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Abstract. In this paper we provide a detailed study of the Banach space of strongly (p, q)-summable
sequences. We prove that this space is a topological dual of a class of mixed (s, p)-summable sequences,
showing in this way new properties of this space. We apply these results to obtain the characterization of
the adjoints of (r, p, q)-summing operators.

1. Introduction

In 1973, the Banach space of strongly p-summable sequences was defined by Cohen [4]. He used this
space to study and characterize the class of strongly p-summing operators. After this, in 1976, Apiola studied
the duality relations between the space of strongly p-summable sequences, the absolutely p-summable
sequences and weakly p-summable sequences (see [1, Section 2]) and applied these relations to characterize
the adjoints of absolutely (p, q)-summing and Cohen (p, q)-nuclear operators. The 1982 paper by Roshdi
Khalil [7] is another cornerstone in this line of thought. He introduced there the Banach space of strongly
(p, q)-summable sequences, extending the space of strongly p-summable sequences in a natural way, and
found his dual. In 2002, Arregui and Blasco published the paper [2], describing some properties of this
space but under the name of (p, q)-summing sequences. In the famous book [9] we find another interesting
sequence space: the space of mixed (s, p)-summable sequences (see also [8]).

In this work, we continue the study of the Banach space of strongly (p, q)-summable sequences. We
shall begin by showing that this space coincides with the one of (p, q)-summing sequences (presented by
Arregui and Blasco). We investigate the duality between the space of strongly (p, q)-summable sequences
and the space of mixed (s, p)-summable sequences, obtaining in this way some relevant properties of this
space. Also, we give an application to (r, p, q)-summing operators introduced by Pietsch in [9].

The paper is organized as follows. After this introduction, in Section 2 we recall some notation and
basic facts on some classes of vector-valued sequences. In Section 3 we focus in the study of strongly
(p, q)-summable sequences, and we show our main result: the space of mixed (s, p)-summable sequences
is a predual of the space of strongly (q∗, s∗)-summable sequences. Also, we compare this space with the
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spaces of absolutely p-summable sequences and strongly p-summable sequences, and we prove an inclusion
theorem. Finally, Section 4 is devoted to characterize operators that belong to the space of (r, p, q)-summing
operators by defining the associated operator between adequate sequence spaces.

2. Notation and preliminaries

Throughout this paper we use standard Banach space notation. Let X be a Banach space over the scalar
field K (either R or C ), BX is the closed unit ball of X and X∗ is the topological dual of X. Let 1 ≤ p ≤ ∞,
we write p∗ for the real number satisfying 1/p + 1/p∗ = 1. The symbol XN will denote the sequences with
values in X.

Let `p (X) the Banach space of all absolutely p-summable sequences (xn)n in X with the norm

∥∥∥(xn)n

∥∥∥
`p(X) =

∑
n≥1

‖xn‖
p


1
p

,

and we have the isometric isomorphism identification `p(X)∗ = `p∗ (X∗).
We denote by `p,ω (X) the Banach space of all weakly p-summable sequences (xn)n in X with the norm

∥∥∥(xn)n

∥∥∥
`p,ω(X) = sup

‖x∗‖X∗≤1

∑
n≥1

|x∗(xn)|p


1
p

.

If p = ∞ we are restricted to the case of bounded sequences and in `∞ (X) we use the sup norm. If we
take X = K, then the spaces `p (K) and `p,ω (K) coincides and we denote `p (K) by `p. If 1 ≤ p ≤ s ≤ ∞, we
consider the real number r satisfying 1/r + 1/s = 1/p.

A sequence (xn)n ∈ XN is said to be mixed (s, p)-summable if there exists a sequence τ = (τn)n ∈ `r and a
sequence x0 = (x0

n)n ∈ `s,ω (X) such that for all n ∈Nwe have

xn = τn · x0
n. (1)

We denote by `m(s,p)(X) the Banach space of all mixed (s, p)-summable sequences of elements of X with the
norm

∥∥∥(xn)n

∥∥∥
`m(s,p)(X)

= inf ‖(τn)n‖`r

∥∥∥∥(x0
n

)
n

∥∥∥∥
`s,ω(X)

,

where the infimum is taken over all possible representations of x in the form (1).
Note that if 1 ≤ p, s1, s2 ≤ ∞ such that s1 ≤ s2, then

`m(s1,p)(X) ⊂ `m(s2,p)(X), (2)

with ‖(xn)n‖`m(s2 ,p)(X) ≤ ‖(xn)n‖`m(s1 ,p)(X), for all (xn)n ∈ `m(s1,p)(X).
If s = p we have

`m(p,p) (X) = `p,ω (X) , (3)

with ‖·‖`m(p,p)(X) = ‖·‖`p,ω(X) and for s = +∞we obtain

`m(∞,p) (X) = `p (X) , (4)

with ‖·‖`m(∞,p)(X) = ‖·‖`p(X) .
The space of strongly p-summable sequences (1 < p < +∞) was introduced by Cohen in [4] in order to

give a characterization of the class of strongly p-summing linear operators.
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A sequence (xn)n ∈ XN is strongly p-summable if the series
∞∑

n=1
x∗n(xn) converges for all (x∗n)n ∈ `p∗,ω(X∗).

