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Abstract. In this paper we consider cyclic (s − q)-Dass-Gupta-Jaggi type contractive mapping in b-metric
like spaces. By using our new approach for the proof that one Picard’s sequence is Cauchy in the context of
b-metric-like space, our results generalize, improve and complement several results in the existing literature.
Moreover, we showed that the cyclic type results of Kirk et al. are equivalent with the corresponding usual
fixed point ones for Dass-Gupta-Jaggi type contractive mappings. Finally, some examples are presented
here to illustrate the usability of the obtained theoretical results.

1. Introduction and preliminaries

Let X be a nonempty set and f : X→ X a self-mapping of it. A solution to an equation f x = x is called a
fixed point of f . Results dealing with the existence and construction of a solution to an operator equation
f x = x form the part of so-called Fixed Point Theory. It is well known that the Banach contraction principle
[9] is one of the most important and attractive results in nonlinear analysis and in mathematical analysis
in general. Also, the whole fixed point theory is a significant subject in different fields like geometry,
differential equations, informatics, physics, economics, engineering, etc. After the existence of the solutions
is guaranteed, the numerical methodology will be established in order to obtain an approximated solution
to the fixed point problem.

Fixed point of functions depend heavily on the considered spaces that are defined using intuitive axioms.
In particular, generalized variants of standard metric spaces are proposed.

This paper is organized as follows. First we present definitions and basic notions of some known
generalized metric spaces: partial-metric, metric-like, b-metric, partial b-metric and b-metric-like spaces.
Afterwards we give a process diagram, where arrows stand for inclusions, while inverse inclusions do not
hold. Eventually we show the proof to the theorem which consists of our main result obtained in this paper.
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We shall present now some definitions and basic notions of generalized metric spaces.

Definition 1.1. [27] Let X be a nonempty set. A mapping p : X × X → [0,+∞) is said to be a p-metric if the
following conditions hold for all u, v,w ∈ X :(

p1
)

u = v if and only if p (u,u) = p (u, v) = p (v, v) ;(
p2

)
p (u,u) ≤ p (u, v) ;(

p3
)

p (u, v) = p (v,u) ;(
p4

)
p (u, v) ≤ p (u,w) + p (w, v) − p (w,w) .

Then, the pair
(
X, p

)
is called a partial metric space.

Definition 1.2. [19] Let X be a nonempty set. A mapping σ : X×X→ [0,+∞) is said to metric-like if the following
conditions hold for all u, v,w ∈ X :

(σ1) σ (u, v) = 0 implies u = v;
(σ2) σ (u, v) = σ (v,u) ;
(σ3) σ (u,w) ≤ σ (u, v) + σ (v,w) .

In this case, the pair (X, σ) is called a metric-like space.

Definition 1.3. [8, 12] Let X be a nonempty set and s ≥ 1 a given real number. A mapping b : X × X→ [0,+∞) is
called a b-metric on the set X if the following conditions hold for all u, v,w ∈ X :

(b1) b (u, v) = 0 if and only if u = v;
(b2) b (u, v) = b (v,u) ;
(b3) b (u,w) ≤ s [b (u, v) + b (v,w)] .

In this case, the pair (X, b) is called a b-metric space (with the constant s ≥ 1).

Definition 1.4. [40, 49] Let X be a nonempty set and s ≥ 1. A mapping pb : X × X → [0,+∞) is called a partial
b-metric on the set X if the following conditions hold for all u, v,w ∈ X :(

pb1
)

u = v if and only if pb (u,u) = pb (u, v) = pb (v, v) ;(
pb2

)
pb (u,u) ≤ pb (u, v) ;(

pb3
)

pb (u, v) = pb (v,u) ;(
pb4

)
pb (u, v) ≤ s

[
pb (u,w) + pb (w, v)

]
− pb (w,w) .

Then, the pair
(
X, pb

)
is called a partial b-metric space.

Definition 1.5. [4] Let X be a nonempty set and s ≥ 1. A mapping b σ : X × X → [0,+∞) is called a b-metric-like
on the set X if the following conditions hold for all u, v,w ∈ X:

(b σ1) b σ (u, v) = 0 implies u = v;
(b σ2) b σ (u, v) = b σ (v,u) ;
(b σ3) b σ (u,w) ≤ s [b σ (u, v) + b σ (v,w)] .

In this case, the pair (X, b σ) is called a b-metric-like space with the coefficient s ≥ 1.

Now, we give the process diagram of the classes of generalized metric spaces which were introduced
earlier:

Metric space → Partial metric space → Metric-like space
↓ ↓ ↓

b-Metric space → Partial b-metric space → b-Metric-like space

For more details on other generalized metric spaces see [2]-[38].
The next proposition helps us to construct some more examples of b-metric (resp. partial b-metric,

b-metric-like) spaces.

