & 4 5328le—04 3.9000
0.1 % 2?% 3.6008¢ — 05  3.8872
03 1 § 87864e—02 -
03 i 64657¢—03 3.7644
03 1 o 44755e—-04 3.8526
0.3 % 2%6 3.4778¢— 05  3.6858
05 1 1 75959 —02 -
05 £ i 5.01520e—03 3.9208
05 = =z 3.6417¢-04 3.7836
0.5 % 2?% 3.6070e — 05  3.3357
07 1 1 6.035%-02 -
07 % 3 3.1687¢—03 42516
07 1 = 26388¢—-04 35859
07 % Q?Lé 3.3105¢ — 05  2.9948
09 ; 3 40009 - 02 -
09 5 3 11959 -03 5.0642
09 % & 7.1557¢—-05 4.0629
09 % 5 64832e-06 4.0629
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