We denote by `p 〈X〉 the space of strongly p-summable sequences in X which is a Banach space (see [5,
Proposition 2.1.8]) with the norm

∥∥∥(xn)n

∥∥∥
`p〈X〉

:= sup
‖(x∗n)n‖`p∗ ,ω (X∗ )≤1

∣∣∣∣∣∣∣∑n≥1

x∗n(xn)

∣∣∣∣∣∣∣ . (5)

If p = 1 we have `1 〈X〉 = `1(X) with ‖·‖`1〈X〉 = ‖·‖`1(X).
The relationships between the various sequence spaces are given by

`p 〈X〉 ⊂ `p (X) ⊂ `m(s,p) (X) ⊂ `p,ω (X) ,

with ∥∥∥(xn)n

∥∥∥
`p,ω(X) ≤

∥∥∥(xn)n

∥∥∥
`m(s,p)(X)

≤

∥∥∥(xn)n

∥∥∥
`p(X) ≤

∥∥∥(xn)n

∥∥∥
`p〈X〉

,

for all (xn)n ∈ `p 〈X〉 .
Further, Apiola, in [1], shows the duality identifications

`p 〈X〉∗ = `p∗,ω(X∗) and `p,ω(X)∗ = `p∗ 〈X∗〉 .

3. Strongly (p, q)-summable sequences

Roshdi Khalil in [7] introduced the Banach space of strongly (p, q)-summable sequences, `p,q 〈X〉 (1 ≤
p, q ≤ +∞), naturally extending the space of strongly p-summable sequences which described as follows.

A sequence (xn)n in X is strongly (p, q)-summable if
∑

n

∣∣∣x∗n(xn)
∣∣∣p < +∞ for all (x∗n)n ∈ `q∗,ω(X∗). The norm

of (xn)n is given by

‖(xn)n‖`p,q〈X〉 := sup
‖(x∗n)n‖`q∗ ,ω (X∗ )≤1

∑
n≥1

∣∣∣x∗n(xn)
∣∣∣p

1
p

.

For p = 1 we have

`1,q 〈X〉 ≡ `q 〈X〉 , (6)

with ‖·‖`1,q〈X〉 = ‖·‖`q〈X〉.
Arregui and Blasco in [2] introduced and studied the Banach space, `πp,q (X), of (p, q)-summing sequences

(1 ≤ p, q < ∞), to be the space of all sequence in X such that for some constant C ≥ 0 we have n∑
i=1

|x∗i (xi)|p


1
p

≤ C sup
x∈BX

 n∑
i=1

|x∗i (x)|q


1
q

.

The smallest constant C such that the above inequality holds is the norm of (xn)n ∈ `πp,q (X), and is denoted
by πp,q((xn)n).

In the following proposition we show that the spaces `πp,q∗ (X) and `p,q 〈X〉 are coincides. The proof is
straightforward using the closed graph theorem and will be omitted.
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Proposition 3.1. The sequence (xn)n ∈ XN is (p, q∗)-summing sequence if and only if it is strongly (p, q)-summable
sequence. Moreover, we have

‖(xn)n‖`p,q〈X〉 = πp,q∗ ((xn)n).

The following theorem asserts that the topological dual of `p,q 〈X〉 is the product space `p∗ · `q∗,ω(X∗), i.e.
the set of all elements of the form x.y such that x ∈ `p∗ and y ∈ `q∗,ω(X∗) (see [7, Theorem 1.3]). Pietsch in [9,
Page 225] mentioned that this set is exactly the Banach space `m(q∗,s∗)(X∗) such that 1

s∗ = 1
p∗ + 1

q∗ .

Theorem 3.2. Let 1 ≤ p, q, s ≤ +∞ such that 1
s∗ = 1

p∗ + 1
q∗ . The space `m(q∗,s∗)(X∗) is isometrically isomorphic to

(`p,q 〈X〉)∗ through the mapping ψ given by

ψ((x∗n)n)((xn)n) =
∑
n≥1

x∗n(xn),

for every (x∗n)n ∈ `m(q∗,s∗)(X∗) and (xn)n ∈ `p,q 〈X〉.

