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Strongly (p, 9)-Summable Sequences
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Abstract. In this paper we provide a detailed study of the Banach space of strongly (p, q)-summable
sequences. We prove that this space is a topological dual of a class of mixed (s, p)-summable sequences,

showing in this way new properties of this space. We apply these results to obtain the characterization of
the adjoints of (7, p, g)-summing operators.

1. Introduction

In 1973, the Banach space of strongly p-summable sequences was defined by Cohen [4]. He used this
space to study and characterize the class of strongly p-summing operators. After this, in 1976, Apiola studied
the duality relations between the space of strongly p-summable sequences, the absolutely p-summable
sequences and weakly p-summable sequences (see [1, Section 2]) and applied these relations to characterize
the adjoints of absolutely (p, 4)-summing and Cohen (p, g)-nuclear operators. The 1982 paper by Roshdi
Khalil [7] is another cornerstone in this line of thought. He introduced there the Banach space of strongly
(p, 9)-summable sequences, extending the space of strongly p-summable sequences in a natural way, and
found his dual. In 2002, Arregui and Blasco published the paper [2], describing some properties of this
space but under the name of (p, g)-summing sequences. In the famous book [9] we find another interesting
sequence space: the space of mixed (s, p)-summable sequences (see also [8]).

In this work, we continue the study of the Banach space of strongly (p,q)-summable sequences. We
shall begin by showing that this space coincides with the one of (p, g)-summing sequences (presented by
Arregui and Blasco). We investigate the duality between the space of strongly (p, )-summable sequences
and the space of mixed (s, p)-summable sequences, obtaining in this way some relevant properties of this
space. Also, we give an application to (7, p, g)-summing operators introduced by Pietsch in [9].

The paper is organized as follows. After this introduction, in Section 2 we recall some notation and
basic facts on some classes of vector-valued sequences. In Section 3 we focus in the study of strongly
(p, g9)-summable sequences, and we show our main result: the space of mixed (s, p)-summable sequences
is a predual of the space of strongly (4°, s*)-summable sequences. Also, we compare this space with the
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spaces of absolutely p-summable sequences and strongly p-summable sequences, and we prove an inclusion
theorem. Finally, Section 4 is devoted to characterize operators that belong to the space of (7, p, 4)-summing
operators by defining the associated operator between adequate sequence spaces.

2. Notation and preliminaries

Throughout this paper we use standard Banach space notation. Let X be a Banach space over the scalar
field K (either R or C ), By is the closed unit ball of X and X* is the topological dual of X. Let1 < p < oo,
we write p* for the real number satisfying 1/p + 1/p* = 1. The symbol XN will denote the sequences with
values in X.

Let ¢, (X) the Banach space of all absolutely p-summable sequences (x,), in X with the norm

1
:
Huommm={§:Mmﬂ,

n>1

and we have the isometric isomorphism identification £,(X)" = £, (X").
We denote by ¢, (X) the Banach space of all weakly p-summable sequences (x;), in X with the norm

;
00 = Sup [Z Ix* (x,)) P J .

[COMP
Il <1\ 51

If p = oo we are restricted to the case of bounded sequences and in (. (X) we use the sup norm. If we
take X = K, then the spaces ¢, (K) and ¢,, (K) coincides and we denote £, (K) by £,. If 1 <p <s < 00, we
consider the real number r satisfying 1/r + 1/s = 1/p.

A sequence (x,), € XN is said to be mixed (s, p)-summable if there exists a sequence 7 = (7,), € {, and a
sequence x0 = (9, € €, (X) such that for all n € N we have

Xy = Ty - X0 1)

We denote by £y, ) (X) the Banach space of all mixed (s, p)-summable sequences of elements of X with the
norm

(),

where the infimum is taken over all possible representations of x in the form (1).
Note thatif 1 < p,s;,s, < o0 such that s; < s, then