Proposition 1.6. ([14], Proposition 1.) Let (X, d) (resp.
(
X, p

)
, (X, σ)) be a metric (resp. partial metric, metric-like)

space and b (u, v) = (d (u, v))k (resp. pb (u, v) =
(
p (u, v)

)k , b σ (u, v) = (σ (u, v))k), where k > 1 is a real number. Then
b (resp. pb, b σ ) is b-metric (resp. partial b-metric, b-metric-like) with the coefficient s = 2k−1.
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Proof. The proof follows from the fact that

αk + βk
≤

(
α + β

)k
≤

(
γ + δ

)k
≤ 2k−1

(
γk + δk

)
,

for all nonnegative α, β, γ, δ with α + β ≤ γ + δ. �
It is clear that each metric-like space, i.e. each partial b-metric space, is a b-metric-like space, while the

converse is not true. For more such examples and details see [4]-[7], [15], [17]-[20], [27], [29]-[37], [40]-[42],
[49], [50] and [52].

The definitions of convergent and Cauchy sequences are formally the same in partial metric, metric-
like, partial b-metric and b-metric like spaces. Therefore, we give only the definition of convergence and
Cauchyness of the sequences in b-metric-like space. Also, these two notions are formally the same in metric
and b-metric spaces.

Definition 1.7. [4] Let {rn} be a sequence in a b-metric-like space (X, b σ) with the coefficient s. Then

(i) The sequence {rn} is said to be convergent to r if limn→∞ b σ (rn, r) = b σ (r, r);
(ii) The sequence {rn} is said to be b σ-Cauchy in (X, b σ) if limn,m→∞ b σ (rn, rm) exists and is finite;
(iii) One says that a b-metric-like space (X, b σ) is b σ-complete if for every b σ-Cauchy sequence {rn} in X

there exists an r ∈ X, such that limn,m→∞ b σ (rn, rm) = b σ (r, r) = limn→∞ b σ (rn, r) .

Remark 1.8. ([14], Remark 1.) In a b−metric-like space the limit of a sequence need not be unique and a convergent
sequence need not be a b σ-Cauchy sequence (see Example 7. in [17]). However, if the sequence {rn} is b σ-Cauchy with
limn,m→∞ b σ (rn, rm) = 0 in the b σ-complete b-metric-like space (X, b σ) with the coefficient s ≥ 1, then the limit of
such a sequence is unique. Indeed, in such a case if rn → r (b σ (rn, r)→ b σ (r, r)) as n→∞ we get that b σ (r, r) = 0.
Now, if rn → r1 and rn → r2 where r1 , r2, we obtain that:

1
s

b σ (r1, r2) ≤ b σ (r1, rn) + b σ (rn, r2)→ b σ (r1, r1) + b σ (r2, r2) = 0 + 0 = 0. (1)

From (b σ1) it follows that r1 = r2, which is a contradiction. The same is true as well for partial metric, metric like
and partial b-metric spaces.

The next definition and the corresponding proposition are important in the context of fixed point theory.

Definition 1.9. [1] The self-mappings f , 1 : X → X are weakly compatible if f
(
1 (x)

)
= 1

(
f (x)

)
, whenever

f (x) = 1 (x) .

Proposition 1.10. [1] Let f and 1 be weakly compatible self-maps of a nonempty set X. If they have a unique point
of coincidence v = f (u) = 1 (u) , then v is the unique common fixed point of f and 1.

In this paper we shall use the following result to prove that certain Picard sequences are Cauchy. The
proof is completely identical with the corresponding one in [23] (see also [42]).

Lemma 1.11. Let {rn} be a sequence in a b-metric-like space (X, b σ) with the coefficient s ≥ 1 such that

b σ (rn, rn+1) ≤ µb σ (rn−1, rn) (2)

for someµ, 0 ≤ µ < 1
s , and each n = 1, 2, ....Then {rn} is a b σ-Cauchy sequence in (X, b σ) such that limn,m→∞ b σ (rn, rm) =

0.

Remark 1.12. It is worth noticing that the previous lemma holds in the context of b-metric-like spaces for each
µ ∈ [0, 1). For more details see [3, 49].