Remark 3.3. The duality identification (`p,q 〈X〉)∗ ≡ `m(q∗,s∗)(X∗) yields a new formula for the norm ‖·‖`p,q〈X〉 ,

‖(xn)n‖`p,q〈X〉 = sup
‖(x∗n)n‖`m(q∗ ,s∗ ) (X∗)≤1

∣∣∣∣∣∣∣∑n≥1

x∗n(xn)

∣∣∣∣∣∣∣ . (7)

Consequently, we obtain a special case of the strongly (p, q)-summable sequences.

Corollary 3.4. If q = 1 then `p,1 〈X〉 = `p(X) with ‖·‖`p,1〈X〉 = ‖·‖`p(X).

Proof. For all (xn)n ∈ `p(X), by (4) we have

‖(xn)n‖`p,1〈X〉 = sup
‖(x∗n)n‖`m(∞,p∗ ) (X∗ )≤1

∣∣∣∣∣∣∣∑n≥1

x∗n(xn)

∣∣∣∣∣∣∣
= sup
‖(x∗n)n‖`p∗ (X∗ )≤1

∣∣∣∣∣∣∣∑n≥1

x∗n(xn)

∣∣∣∣∣∣∣
= ‖(xn)n‖`p(X) < ∞.

We can use (2) and (7) to establish useful inclusion relations between `p,q 〈X〉.

Proposition 3.5. Let 1 ≤ p1, p2, q1, q2, s ≤ ∞ such that 1 + 1
s = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
, if q1 ≤ q2 then p2 ≤ p1 and we

have `p2,q2 〈X〉 ⊂ `p1,q1 〈X〉 . In this case we have ‖(xn)n‖`p1 ,q1 〈X〉
≤ ‖(xn)n‖`p2 ,q2 〈X〉

, for all (xn)n ∈ `p2,q2 〈X〉 .

In the following proposition we prove a relationship between the space of absolutely p-summable sequences,
strongly p-summable sequences and strongly (p, q)-summable sequences.

Proposition 3.6. Let 1 ≤ p, q ≤ +∞, we have the inclusions `p(X) ⊂ `p,q 〈X〉 and `q 〈X〉 ⊂ `p,q 〈X〉. In addition
‖·‖`p,q〈X〉 ≤ ‖·‖`p(X) and ‖·‖`p,q〈X〉 ≤ ‖·‖`q〈X〉 .

Proof. If (xn)n ∈ `p(X) we have

‖(xn)n‖`p,q〈X〉 ≤ sup
‖(x∗n)n‖`∞,ω (X∗ )≤1

∥∥∥(x∗n(xn))n

∥∥∥
`p

= ‖(xn)n‖`p,1〈X〉 = ‖(xn)n‖`p(X) < ∞.
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Similarly, if (xn)n ∈ `q 〈X〉 ,

‖(xn)n‖`p,q〈X〉 ≤ sup
‖(x∗n)n‖`q∗ ,ω (X∗ )≤1

∥∥∥(x∗n(xn))n

∥∥∥
`1

= ‖(xn)n‖`1,q〈X〉 = ‖(xn)n‖`q〈X〉 < ∞.

In order to give the proof of the main theorem we need the following results.

Lemma 3.7. Let (xn)n ∈ `p,q 〈X〉. Then,

‖(xn)n‖`p,q〈X〉 = sup
‖(αn)n‖`p∗

≤1

∥∥∥(αnxn)n

∥∥∥
`q〈X〉

. (8)

Proof. Let (xn)n ∈ `p,q 〈X〉, by using the duality between the spaces `p and `p∗ we obtain

‖(xn)n‖`p,q〈X〉 = sup
‖(x∗n)n‖`q∗ ,ω

≤1

∥∥∥(x∗n(xn))n

∥∥∥
`p

= sup
‖(x∗n)n‖`q∗ ,ω

≤1

sup
‖(αn)n‖`p∗

≤1

∣∣∣∣∣∣∣∑n≥1

αnx∗n(xn)

∣∣∣∣∣∣∣
= sup
‖(αn)n‖`p∗

≤1
‖(αnxn)n‖`q〈X〉 .