{)m(sl,p) (X) - €m(sz,p) (X)/ (2)

with 16l 00 < Ml 0 Or all (i € b, (X0.
If s = p we have

”(xn)?’l”[m(s,p)(X) =inf “(Tn)nH[, ls,0(X) ’

fm(p,p) (X) = fp,a) (X) 7 (3)
with [[llg,,,.,c0 = IFlls,,.x) and for s = +00 we obtain

fm(oorp) (X) = fp (X) ’ (4)
with [l 00 = [0 -

The space of strongly p-summable sequences (1 < p < +o0) was introduced by Cohen in [4] in order to
give a characterization of the class of strongly p-summing linear operators.
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A sequence (x,), € XN is strongly p-summable if the series ) x;(x,) converges for all (x},), € U w0(X0).
n=1

We denote by ¢, (X) the space of strongly p-summable sequenc;zs in X which is a Banach space (see [5,
Proposition 2.1.8]) with the norm

PIEACH

n>1

: )

“(x”)”“l’,,(X) = sup

| (x;;)n“[p*'w(x*)ﬁl

If p =1 we have {1 (X) = (1(X) with [l x) = Il x)-
The relationships between the various sequence spaces are given by

f}ﬂ <X> - gp (X) c gm(s,p) (X) C gp,w (X) ’

with

||(x”)n||¢7,,,m(X) < ”(x”)n Loy (X) < ”(xﬂ)n”e,,(X) < ”(x")n”fpm ’

for all (x,), € €, (X).
Further, Apiola, in [1], shows the duality identifications

6 (XY =Ly o(X") and  £,,(X)" = £y (X°).

3. Strongly (p, 9)-summable sequences

Roshdi Khalil in [7] introduced the Banach space of strongly (p, q)-summable sequences, ¢, ,;(X) (1 <
p,q < +00), naturally extending the space of strongly p-summable sequences which described as follows.

X, (xn)|” < +o0 for all (x;), € €p,(X"). The norm

A sequence (x,), in X is strongly (p, q)-summable if Z
of (x,), is given by '

1

4
ICt)alle, 0 == sup [2 x:,<xn>|”] :
(xrx)n||(q*,m<x*)ﬁl n>1
For p =1 we have
b4 (X) = £4(X), (6)

with [[flg, ) = [Mle,x)-
Arregui and Blasco in [2] introduced and studied the Banach space, ¢, (X), of (p, 9)-summing sequences
(1 £p,q < ), to be the space of all sequence in X such that for some constant C > 0 we have

[Z Ix:(x,-)lp]p < Csup [Z |x§(x)|q]q :

i=1 xeBy \'i=1

The smallest constant C such that the above inequality holds is the norm of (x,), € £
by 70,4((Xn)n)-

In the following proposition we show that the spaces r, .(X) and ¢, (X) are coincides. The proof is
straightforward using the closed graph theorem and will be omitted.

(X), and is denoted

PA



R. Soualmia et al. / Filomat 34:11 (2020), 3627-3637 3630

Proposition 3.1. The sequence (x,), € XN is (p, q*)-summing sequence if and only if it is strongly (p, q)-summable
sequence. Moreover, we have

”(xn)n”{’p,q(X) = 77];9,11*((xr1)n)-

The following theorem asserts that the topological dual of ¢, ; (X) is the product space ;- - £ ,(X*), i.e.
the set of all elements of the form x.y such that x € {,- and y € ¢, ,(X*) (see [7, Theorem 1.3]). Pietsch in [9,

Page 225] mentioned that this set is exactly the Banach space £, +)(X") such that = = % + ql

Theorem 3.2. Let 1 < p,q,s < +oo such that Sl =
(Cp,q (X)) through the mapping 1 given by

I CHDICHNED PRACH)

n>1

for every (x;) € Cuggs)(X7) and (x)n € € q(X).