Otherwise, in some papers many authors for the proof that certain Picard sequence is a Cauchy often
use one of the next lemmas:
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Lemma 1.13. [50] Let {rn} be a sequence on a complete b-metric-like space (X, b σ) with the coefficient s ≥ 1 such that

lim
n→∞

b σ (rn, rn+1) = 0. (3)

If limn,m→∞ b σ (rn, rm) , 0, there exists ε > 0 and two sequences {mk}
+∞
k=1 , {nk}

+∞
k=1 of positive integers with nk > mk > k

such that

b σ
(
rnk , rmk

)
≥ ε, b σ

(
rmk , rnk−1

)
< ε,

ε

s2 ≤ lim sup
k→∞

b σ
(
rnk−1, rmk−1

)
≤ εs, (4)

ε
s
≤ lim sup

k→∞
b σ

(
rnk−1, rmk

)
≤ ε,

ε
s
≤ lim sup

k→∞
b σ

(
rnk , rmk−1

)
≤ εs2. (5)

Lemma 1.14. [34] Let (X, σ) be a metric-like space and let {rn} ,n ∈N be a sequence in X such that limn→∞ σ (rn, rn+1) =
0. If limn,m→∞ σ (rn, rm) , 0, then there exists ε > 0 and two sequences {nk} and {mk} of positive integer numbers
with nk > mk > k such that the limit of all of the sequences is limk→∞

a,b∈{−1,0,1}
σ
(
rnk+a, rmk+b

)
= ε+.

In the sequel we give the definitions of known notions in existing literature as well as some known
results.
• First, let X , ∅. A mapping f : X → X is said to be an η−admissible mapping if η (u, v) ≥ 1 implies

η
(

f u, f v
)
≥ 1, for all u, v ∈ X and η : X × X→ [0,∞).

• Further, let Φ refers to the class of all functions φ : [0,+∞) → [0,+∞), satisfying the following
conditions:

(1) φ is non-decreasing and continuous;
(2) limn→∞ φn (t) = 0 for all t > 0.
It is clear that (2) implies: φ (t) < t for each t > 0.
• Let (X, b σ) be a b-metric-like space, l ∈ N, A1,A2, ...,Al are b σ−closed subsets of X,Y = ∪l

i=1Ai and
η : Y×Y→ [0,+∞) be a given mapping. The mapping f : Y→ Y is called a cyclic ηq

s−rational contractive if
(a)

f
(
A j

)
⊆ A j+1, j = 1, 2, ..., l, where Al+1 = A1, (6)

(b) for any u ∈ Ai and v ∈ Ai+1, i = 1, 2, ., .., l, such that η
(
u, f u

)
η
(
v, f v

)
≥ 1, we get

2sqb σ
(

f u, f v
)
≤ φ (N (u, v)) , (7)

for all q > 1 where

N (u, v) = max
{

b σ (u, v) , b σ
(
v, f u

)
,

b σ (u, v) b σ
(
v, f v

)
1 + b σ

(
u, f u

) ,
b σ

(
v, f v

) [
1 + b σ

(
u, f u

)]
1 + b σ (u, v)

,
b σ

(
u, f v

)
+ b σ

(
v, f u

)
4s

}
. (8)

If we take X = Ai, i = 1, 2, ..., l, in the above case, then the mapping f reduces to ηq
s−rational contraction

mapping of Dass-Gupta-Jaggi type (see [10], [13], [16], [21], [51]).
The next notion is significant enough in the subject of admissible mappings.

Definition 1.15. ([18], Definition 7.) Let (X, b σ) be a b-metric-like space and η : X × X → [0,∞) be an admissible
mapping. It is said that f : X → X is η−continuous on (X, b σ) , if limn→∞ rn = r, η (rn, rn+1) ≥ 1 implies
limn→∞ f rn = f r.

In ([18], Theorem 2) authors proved the next result:

Theorem 1.16. Let (X, b σ) be a b σ−complete b-metric-like space, l be a positive integer, A1,A2, ...,Al be non-empty
b σ−closed subsets of X,Y = ∪l

i=1Ai and η : Y × Y → [0,+∞) be a mapping. Assume that f : Y → Y is a cyclic
ηq

s−rational contractive mapping satisfying the following conditions:
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(i) a mapping f is η−admissible;
(ii) η

(
r0, f r0

)
≥ 1 for some r0 ∈ X;

(iii) Either mapping f is η−continuous, or for any sequence {rn} in X and for all n ≥ 0, if η (rn, rn+1) ≥ 1 and
limn→∞ rn = r, then, η

(
r, f r

)
≥ 1. Therefore, f has a fixed point r ∈ ∩l

i=1Ai. Furthermore, if
(iv) for all r ∈ ∇ =

{
a ∈ X : f a = a

}
, we get η (r, r) ≥ 1,

then, the uniqueness of the fixed point is realized.
The usefulness of b-metric space in solving certain problems have been shown in [11] where the existence

of a solution for the integral inclusion of Fredholm type for multivalued operators is proved, and in [39]
for the same problem of single valued operators. [22] again investigates the solution for integral equations
while [48] considers solutions to a periodic problem.