Lemma 3.8. [3, Page 526]. For all (x∗n)n ∈ `p 〈X∗〉 we have∥∥∥(x∗n)n

∥∥∥
`p〈X∗〉

= sup
‖(xn)n‖`p∗ ,ω (X)≤1

∥∥∥(x∗n (xn))n

∥∥∥
`1
. (9)

Proposition 3.9. For each (x∗n)n ∈ `p,q 〈X∗〉, we have∥∥∥(x∗n)n

∥∥∥
`p,q〈X∗〉

= sup
‖(xn)n‖`q∗ ,ω

≤1

∥∥∥(x∗n(xn))n

∥∥∥
`p
. (10)

Proof. Let (x∗n)n ∈ `p,q 〈X∗〉 . By (8) and (9) we get∥∥∥(x∗n)n

∥∥∥
`p,q〈X∗〉

= sup
‖(αn)n‖`p∗

≤1

∥∥∥(αnx∗n
)

n

∥∥∥
`q〈X∗〉

= sup
‖(αn)n‖`p∗

≤1
sup

‖(xn)n‖`q∗ ,ω
≤1

∥∥∥(αnx∗n(xn)
)

n

∥∥∥
`1

= sup
‖(xn)n‖`q∗ ,ω

≤1
sup

‖(αn)n‖`p∗
≤1

∥∥∥(αnx∗n(xn)
)

n

∥∥∥
`1

= sup
‖(xn)n‖`q∗ ,ω

≤1

∥∥∥(x∗n(xn))n

∥∥∥
`p
.

Now we are ready to prove the main theorem. This result asserts that the space of mixed (s, p)-summable
sequences is a predual of `q∗,s∗ 〈X∗〉.
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Theorem 3.10. If 1 ≤ p, q, s ≤ +∞ such that 1
q + 1

s = 1
p then we have the isometric isomorphic identification(

`m(s,p) (X)
)∗
≡ `q∗,s∗ 〈X∗〉 .

through the mapping T : `q∗,s∗ 〈X∗〉 −→
(
`m(s,p)(X)

)∗
defined by

T(
(
x∗n

)
n)((xn)n) =

∑
n≥1

x∗n(xn),

for all
(
x∗n

)
n ∈ `q∗,s∗ 〈X∗〉 and (xn)n ∈ `m(s,p)(X).

Proof. First note that 1
q∗ + 1

s∗ = 1 + 1
p∗ . It is easy to see that the correspondence T is linear. We take(

x∗n
)

n ∈ `q∗,s∗ 〈X∗〉 and let (xn)n = (τnx0
n)n ∈ `m(s,p)(X) where (τn)n ∈ `q and (x0

n)n ∈ `s,ω(X). Hence, by Hölder’s
inequality it follows that∣∣∣∣∣∣∣∑n≥1

x∗n(xn)

∣∣∣∣∣∣∣ ≤∑
n≥1

|τn|

∣∣∣∣x∗n (
x0

n

)∣∣∣∣
≤ ‖(τn)n‖`q

∥∥∥∥(x∗n
(
x0

n

)
)n

∥∥∥∥
`q∗

≤ ‖(τn)n‖`q

∥∥∥∥(x0
n

)
n

∥∥∥∥
`s,ω(X)

sup
‖(zn)n‖`s,ω (X)≤1

∥∥∥(x∗n (zn))n

∥∥∥
`q∗

= ‖(τn)n‖`q

∥∥∥∥(x0
n

)
n

∥∥∥∥
`s,ω(X)

∥∥∥(x∗n)n

∥∥∥
`q∗ ,s∗ 〈X∗〉

.

Since this holds for all possible factorization of the form xn = τnx0
n, it follows that,∣∣∣T(

(
x∗n

)
n)((xn)n)

∣∣∣ ≤ ‖(xn)n‖`m(s,p)(X)

∥∥∥(x∗n)n

∥∥∥
`q∗ ,s∗ 〈X∗〉

.

Since (xn)n is arbitrary it follows that∥∥∥T(
(
x∗n

)
n)
∥∥∥ ≤ ∥∥∥(x∗n)n

∥∥∥
`q∗ ,s∗ 〈X∗〉

.

This is implies that T is well-defined and continuous. Now consider the linear operator S :
(
`m(s,p)(X)

)∗
−→

`q∗,s∗ 〈X∗〉 given by S(1) =
(
1 ◦ ϕn

)
n where 1 ∈

(
`m(s,p)(X)

)∗
and ϕn : X −→ `m(s,p)(X) is the linear operator

defined by ϕn(x) = (0, · · · , 0, x, 0, · · · ) with x placed in the n-th position. Using (10) and the duality between
`q and `q∗ we obtain∥∥∥(1 ◦ ϕn

)
n

∥∥∥
`q∗ ,s∗ 〈X∗〉

= sup
‖(xn)n‖`s,ω (X)≤1

∥∥∥(1 ◦ ϕn(xn)
)

n

∥∥∥
`q∗

= sup
‖(xn)n‖`s,ω (X)≤1

sup
‖(αn)n‖`q≤1

∣∣∣∣∣∣∣∑n≥1

1 ◦ ϕn(αnxn)