» + 7. The space Lo s(X") is isometrically isomorphic to

Remark 3.3. The duality identification (€y,q (X))* = Cigs)(X") yields a new formula for the norm ||llg, xy ,

”(xn)n“t’plq(m = sup X ()] -

||(x:,)n | |{m(q»ys*)<x*)51

n>1
Consequently, we obtain a special case of the strongly (p, 4)-summable sequences.
Corollary 3.4. If g =1 then €,1(X) = £,(X) with ||l ,xy = Ille,x0-

Proof. For all (x,), € {,(X), by (4) we have

X, (%)
n>1

ICndalle, ) = SUP

||(x;l)n||[m(oo (X o<1

sup
“(x:t)"”gf oSt

X, (%Xn)
n>1

”(xn)n”{’p(X) < 0o.

O

We can use (2) and (7) to establish useful inclusion relations between ¢, ; (X).

Proposition 3.5. Let 1 < p1,p2,41,92,5 < o0 such that 1 + ¢ 1 = pll + ql = 12 + = q Jifq < qz then py < py and we
have €y, 4, (X) C €y, 4, {X) . In this case we have ||(x,), ||€ (0 S ||(xn)n||€ ) 7 s for all (x,)u € €y, 4, (X) .

In the following proposition we prove a relationship between the space of absolutely p-summable sequences,
strongly p-summable sequences and strongly (p, 7)-summable sequences.

Proposition 3.6. Let 1 < p,q < +00, we have the inclusions €,(X) C €,,(X) and £;(X) C {,,(X). In addition
Mle, < [Hlle, ) and N1, xp < MMl -
Proof. If (xn)u € £,(X) we have

@l 0 < sup @@,

() | |[oo/(u (X*) =1

= NC)alle, xy = 1Cn)nllg, ) < 0.
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Similarly, if (x,), € £;(X),

Cedalle, 0 < sup [ Gea)al,
(xrz)n | |[q",m(X*)S1

= ||(xn)n||€1lq<x> = ||(xn)n||{’q(x> < 0.
|

In order to give the proof of the main theorem we need the following results.

Lemma 3.7. Let (x,), € €, (X). Then,

”(xn)n”[ (xy = sup “(D‘nxn)n” ]
' £(X
" ”(an)n”(p» <1 H< )

Proof. Let (x,), € ;4 (X), by using the duality between the spaces ¢, and {,- we obtain

Iadlly, 0 = sup |G xa))al|,
@ll, . <1 ’
q @

pIRLEACH

n>1

= sup sup
lesiyll, ., < Il <1

= Ssup ||(anxn)n||€q(x>~
llttn)ally,, <1

O

Lemma 3.8. [3, Page 526]. For all (x;,), € €, (X*) we have

el oy = sup s Gl -

; <
(X )n [Re

Proposition 3.9. For each (x},), € {,,(X"), we have

lCaall, oy = sup (|G Caall, -
’ | Xn n‘ [q*/w51

Proof. Let (x},), € £,4(X"). By (8) and (9) we get

”(xZ)"“eM(x*) = “(a,i:ﬁlf’ . ”(anx:l)n“qmw
P

= sup sup(@nx; @),
@aalle, <L lGully,. , <1

= sup sup ||(a71x:l(x71))n||[l
1Gen)ally , <1 ||(£Yn)n||zpf <1

7w

= sup ||(x2(xn))n“f,, )

@)alle,, <1

O

3631

(8)

©)

(10)

Now we are ready to prove the main theorem. This result asserts that the space of mixed (s, p)-summable

sequences is a predual of {5 s (X").
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Theorem 3.10. If1 <p,q,s < +oo such that ¢ + ¢ = - then we have the isometric isomorphic identification
(o (X0) = Lo (X
through the mapping T : {y s (X*) — (fm(s,p)(X))* defined by

T((),) (o) = Y 2, (),

n>1
for all (x},), € €y s (X*) and (xu)n € s p)(X).
Proof. First note that ql +1 =1+ z%’ It is easy to see that the correspondence T is linear. We take

(%)), € ly s+ (X*) and let (x,), = (tnx0), € Ci(s,p)(X) where (1), € {; and (), € €s,(X). Hence, by Holder’s
inequality it follows that