For the partial metric spaces [43] gives us homotopy results for multivalued mappings, and [47] deals
with common fixed points and coincidence points, both in a metric space and in a partial metric space.
Generalized contractions like the one discussed in this paper are also considered in [45] in an ordered
framework space, in [46] with an application to a periodic ordinary differential equation and in [28].

For a recent application of fixed point methodologies to the solution of a first–order periodic differential
problem, for example, one can refer to [44].

2. Main results

In this section we complement, generalize, extend, unify, enrich and improve recent results announced
in [20]-[25], [30], [32]. In our first new result we consider ηq

s−rational contractive mapping:

Theorem 2.1. Let (X, b σ) be a b σ−complete b-metric-like space, η : X ×X→ [0,∞), f : X→ X given mappings. If
for all u, v ∈ X with η

(
u, f u

)
η
(
v, f v

)
≥ 1 implies 2sqb σ

(
f u, f v

)
≤ φ (N (u, v)) where q > 1, φ ∈ Φ and

N (u, v) = max
{

b σ (u, v) , b σ
(
v, f u

)
,

b σ (u, v) b σ
(
v, f v

)
1 + b σ

(
u, f u

) ,
b σ

(
v, f v

) [
1 + b σ

(
u, f u

)]
1 + b σ (u, v)

,
b σ

(
u, f v

)
+ b σ

(
v, f u

)
4s

}
. (9)

Assume that f : X→ X satisfies the following conditions:
(i) The mapping f is η−admissible;
(ii) There exists r0 ∈ X such that η

(
r0, f r0

)
≥ 1;

(iii) Either mapping f is η−continuous, or for any sequence {rn} in X and for all n ≥ 0, if η (rn, rn+1) ≥ 1 and
limn→∞ rn = r, then, η

(
r, f r

)
≥ 1.

Then f has a fixed point r ∈ X.
Furthermore, if
(iv) for all r ∈ ∇ =

{
a ∈ X : f a = a

}
, we have that η (r, r) ≥ 1,

then f has a unique fixed point in X.

Proof. Define the sequence rn = f nr0. From (i) and (ii) follows by induction that η (rn, rn+1) ≥ 1 for all n ∈N.
Now, we can estimate b σ (rn, rn+1) . Indeed, since η (rn, rn+1) ≥ 1 for all n ∈Nwe get

b σ (rn, rn+1) ≤ 2sqb σ (rn, rn+1) = 2sqb σ
(

f rn−1, f rn
)
≤ φ (N (rn−1, rn)) , (10)

where

N (rn−1, rn) = max
{

b σ (rn−1, rn) , b σ (rn, rn) ,
b σ (rn−1, rn) b σ (rn, rn+1)

1 + b σ (rn−1, rn)
,

b σ (rn, rn+1) [1 + b σ (rn−1, rn)]
1 + b σ (rn−1, rn)

,
b σ (rn−1, rn+1) + b σ (rn, rn)

4s
.

}
. (11)
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If rn = rn+1 for some n then rn is a fixed point of f . Therefore, suppose that rn , rn+1, that is, b σ (rn, rn+1) > 0
for all n ∈N ∪ {0} . In this case we have

N (rn−1, rn) ≤ max
{

b σ (rn−1, rn) , 2sb σ (rn−1, rn) , b σ (rn, rn+1) ,
sb σ (rn−1, rn) + sb σ (rn, rn+1) + 2sb σ (rn−1, rn)

4s

}
= max

{
2sb σ (rn−1, rn) , b σ (rn, rn+1) ,

3sb σ (rn−1, rn) + sb σ (rn, rn+1)
4s

}
= max

{
2sb σ (rn−1, rn) , b σ (rn, rn+1) ,

3
4

b σ (rn−1, rn) +
1
4

b σ (rn, rn+1)
}
. (12)

From the known estimation a+b
2 ≤ max {a, b} for a = 3

2 b σ (rn−1, rn) and b = 1
2 b σ (rn, rn+1) it follows that

3
4 b σ (rn−1, rn) + 1

4 b σ (rn, rn+1) ≤ max
{

3
2 b σ (rn−1, rn) , 1

2 b σ (rn, rn+1)
}
. Further, (12) becomes

N (rn−1, rn) ≤ max {b σ (rn, rn+1) , 2sb σ (rn−1, rn)} (13)

and φ (N (rn−1, rn)) < N (rn−1, rn) . If max {b σ (rn, rn+1) , 2sb σ (rn−1, rn)} = b σ (rn, rn+1) then (10) implies a contra-
diction. Hence, we obtain the next estimation:

2sqb σ (rn, rn+1) < 2sb σ (rn−1, rn) , (14)

where s ≥ 1 and q > 1.
The case s > 1 implies

b σ (rn, rn+1) ≤ µb σ (rn−1, rn) , µ =
1

sq−1 ∈
(0, 1) . (15)

According to Lemma 1.10. it follows that the sequence {rn} is a b σ−Cauchy and limn,m→∞ b σ (rn, rm) = 0. This
means that there exists a unique point r ∈ X such that:

b σ (r, r) = lim
n→∞

b σ (rn, r) = lim
n,m→∞

b σ (rn, rm) = 0. (16)

Now, we will show that r is a fixed point of f i.e., f r = r.This is evident in the case that the mapping f is
a η−continuous. Further, suppose that for any sequence {rn} in X and for all n ≥ 0, if η (rn, rn+1) ≥ 1 and
limn→∞ rn = r, then, η

(
r, f r

)
≥ 1.

Let, b σ
(
r, f r

)
> 0. Since η

(
rn, f rn

)
η
(
r, f r

)
≥ 1 then according to (b σ3) and the given contractive condition,

we have

b σ
(
r, f r

)
≤ sb σ (r, rn+1) + sb σ

(
f rn, f r

)
≤ sb σ (r, rn+1) +

1
2sq−1φ (N (rn, r)) ≤ sb σ (r, rn+1) +

1
2sq−1 N (rn, r) ,

(17)

where

N (rn, r) = max
{

b σ (rn, r) , b σ (r, rn+1) ,
b σ (rn, r) b σ

(
r, f r

)
1 + b σ (rn, rn+1)

,

b σ
(
r, f r

)
[1 + b σ (rn, rn+1)]

1 + b σ (rn, r)
,

b σ
(
rn, f r

)
+ b σ (r, rn+1)
4s

}
≤ max

{
b σ (rn, r) , b σ (r, rn+1) ,

b σ (rn, r) b σ
(
r, f r

)
1 + b σ (rn, rn+1)

,
b σ

(
r, f r

)
[1 + b σ (rn, rn+1)]

1 + b σ (rn, r)
,

sb σ (rn, r) + sb σ
(
r, f r

)
+ b σ (r, rn+1)

4s

}
→ max

{
0, 0, 0, b σ

(
r, f r

)
,

1
4

b σ
(
r, f r

)}
as n→∞,
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= b σ
(
r, f r

)
. (18)

Now, letting in (17) the limit as n → ∞ we get b σ
(
r, f r

)
≤

1
2sq−1 b σ

(
r, f r

)
. The obtained relation is possible

only if b σ
(
r, f r

)
= 0. That is, we proved that the point r is the fixed point of f .

Finally, we will prove the uniqueness of the fixed point f satisfying the condition (iv). Let r, y ∈ X be
two difference fixed points of f . Then, we obtain that b σ

(
r, y

)
> 0, η (r, r) ≥ 1, η

(
y, y

)
≥ 1. Further, since

η (r, r) η
(
y, y

)
≥ 1 we get that

b σ
(
r, y

)
≤ 2sqb σ

(
r, y

)
≤ φ

(
N

(
r, y

))
, (19)

where

N
(
r, y

)
= max

{
b σ

(
r, y

)
, b σ

(
y, r

)
,

b σ
(
r, y

)
b σ

(
y, y

)
1 + b σ (r, r)

,
b σ

(
y, y

)
[1 + b σ (r, r)]

1 + b σ
(
r, y

) ,
b σ

(
r, y

)
+ b σ

(
y, r

)
4s

}

= max
{

b σ
(
r, y

)
,

b σ
(
r, y

)
· 0

1 + 0
,

0 [1 + 0]
1 + b σ

(
r, y

) , b σ
(
r, y

)
2s

}
= b σ

(
r, y

)
. (20)

Now, (19) becomes

b σ
(
r, y

)
≤ 2sqb σ

(
r, y

)
≤ φ

(
N

(
r, y

))
< b σ

(
r, y

)
, (21)

which is a contradiction. Hence, uniqueness is proved.
The case s = 1 means that (X, b σ) is actually a complete metric-like space (b σ become σ). First we show

that σ (rn, rn+1)→ 0 as n→ ∞. From (14) it follows that σ (rn, rn+1) < σ (rn−1, rn)→ σ ≥ 0 as n→ ∞. Suppose
that σ > 0. Then, we have that 2σ (rn, rn+1) ≤ φ (2σ (rn−1, rn)) , obtaining in the limit n→∞ : 2σ ≤ φ (2σ) < 2σ,
that is a contradiction, thus σ = 0. Now, we can use Lemma 1.12 in order to prove that the sequences
rn = f nr0 is a σ−Cauchy. Indeed, putting u = rnk , v = rmk in the given contractive condition, we obtain