∣∣∣∣∣∣∣
= sup
‖(xn)n‖`s,ω (X)≤1

sup
‖(αn)n‖`q≤1

∣∣∣1 ((αnxn)n)
∣∣∣

≤

∥∥∥1∥∥∥ sup
‖(xn)n‖`s,ω (X)≤1

sup
‖(αn)n‖`q≤1

‖(αnxn)n‖`m(s,p)(X)

≤

∥∥∥1∥∥∥ sup
‖(xn)n‖`s,ω (X)≤1

sup
‖(αn)n‖`q≤1

‖(αn)n‖`q
‖(xn)n‖`s,ω(X)

≤

∥∥∥1∥∥∥ < ∞.
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This means that
(
1 ◦ ϕn

)
n ∈ `q∗,s∗ 〈X∗〉 and we can conclude that S is well-defined, continuous and ‖S‖ ≤ 1.

On the other hand, a straightforward calculation shows that S and T are inverses. Finally, if (x∗n)n ∈ `q∗,s∗ 〈X∗〉
then ∥∥∥T((x∗n)n)

∥∥∥ ≤ ∥∥∥(x∗n)n

∥∥∥
`q∗ ,s∗ 〈X∗〉

=
∥∥∥S ◦ T((x∗n)n)

∥∥∥
`q∗ ,s∗ 〈X∗〉

≤

∥∥∥T((x∗n)n)
∥∥∥ .

According to the above theorem and Hahn-Banach theorem, we have the following result.

Corollary 3.11. Let 1 ≤ p, q, s ≤ +∞ such that 1
q + 1

s = 1
p . For every (xn)n ∈ `m(s,p)(X) we have,

‖(xn)n‖`m(s,p)(X) = sup
‖(x∗n)n‖`q∗ ,s∗ 〈X∗〉

≤1

∣∣∣∣∣∣∣∑n≥1

x∗n(xn)

∣∣∣∣∣∣∣ .
A direct consequence of Theorem 3.2 and Theorem 3.10 is the following.

Corollary 3.12. We have the two isometric isomorphism identifications

(i) `p,q 〈X〉∗∗ ≡ `p,q 〈X∗∗〉 .

(ii) `m(s,p)(X)∗∗ ≡ `m(s,p)(X∗∗).

Using the principle of local reflexivity and previous corollary we obtain the following results.

Proposition 3.13. Let X be a Banach space and 1 ≤ p, q, s ≤ +∞.

1. If 1
p = 1

q + 1
s and (x∗n)n ∈ `m(s,p)(X∗) then

‖(x∗n)n‖`m(s,p)(X∗) = sup
‖(xn)n‖`q∗ ,s∗ 〈X〉≤1

∣∣∣∣∣∣∣∑n

x∗n(xn)

∣∣∣∣∣∣∣ .
2. If 1

s∗ = 1
q∗ + 1

p∗ and (x∗n)n ∈ `p,q 〈X∗〉 then

‖(x∗n)n‖`p,q〈X∗〉 = sup
‖(xn)n‖`m(q∗ ,s∗) (X)≤1

∣∣∣∣∣∣∣∑n

x∗n(xn)

∣∣∣∣∣∣∣ .
Proof. 1) Let (x∗n)n ∈ `m(s,p)(X∗). Since `q∗,s∗ 〈X〉 ⊆ `q∗,s∗ 〈X∗∗〉 ≡

(
`q∗,s∗ 〈X〉

)∗∗
, we have

‖(x∗n)n‖`m(s,p)(X∗) = sup
‖(x∗∗n )n‖`q∗ ,s∗ 〈X∗∗〉

≤1

∣∣∣∣∣∣∣∑n

x∗∗n (x∗n)

∣∣∣∣∣∣∣ ≥ sup
‖(xn)n‖`q∗ ,s∗ 〈X〉≤1

∣∣∣∣∣∣∣∑n

x∗n(xn)

∣∣∣∣∣∣∣ .
For the reverse inequality, let E be the linear space spanned by the finite set

{
x∗∗1 , ..., x

∗∗

N

}
⊂ X∗∗. By the principle

of local reflexivity for each ε > 0 there exists a bounded linear operator u : E −→ X such that ‖u‖ ≤ 1 and∣∣∣∣x∗∗j (x∗j) − x∗j(u(x∗∗j ))
∣∣∣∣ ≤ ε

N
for all x∗j ∈ X∗, j = 1, ...,N. Then∑

j≤N

∣∣∣∣x∗∗j (
x∗j

)∣∣∣∣ ≤ ε +
∑
j≤N

∣∣∣∣x∗j(u(x∗∗j ))
∣∣∣∣

≤ ε +
∥∥∥(x∗∗n )n

∥∥∥
`q∗ ,s∗ 〈X

∗∗〉

sup
‖(xn)n‖`q∗ ,s∗ 〈X〉

≤1

∑
n≥1

∣∣∣x∗n (xn)
∣∣∣ .
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Since this holds for every N ∈N and ε > 0 it follows that

‖(x∗n)n‖`m(s,p)(X∗) = sup
‖(x∗∗n )n‖`q∗ ,s∗ 〈X∗∗〉

≤1

∑
n≥1

∣∣∣x∗∗n (
x∗n

)∣∣∣ ≤ sup
‖(xn)n‖`q∗ ,s∗ 〈X〉

∑
n≥1

∣∣∣x∗n (xn)
∣∣∣ .