Zx;(xn) < Z | Txl

X, (xg)

n>1 n>1
< wadulle, |[G65, (x5
< Nl |[(x5),

7%

sup —{|(e; @),

[”“’(X) l[em ”fs,u) (X) <1

(|G

= Tl |[(x5),

e b (XY

Since this holds for all possible factorization of the form x,, = 7,%0, it follows that,
[T @] < M@l 00 [@nl, -
Since (xy,), is arbitrary it follows that

[T < ||(x2)n||a,*,s*<x*>'

This is implies that T is well-defined and continuous. Now consider the linear operator S : (é’,,,(s,p) (X))* —

Uy s (X*) given by S(g) = (g9 © @u), where g € (é’m(slp)(X))* and @, 1 X — lyy)(X) is the linear operator

defined by ¢,(x) =(0,---,0,x,0,---) with x placed in the n-th position. Using (10) and the duality between
{; and {; we obtain

lgo@nll, .oy = sup [[go @utan), |,

| (Xn)n |f5,m(x)§1

= sup sup
||(x")n||f5,m(><)§1 ||(“")n||eq51

Z g © Pulanxy)

n>1

= sup sup |9 ((anxn)n)|

||(x”)n||[5/a,(><)§1 ||(0‘”)r1”[,,51

<|lg

| sup sup ||(a”x”)n||€m(5,p)(x)
| |(xn)n | |[s,m(X)S1 ||(au>n | |€q <1

<|gll  sup sup  l@a)ulle, 1Gn)lle,, 0

||(x”)n”[5,m(X)31 ||(a,,)”||[q§1

< ||g|| < 0.
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This means that (g o ¢,), € {; s (X*) and we can conclude that S is well-defined, continuous and [|S|| < 1.

On the other hand, a straightforward calculation shows that S and T are inverses. Finally, if (x},),, € £ s (X*)
then

@I < 1@dnll,, oy = IS © T@ID, ey < [T
0
According to the above theorem and Hahn-Banach theorem, we have the following result.
Corollary 3.11. Let 1 <p,q,s < +oo such that % + % = ;—7. For every (xu)n € Cu(s,p)(X) we have,

Y )

n>1

||(xn)n||€,,,(5,p>(x) = sup
<1

(S PR
A direct consequence of Theorem 3.2 and Theorem 3.10 is the following.
Corollary 3.12. We have the two isometric isomorphism identifications
(1) £y (X)" = £y (X).
(i) s p)(X)™ = Lings ) (X)-
Using the principle of local reflexivity and previous corollary we obtain the following results.
Proposition 3.13. Let X be a Banach space and 1 < p,q,s5 < +o0.

1. If% = % + % and (x:z)ﬂ € gm(s,p)(X*) then

o)l pxy = sup X (Xn)| -

H(xn)n ”lf]*ﬁ* (X)Sl

n

2. 0f 5 = 5+ g and (x)n € bpq (X°) then

PIEACHIE

e )nlle, xy = sup
Ie)all

m(q*,s

*)(X)Sl

Proof. 1) Let (x;)u € Cn(spy(X"). Since £y (X) € €y (X™) = (£ (X)), we have

NGl 00 = sup

“(x:x*)n | |fq*,s" <XH>S1

>  sup
”(xn)rllllq*rsf <X>Sl

Y )

PIEACH

For the reverse inequality, let E be the linear space spanned by the finite set {xz*, -+, X3 | € X™. By the principle
of local reflexivity for each ¢ > 0 there exists a bounded linear operator u : E — X such that |ju|| < 1 and

3t * * 4 € * * 4
X; (x].) - x].(u(x]. )| < N for all X; € X*,j=1,..,N. Then

Z ¥(x) s e+ Z X))
=N =N
< e+l sup Y [ ()

Cox 5 (X))
TS ||(xn)rz”[qy, sw(X)Sl n>1
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Since this holds for every N € IN and ¢ > 0 it follows that

I alleypexy = sup Y ()< sup Y

(XZ*)nHé’q»,swx**)Sl nx1 Wndalle 00 21

x5, ()|

Part (2) is proved in a similar way. [

Remark 3.14. If we apply Theorem 3.2 and Theorem 3.10 for some extreme cases of parameters p, q and s, we obtain
the well-known duality identifications for the sequence spaces {5 (X}, €,(X) and €, ,(X).