2σ
(
rnk+1, rmk+1

)
≤ φ

(
max

{
σ
(
rnk , rmk

)
, σ

(
rmk , rnk+1

)
,
σ
(
rnk , rmk

)
σ
(
rmk , rmk+1

)
1 + σ

(
rnk , rnk+1

) ,

σ
(
rmk , rmk+1

)
[1 + σ

(
rnk , rnk+1

)
1 + σ

(
rnk , rmk

) ,
σ
(
rnk , rmk+1

)
+ σ

(
rmk , rmk+1

)
4

})
. (22)

Now, letting the limit in (22) as k→∞we get:

2ε ≤ φ
(
max

{
ε, ε, 0, 0,

ε
2

})
= φ (ε) < ε. (23)

A contradiction as ε > 0. Hence, the sequence {rn} is a σ−Cauchy. The rest of the proof is the same as the
corresponding one in the case s > 1.

Remark 2.2. It is useful to notice that the third member
ω(k, f k)ω(µ, fµ)

ω(k,µ) in [18] raises some doubts. Indeed, it follows

from the proof of Theorem 2 from [18] as well as from Examples 5 and 6 in the same paper. For the first case see page
9, lines 3- and 4- where we obtain the form 0

0 , a division by zero.

Furthermore, in both examples 0 is the unique fixed point of the defined mapping f (Γ in notation
of [18]). However, for the pair

(
k, µ

)
= (0, 0) we get, in example 5:

N (0, 0) = max
{
ω (0, 0) , ω (0, 0) ,

ω (0, 0)ω (0, 0)
ω (0, 0)

,
ω (0, 0) [1 + ω (0, 0)]

1 + ω (0, 0)
,
ω (0, 0) + ω (0, 0)

4 · 1

}

= max
{
0, 0,

0
0
, 0, 0

}
= max

{
0,

0
0

}
=?. (24)
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Similarly, in Example 6 we get again the same form N (0, 0) = max
{

0
0 , 0

}
=?.

The main motivation for our second new result are recent announced papers [33]-[37]. Now, we can
prove this significant and important new result which complements and give complete new observations
for cyclic type mappings (for more details see [26]).

In the following theorem, we prove the equivalence of the two theorems. We assume that the contractive
condition in Theorem 2 in [18] is the same as in the Theorem 2.1 proved above. Otherwise, Theorem 2 in
[18] is not correct.

Theorem 2.3. Theorem 2.1 and Theorem 2 from [18] are equivalent.

Proof. If we take X = Ai, i = 1, 2, ..., l, in Theorem 2 from [18], then the mapping f reduces to ηq
s−rational

contraction mapping, that is, Theorem 2 from [18] implies our Theorem 2.1. Suppose firstly that s > 1. If
we take X = Ai, i = 1, 2, ..., l, in Theorem 2 from [18], then the mapping f reduces to ηq

s−rational contraction
mapping, that is, Theorem 2 from [18] implies our Theorem 2.1. Conversely, we shall prove that Theorem
2.1 implies Theorem 2 from [18]. Indeed, following the lines of the proof of Theorem 2 from [18] we
obtain that the Picard’s sequence rn = f rn−1,n ∈ N is b σ−Cauchy in b-metric like space (X, b σ) such that
limn,m→∞ b σ (rn, rm) = 0 .Since Y is b σ−closed in (X, b σ) this means that there exists unique r ∈ Y such that

b σ (r, r) = b σ (rn, r) = lim
n,m→∞

b σ (rn, rm) = 0. (25)

Further, because f (Ai) ⊆ Ai+1,Al+1 = A1 it follows that the sequence {rn} has infinitely many terms in each
Ai for i ∈ {1, 2, ..., l} . Hence, we have the subsequences

{
rni

}l
i=1 of {rn} where

{
rni

}l
i=1 ⊆ Ai, i = 1, 2, ..., l. It is

clear that each rni converges to r. From this it follows that
l
∩
i=1

Ai , ∅ because it contains at least the element r.

Obviously,
(

l
∩
i=1

Ai, b σ

)
is a b σ−complete b-metric-like space and since f :

l
∩
i=1

Ai →
l
∩
i=1

Ai, it is not hard to check

that the restriction f | l
∩
i=1

Ai
of f on

l
∩
i=1

Ai satisfies all conditions of Theorem 2.1. Hence, f has a unique fixed

point in
l
∩
i=1

Ai, that is, Theorem 2.1 implies Theorem 2 from [18]. The proof of the case s = 1 is similar.