Part (2) is proved in a similar way.

Remark 3.14. If we apply Theorem 3.2 and Theorem 3.10 for some extreme cases of parameters p, q and s, we obtain
the well-known duality identifications for the sequence spaces `q 〈X〉 , `p(X) and `p,ω(X).

(i) In the Theorem 3.2 if we take p = 1, then by (3) and (6) we obtain(
`q 〈X〉

)∗
≡

(
`1,q 〈X〉

)∗
≡ `m(q∗,q∗)(X∗) ≡ `q∗,ω(X∗).

(ii) In the Theorem 3.2 if we take p = s, then by (4) and Corollary 3.4 we obtain(
`p(X)

)∗
≡

(
`p,1 〈X〉

)∗
≡ `m(+∞,p∗)(X∗) ≡ `p∗ (X∗).

(iii) In the Theorem 3.10 if we take s = p, then we obtain(
`p,ω(X)

)∗
≡

(
`m(p,p)(X)

)∗
≡ `1,p∗ 〈X∗〉 ≡ `p∗ 〈X∗〉 .

In the following proposition we give the relation between the space of the strongly (q, s)-summable
sequences and the spaces of the absolutely (strongly) p-summable sequences.

Proposition 3.15. Let 1 ≤ p, q, s ≤ ∞ such that 1 + 1
p = 1

q + 1
s then

`p 〈X〉 ⊂ `q,s 〈X〉 ⊂ `p(X).

In this case we have

‖(xn)n‖`p(X) ≤ ‖(xn)n‖`q,s〈X〉 ≤ ‖(xn)n‖`p〈X〉 ,

for each (xn)n ∈ `p 〈X〉 .

Proof. Since 1
p∗ = 1

q∗ + 1
s∗ we get `p∗ (X∗) ⊂ `m(s∗,p∗)(X∗) ⊂ `p∗,ω(X∗). Let (xn)n ∈ `p 〈X〉. From the duality between

`p(X) and `p∗ (X∗) and equality (7), we obtain

‖(xn)n‖`p(X) = sup
‖(x∗n)n‖`p∗ (X∗ )≤1

∣∣∣∣∣∣∣∑n≥1

x∗n(xn)

∣∣∣∣∣∣∣
≤ sup
‖(x∗n)n‖`m(s∗ ,p∗ ) (X∗)≤1

∣∣∣∣∣∣∣∑n≥1

x∗n(xn)

∣∣∣∣∣∣∣
= ‖(xn)n‖`q,s〈X〉

≤ sup
‖(x∗n)n‖`p∗ ,ω (X∗ )≤1

∣∣∣∣∣∣∣∑n≥1

x∗n(xn)

∣∣∣∣∣∣∣
= ‖(xn)n‖`p〈X〉 < ∞.

Regarding Proposition 3.15, let us show with an example the difference between `q,s 〈X〉 and `p(X).
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Example 3.16. Let (en)n the unit vector basis of `2. The sequence (xn)n defined by xn = 1
√

n
en belongs to `∞(`2) but

it is not in `2,2 〈`2〉. In order to see this, ‖(xn)n‖`∞(`2) = supn
1
√

n
= 1. On the other hand, since

∥∥∥(e∗n)n

∥∥∥
`2,ω(`2)

= ‖(en)n‖`2,ω(`2) = 1,

we have that

‖(xn)n‖`2,2〈`2〉
≥

∥∥∥(e∗n(xn))n

∥∥∥
`2

=

∑
n≥1

1
n


1
2

= +∞.

4. Applications to (r, p, q)-summing operators

Let X ⊂ XN and Y ⊂ YN be spaces of vector valued sequences in X and Y respectively. A linear
continuous operator T ∈ L(X,Y), between Banach spaces, induces a linear operator T̂ mapping X into YN

in the following way: T̂((xn)n) = (T(xn))n for all (xn)n ∈ X. In the sequel, if T̂ (X) ⊂ Y, we say that T transfers
X intoY.