(i) In the Theorem 3.2 if we take p = 1, then by (3) and (6) we obtain
(£,40) = (€104X)) = b (X)) = LX),
(ii) In the Theorem 3.2 if we take p = s, then by (4) and Corollary 3.4 we obtain
(£:(X) = (651 €0) = Loy (X) = £(X).
(iii) In the Theorem 3.10 if we take s = p, then we obtain
(£50(X)) = (bupp(X)) = b1 (XY = £, (X7).

In the following proposition we give the relation between the space of the strongly (g, s)-summable
sequences and the spaces of the absolutely (strongly) p-summable sequences.

Proposition 3.15. Let 1 <p,q,s < cosuch that 1+ 3 = ; + { then
0, (X) C €5 (X) C {p(X).

In this case we have
1Cenlle,x) < NGl xy < NEnllecxy »

for each (x,), € £,(X).

Proof. Since r% = ql + 1 we get £,(X*) C lys pr)(X7) C € o(XY). Let () € €, (X). From the duality between
{,(X) and £,-(X") and equality (7), we obtain

Y )
n>1

“(xn)n”(p(X) = sup

@5l |‘p* o=l

PREACH
n>1

< sup

||(Xf1)n | |("‘(5»,P*)(X")S1

= ||(xn)n||gq,5<x>

< sup

Y )

<1[n>1

||(X;t)ﬂ||zp,'m(x*)f
= ”(xn)n”[p(x) < 0.
|

Regarding Proposition 3.15, let us show with an example the difference between ¢, (X) and ¢,(X).
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Example 3.16. Let (e,), the unit vector basis of €. The sequence (x,), defined by x,, = ‘/Lﬁ

it is not in €5 (£2). In order to see this, ||(x,,)n||€N(€2) =sup, \/Lﬁ = 1. On the other hand, since

e, belongs to oo (£2) but

we have that

€]

trnen) = Nl ) = 1,

1Cn)allessieny = [lE @], = [2 %] = +oo.

n>1

4. Applications to (, p, g)-summing operators

Let X ¢ XN and Y c YN be spaces of vector valued sequences in X and Y respectively. A linear
continuous operator T € £(X,Y), between Banach spaces, induces a linear operator T mapping X into YN

in the following way: ’f((xn)n) = (T(xn))n for all (x,,), € X. In the sequel, if :.I:(X ) C Y, we say that T transfers
Xinto Y.

Throughout this section, let 1 < p,q,7 < oo such that % <
operators is due to Pietsch [9, Section 17.1 ]

% + %. The definition of (7, p,q)-summing

Definition 4.1. An operator T € L(X,Y) is (r,p, q)-summing, in symbols T € I1,,,(X,Y), if there is C > 0 such
that

Wi (TEMis|, < Cll<isall,

o0 [@D1zizall, ey (11)
foralln € N, (xi)1<i<n C X and (y)1<i<n C Y™

This is equivalent to say that T induces a bounded bilinear map

T: fp,w (X) x fq,w YY) — ¢, T((xn)n ’ (y;)n) = ((xn, ]/;»n ’

(see [6, Page 196]). Note that IT,,,(X,Y) is a Banach space equipped with the norm 7, ,(T) which is the

smallest constant C satisfying the defining inequality or 7, ,(T) = HT”
As in the case of p-summing operators, the natural way of presenting the summability properties of

(r,p, q)-summing operators is by defining the corresponding operator T between £, ,(X) and £, (Y).
Proposition 4.2. The operator T € L(X,Y) is (1, p, q)-summing if and only if T transfers €, ,(X) into 4 (Y).