Remark 2.4. It is not hard to check that all results in our paper hold true if instead of the set N we take the set M
defined in the following manner:

M (u, v) = max

b σ (u, v) , b σ
(
v, f u

)
,

(
b σ

(
u, f u

))2

1 + b σ (u, v)
,

b σ (u, v) b σ
(
v, f v

)
1 + b σ

(
u, f u

) ,

b σ
(
v, f v

) [
1 + b σ

(
u, f u

)]
1 + b σ (u, v)

,
b σ

(
u, f v

)
+ b σ

(
v, f u

)
4s

,
b σ

(
u, f u

)
+ b σ

(
f u, v

)
1 + 2s

}
. (26)

3. Examples

Now, we shall consider some examples which support Theorems 2 and 3 from [18] as well as Theorem
2.1.

Example 3.1. ([18], Example 5.) Suppose that X = R is equipped with the metric like mapping σ (x,u) = |x|+
∣∣∣y∣∣∣ for

all x, y ∈ X with s = 1 and q > 1. Suppose that B1 = (−∞, 0] and B2 = [0,+∞) and Y = B1 ∪ B2. Define Γ : Y→ Y
and η : Y × Y→ [0,+∞) by

Γk =


−2k, if k < −1,
−k
16 , if k ∈ [−1, 0],
−k3

8 , if k ∈ [0, 1],
−4k, if k > 1

and η
(
k, µ

)
=

{
k2 + µ2 + 2, if k, µ ∈ [−1, 1]
0, otherwise. (27)
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In addition, define θ : [0,+∞)→ [0,+∞) by θ (t) = 1
4 t.

This example supports Theorem 2 from [18] only if we replace their third member
ω(k,Γk)ω(µ,Γµ)

ω(k,µ) in N
(
k, µ

)
on page 5 in [18] with

ω(k,µ)ω(µ,Γµ)
1+ω(k,Γk) .

Instead of verification found in [18] we give a much shorter one by using Theorem 2.3. That is, we shall
check that this example satisfies all conditions of Theorem 2.1 where X = A1 ∩ A2 = {0} , f = Γ|A1∩A2 = Γ|{0}.
Since η

(
0, f 0

)
η
(
0, f 0

)
= 2 · 2 = 4 ≥ 1 as well as 2 · 1qb σ

(
f 0, f 0

)
≤ φ (N (0, 0)) that is, 2 · b σ (0, 0) ≤ 1

4 ·N (0, 0)
where

N (0, 0) = max
{

b σ (0, 0) , b σ
(
0, f 0

)
,

b σ (0, 0) · b σ
(
0, f 0

)
1 + b σ

(
0, f 0

)
,
,

b σ
(
0, f 0

) [
1 + b σ

(
0, f 0

)]
1 + b σ (0, 0) ,

,
b σ

(
0, f 0

)
+ b σ

(
0, f 0

)
4 · 1

}
= max

{
0, 0,

0 · 0
1 + 0,

,
0 · [1 + 0]

1 + 0
,

0 + 0
4

}
= max {0, 0, 0, 0, 0} = 0 . (28)

Hence, we get that 2 ·0 ≤ 1
4 ·0 what is true, that is, all conditions of Theorem 2.1 are satisfied and f = Γ|{0}

has a fixed point r = 0 ∈ A1 ∩ A2, where A1 = B1,A2 = B2. �

One can check that also Example 6 from [18] is correct only if we take
ω(k,µ)ω(µ,Γµ)

1+ω(k,Γk) instead of the third

member
ω(k,Γk)ω(µ,Γµ)

ω(k,µ) in N
(
k, µ

)
on page 12 in [18].

In the sequel follows two examples which support Theorem 2.1.

Example 3.2. Suppose that X = [0, 1] is endowed with the b-metric-like mapping b σ (u, v) = (u + v)2 for all u, v ∈ X
with s = 2 and q > 1. Define f : X→ X and η : X × X→ [0,+∞) by

f u =
u
6
, η (u, v) =

{
1, if u = v = 0
0, otherwise (29)

for all u, v ∈ X.

In addition, define φ : [0,∞)→ [0,∞) by φ (t) = t
2 .