Throughout this section, let 1 ≤ p, q, r ≤ ∞ such that 1
r ≤

1
p + 1

q . The definition of (r, p, q)-summing
operators is due to Pietsch [9, Section 17.1 ]

Definition 4.1. An operator T ∈ L(X,Y) is (r, p, q)-summing, in symbols T ∈ Πr,p,q(X,Y), if there is C > 0 such
that ∥∥∥(y∗i (T(xi)))1≤i≤n

∥∥∥
`r
≤ C ‖(xi)1≤i≤n‖`p,ω(X)

∥∥∥(y∗i )1≤i≤n

∥∥∥
`q,ω(Y∗) , (11)

for all n ∈N, (xi)1≤i≤n ⊂ X and (y∗i )1≤i≤n ⊂ Y∗.

This is equivalent to say that T induces a bounded bilinear map

T̄ : `p,ω (X) × `q,ω (Y∗) −→ `r, T̄
(
(xn)n ,

(
y∗n

)
n

)
=

(〈
xn, y∗n

〉)
n ,

(see [6, Page 196]). Note that Πr,p,q(X,Y) is a Banach space equipped with the norm πr,p,q(T) which is the
smallest constant C satisfying the defining inequality or πr,p,q(T) =

∥∥∥T̄
∥∥∥.

As in the case of p-summing operators, the natural way of presenting the summability properties of
(r, p, q)-summing operators is by defining the corresponding operator T̂ between `p,ω(X) and `r,q∗ 〈Y〉.

Proposition 4.2. The operator T ∈ L(X,Y) is (r, p, q)-summing if and only if T transfers `p,ω(X) into `r,q∗ 〈Y〉 .

Proof. Indeed, starting from (11) and pass to the limit for n tending to∞we obtain

‖(T(xn))n‖`r,q∗ 〈Y〉 ≤ πr,p,q(T) ‖(xn)n‖`p,ω(X) , (12)

for all (xn)n ∈ `p,ω(X). Then it follows that T̂ : `p,ω(X) −→ `r,q∗ 〈Y〉 is well-defined and T̂
(
`p,ω(X)

)
⊂ `r,q∗ 〈Y〉 .

In addition T̂ is continuous with norm ≤ πr,p,q(T). Suppose conversely that T transfers `p,ω(X) into `r,q∗ 〈Y〉,
an appeal to the closed graph theorem shows that T̂ is continuous and

‖(T(xi))1≤i≤n‖`r,q∗ 〈Y〉 ≤

∥∥∥∥T̂
∥∥∥∥ ‖(xi)1≤i≤n‖`p,ω(X) ,

and so T ∈ Πr,p,q(X,Y) with πr,p,q(T) ≤
∥∥∥∥T̂

∥∥∥∥.
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In the next result we give a new characterization of the (r, p, q)-summing operators by using the Ba-
nach spaces of strongly q∗-summable and mixed (p, s)-summable sequences obtaining in this way another
corresponding operator T̂ of the (r, p, q)-summing operator T.

Theorem 4.3. Let p, q, r, s ≥ 1 such that 1
s = 1

r∗ + 1
p . The operator T ∈ L(X,Y) is (r, p, q)-summing if and only if

there is a constant C > 0 such that for any x1, ..., xn ∈ X we have

‖(T(xi))1≤i≤n‖`q∗ 〈Y〉 ≤ C ‖(xi)1≤i≤n‖`m(p,s)(X) . (13)

Proof. Suppose that T ∈ Πr,p,q(X,Y). Let
(
y∗i

)
1≤i≤n

⊂ Y∗, (xi)1≤i≤n ⊂ X and ε > 0. Choose (αi)1≤i≤n ⊂ K and

(zi)1≤i≤n ⊂ X such that xi = αizi, i = 1, ...,n and ‖(αi)1≤i≤n‖`r∗

∥∥∥(zi)1≤i≤n

∥∥∥
`p,ω(X)

≤ (1 + ε) ‖(xi)1≤i≤n‖`m(p,s)(X). By
Hölder’s inequality we get∣∣∣∣∣∣∣ ∑1≤i≤n

y∗i (T(xi))

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ ∑1≤i≤n

αiy∗i (T(zi))

∣∣∣∣∣∣∣
≤ ‖(αi)1≤i≤n‖`r∗

∥∥∥∥(y∗i (T(zi))
)∥∥∥∥
`r

≤ πr,p,q(T)‖(αi)1≤i≤n‖`r∗

∥∥∥(zi)1≤i≤n

∥∥∥
`p,ω(X)

∥∥∥∥(y∗i
)

1≤i≤n

∥∥∥∥
`q,ω(Y∗)

.