Proof. Indeed, starting from (11) and pass to the limit for # tending to co we obtain
||(T(xn))n||(,/q*<y> < nr,p,q(T) ”(xn)n”gﬂ,m(x) , (12)

for all (x,)u € €,,,(X). Then it follows that T : £,,(X) — €y (Y) is well-defined and T (£,,(X)) € £ (Y).
In addition T is continuous with norm < T,p4(T). Suppose conversely that T transfers £, ,(X) into £, 4 (Y),
an appeal to the closed graph theorem shows that T is continuous and

(T Ccisicnlle, . vy < “TH (xihr<i<nlle, , x) -

and 5o T € T,,,4(X, Y) with 7,,,,(T) < [T]. ©
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In the next result we give a new characterization of the (r,p, g)-summing operators by using the Ba-
nach spaces of strongly g*-summable and mixed (p, s)-summable sequences obtaining in this way another

corresponding operator T of the (7, p,q)-summing operator T.

Theorem 4.3. Let p,q,7,5 > 1such that + = % + 7. The operator T € L(X,Y) is (r, p, q)-summing if and only if
there is a constant C > 0 such that for any x1, ..., X, € X we have

||(T(xi))1si5n”(q*(y> <C ||(xi)151'5n||gm(pys)(x) . (13)

Proof. Suppose that T € IT,,,(X,Y). Let (yl)

(Zi)1<i<n € X such that x; = a;z;, 1 = 1,...,n and [|(a)1<i<nlle,

C Y, (Xi)i<icn € X and € > 0. Choose (@i);<i<, C K and

@il < 1+ ) l0Dzizalle, 00 By

1<i<n

Holder’s inequality we get

Y wi(Tx)

1<i<n

=) a;(T@)

1<i<n

< @i)1<i<nlle,

(vie)|,

< el @sisll, [@rzsll, o ()

Lsisnlley, ()

< 1 we obtain

By taking the supremum over all (%) \<i<n such that H(y;) £n(Y)
<i< o

1<i<n
T CMzizalle, vy < g (T + ) [rzizalyy 0 -

Since this holds for every ¢ > 0, we obtain (13).
Suppose conversely that the operator T satisfies the condition (13). For all (y;f)mq CY', (Xi)<jcn € X
and (@), <j<, € K we have o

=Y vi(T(@x)

1<i<n

< H(y;)lgisn lg(Y?)
<C H(]/;)lgign

<[5 e

Taking the supremum over all (¢;);;<, € K such that ||(ai)1sisn|| ., STweget

Y, i (Tx)

1<i<n

“(T(aixi))léiSn”[q* )

Cow(Y?) “(“z‘xi)lsisn | |€m(p,s) x)

||(ai)1SiSn”{’,+

£y(V) Csizall, 00

|(vira)

. <C ”(xi)lsiﬁanW(X) ' (y:)lsisn

1<i<n D) ’
[

The next corollary and its proof are similar to Proposition 4.2 except that (13) is used instead of (12).
Corollary 4.4. T € I1,,4(X,Y) ifand only if T transfers y5)(X) into €y (Y . In addition we have 1,,4(T) = ”?”

Although the following result is essentially already known (it was proved by Pietsch, see [9, Theorem
17.1.5]), we write a new direct proof that highlights the role of the dual space of £y, ;)(X) and ¢, 5 (X) .
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By using the above corollary, Proposition 4.2, the identifications (t’m(p,s)(X))* = {;p (X) and (f,r (Y))* =

{4,0(Y") and taking into account that the adjoint of the operator T : (5 (X) — £ (Y) can be identified
with the operator

T2 Cy(Y) — Ly (X7 T = (T
we have the following.

Theorem 4.5. Theoperator T belongs toI1,, ,(X,Y)ifand only if T*belongs toI1,, ,(Y*, X*). Furthermore, 1t,p,4(T) =
Tg,p(T7).

It is easy to prove the following result.

Corollary 4.6. The operator T belongs to I1,,,(X,Y) if and only if its bi-adjoint T* belongs to I, ,(X™,Y™). In
addition, 1t,p,,(T) = 70,p,,(T™).
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