We have that η
(
u, f u

)
η
(
v, f v

)
≥ 1 if and only if (u, v) = (0, 0) . Now, for this pair (0, 0) we get

2 · sq
· b σ

(
f 0, f 0

)
= 0, while

φ

(
max

{
b σ (0, 0) , b σ

(
0, f 0

)
,

b σ (0, 0) · b σ
(
0, f 0

)
1 + b σ

(
0, f 0

)
,
,

b σ
(
0, f 0

) [
1 + b σ

(
0, f 0

)]
1 + b σ (0, 0) ,

,
b σ

(
0, f 0

)
+ b σ

(
0, f 0

)
4 · 2

})
=

1
2
·max

{
b σ (0, 0) , b σ

(
0, f 0

)
,

b σ (0, 0) · b σ
(
0, f 0

)
1 + b σ

(
0, f 0

)
,
,

b σ
(
0, f 0

) [
1 + b σ

(
0, f 0

)]
1 + b σ (0, 0) ,

,
b σ

(
0, f 0

)
+ b σ

(
0, f 0

)
8

}
=

1
2
·max

{
0, 0,

0 · 0
1 + 0,

,
0 · [1 + 0]

1 + 0,
,

0 + 0
8

}
=

1
2
· 0 = 0 (30)

Hence, we obtained that this example supports Theorem 2.1. This means that r = 0 is a unique fixed
point of f .

For some other functions η : X × X→ [0,+∞) on can obtain the same conclusion.�

Example 3.3. Let X = [0,∞) and b σ(u, v) = u2 + v2 + |u − v|2 for all u, v ∈ X. It is clear that b σ is a b-metric-like
on X with coefficient s = 2 and (X, b σ) is b σ−complete. Also, b σ is not a metric-like or a b-metric (nor it is a metric
on X). Define f : X → X and η : X × X → [0,∞) by f u = ln(1+u)

4 and η (u, v) = u2 + v2 + 1. In addition define
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φ : [0,∞)→ [0,∞) byφ (t) = t
2 . Since the function f is η−admissible and η

(
u, f u

)
η
(
v, f v

)
≥ 1 for all (u, v) ∈ X×X

then for all u, v ∈ X with q = 2, we have

2sqb σ( f u, f v) = 2 · 22((( f u)2 + ( f v)2) + | f u − f v|2)

= 8

( ln(1 + u)
4

)2

+

(
ln(1 + v)

4

)2

+

∣∣∣∣∣ ln(1 + u)
4

−
ln(1 + v)

4

∣∣∣∣∣2


= 8

( ln(1 + u)
4

)2

+

(
ln(1 + v)

4

)2

+
1

16
|ln(1 + u) − ln(1 + v)|2


= 8

( ln(1 + u)
4

)2

+

(
ln(1 + v)

4

)2

+
1

16

∣∣∣∣∣ln (1 + u
1 + v

)∣∣∣∣∣2
 .

Suppose first that u > v. Then we have the following:

2sqb σ( f u, f v) = 8

( ln(1 + u)
4

)2

+

(
ln(1 + v)

4

)2

+
1

16

∣∣∣∣∣ln (
1 +

u − v
1 + v

)∣∣∣∣∣2
 ≤ 8

(
u2

16
+

v2

16
+

1
16
|u − v|2

)
=

1
2

(
u2 + v2 + |u − v|2

)
=

1
2

b σ (u, v)

≤
1
2

max
{

b σ (u, v) , b σ
(
v, f u

)
,

b σ (u, v) b σ
(
v, f v

)
1 + b σ

(
u, f u

) ,
b σ

(
v, f v

) [
1 + b σ

(
u, f u

)]
1 + b σ (u, v)

,
b σ

(
u, f v

)
+ b σ

(
v, f u

)
4 · s

}
= φ

(
max

{
b σ (u, v) , b σ

(
v, f u

)
,

b σ (u, v) · b σ
(
v, f v

)
1 + b σ

(
u, f u

) ,
b σ

(
v, f v

)
·
[
1 + b σ

(
u, f u

)]
1 + b σ (u, v)

,
b σ

(
u, f v

)
+ b σ

(
v, f u

)
4 · s

})
(31)

Therefore, we obtain that for u > v the next condition is satisfied:

2sqb σ
(

f u, f v
)
≤ φ (N (u, v)) .

We also make an analogous conclusion when u < v.
Suppose now that u = v. Then

2sqb σ( f u, f v) = 16
(

ln(1 + u)
4

)2

≤
1
2
· 2u2 =

1
2

bσ(u, v) ≤ φ(N(u, v)).

Therefore, we obtain that

2sqb σ
(

f u, f v
)
≤ φ (N (u, v)) , (32)

is satisfied for all u, v ∈ X for which hold: η
(
u, f u

)
η
(
v, f v

)
≥ 1.

Hence, all conditions of our Theorem 2.1 are satisfied and therefore f has a unique fixed point r = 0 ∈ X.�
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[33] S. Radenović, Some remarks on mappings satisfying cyclical contractive conditions, Afr. Mat. 27 (2016) 291–295.
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