By taking the supremum over all
(
y∗i

)
1≤i≤n

such that
∥∥∥∥(y∗i

)
1≤i≤n

∥∥∥∥
`q,ω(Y∗)

≤ 1 we obtain

‖(T(xi))1≤i≤n‖`q∗ 〈Y〉 ≤ πr,p,q(T)(1 + ε) ‖(xi)1≤i≤n‖`m(p,s)(X) .

Since this holds for every ε > 0, we obtain (13).
Suppose conversely that the operator T satisfies the condition (13). For all

(
y∗i

)
1≤i≤n

⊂ Y∗, (xi)1≤i≤n ⊂ X
and (αi)1≤i≤n ⊂ Kwe have∣∣∣∣∣∣∣ ∑1≤i≤n

αiy∗i (T(xi))

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ ∑1≤i≤n

y∗i (T(αixi))

∣∣∣∣∣∣∣
≤

∥∥∥∥(y∗i
)

1≤i≤n

∥∥∥∥
`q,ω(Y∗)

‖(T(αixi))1≤i≤n‖`q∗ 〈Y〉

≤ C
∥∥∥∥(y∗i

)
1≤i≤n

∥∥∥∥
`q,ω(Y∗)

‖(αixi)1≤i≤n‖`m(p,s)(X)

≤ C
∥∥∥∥(y∗i

)
1≤i≤n

∥∥∥∥
`q,ω(Y∗)

‖(αi)1≤i≤n‖`r∗

∥∥∥(xi)1≤i≤n

∥∥∥
`p,ω(X)

.

Taking the supremum over all (αi)1≤i≤n ⊂ K such that
∥∥∥(αi)1≤i≤n

∥∥∥
`r∗
≤ 1 we get∥∥∥∥(y∗i (T(xi))

)
1≤i≤n

∥∥∥∥
`r
≤ C

∥∥∥(xi)1≤i≤n

∥∥∥
`p,ω(X)

∥∥∥∥(y∗i
)

1≤i≤n

∥∥∥∥
`q,ω(Y∗)

.

The next corollary and its proof are similar to Proposition 4.2 except that (13) is used instead of (12).

Corollary 4.4. T ∈ Πr,p,q(X,Y) if and only if T transfers `m(p,s)(X) into `q∗ 〈Y〉 . In addition we have πr,p,q(T) =
∥∥∥∥T̂

∥∥∥∥.

Although the following result is essentially already known (it was proved by Pietsch, see [9, Theorem
17.1.5]), we write a new direct proof that highlights the role of the dual space of `m(s,p)(X) and `p,q 〈X〉 .
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By using the above corollary, Proposition 4.2, the identifications
(
`m(p,s)(X)

)∗
≡ `r,p∗ 〈X∗〉 and

(
`q∗ 〈Y〉

)∗
≡

`q,ω(Y∗) and taking into account that the adjoint of the operator T̂ : `m(p,s)(X) −→ `q∗ 〈Y〉 can be identified
with the operator

T̂∗ : `q,ω(Y∗) −→ `r,p∗ 〈X∗〉 ; T̂∗((y∗i )i) = (T∗(y∗i ))i,

we have the following.

Theorem 4.5. The operator T belongs to Πr,p,q(X,Y) if and only if T∗belongs to Πr,q,p(Y∗,X∗). Furthermore,πr,p,q(T) =
πr,q,p(T∗).

It is easy to prove the following result.

Corollary 4.6. The operator T belongs to Πr,p,q(X,Y) if and only if its bi-adjoint T∗∗ belongs to Πr,p,q(X∗∗,Y∗∗). In
addition, πr,p,q(T) = πr,p,q(T∗∗).

References

[1] H. Apiola, Duality between spaces of p-summable sequences, (p, q)-summing operators and characterizations of nuclearity,
Mathematische Annalen 219 (1976) 53–64.

[2] J.L. Arregui and O. Blasco, (p, q)-summing sequences, Journal of Mathematical Analysis and Applications 274 (2002) 812-–827.
[3] Q. BU and J. Diestel, Observations about the projective tensor product of Banach spaces I—, Quaestiones Mathematicae, 24 (2001)

519–533.
[4] J.S. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Mathematische Annalen 201 (1973) 177-–200.
[5] J.S. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Dissertation, University of Maryland College Park

Md Jan 1970.
[6] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press. 1995.
[7] R. Khalil, On some Banach space sequences, Bulletin of the Australian Mathematical Society 15 (1982) 231–241.
[8] Mário C. Matos, Mappings between Banach spaces that send mixed summable sequences into absolutely summable sequences,

Journal of Mathematical Analysis and Applications 297 (2004) 833–851.
[9] A. Pietsch, Operator ideals, North Holland Mathematical Library 20, 1980.


