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General Family of Exponential Operators

Km. Lipi*, Naokant Deo?

?Delhi Technological University, Department of Applied Mathematics, Bawana Road, Delhi-110042, India

Abstract. In this article, we deal with the approximation properties of Ismail-May operators [16] based
on a non-negative real parameter A. We provide some graphs and error estimation table for a numerical
example depicting the convergence of our proposed operators. We further define the Bézier variant of
these operators and give a direct approximation theorem using Ditizan-Totik modulus of smoothness and
a Voronovoskaya type asymptotic theorem. We also study the error in approximation of functions having
derivatives of bounded variation. Lastly, we introduce the bivariate generalization of Ismail May operators
and estimate its rate of convergence for functions of Lipschitz class.

1. Introduction

In the year 1976, May [21] defined a positive exponential operator L) on C(—oo, o) into C* as
LI = [ W96,

where W(A, t,s) > 0is a kernel of distribution and satisfy the following conditions:

1. (Laeo(s))(t) = f W(A, t,s)ds = 1 normalisation condition.

—00

2. %W(/\, t,s) = I%W()\, t,s)(s — t), where p(t) is analytic and positive for t € (—oo, 00).

The partial differential equation and the normalisation condition together define at most one kernel W(A, t, s)
of an exponential operator for a given polynomial p(t). Also, the normalization condition yields,

g(x) o0
exp| A f % = f C(A,s)e™*ds, x € Range of q(t), (1)
c —00
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t
where q(t) = [ ;% and g(q(t)) = 9(9(1)).

Ismail and May [16] showed that for a linear or quadratic p(t), there already exists various known operators
such as Bernstein, Szdsz, Baskakov, Gauss-Weierstrass, Post-Widder etc. that satisfy the above conditions
and thus canbe referred to as exponential operators. Forinstanceif p(t) = tand c = 1in (1), the corresponding
approximation operators is Szdsz operators,

0 k
(SAfG)(t) = e % f(%) t € (0, c0).

k=0

For p(t) = 1 and ¢ = 0, equation (1) becomes The Gauss-Weierstrass operators,

P _ 2
(MWWPJ%fm{ﬂ%i%mﬁtqmmy

Similarly, for a quadratic p(t) = #(1 —f) with t € (0,1) and ¢ = %, formula (1) transforms into the very known
Bernstein operator,

(BAfG)(t) = Z( Z )tk(l —t)”"‘f(g), n=1,2,. telo,1].

k=0

Ismail and May [16] also constructed some new approximation operators for cubic polynomials by
determining a unique generalized function C(A, s) for which corresponding kernel is given by:

t

s—0
W (A, t,5) = exp Afmde C(A, ). (2)

c

Now if p(t) = t(1 + #)? and ¢ = 1 and consider the identity (see[24])

L e A+
o= Y e ©
=0
we get
e A0 o AL+ Kyt
C(A,5) = 2745 Z = (k= As).
k=0 ’

For this value of C(4, s), the corresponding exponential operator is

s e AMAHRT N [k
SN0 =7 ), = () e (5).

With change of variables x = 5, Ismail and May [16] defined a linear positive operator for a continuous
function f € [0, 1], as follows:

s k-1
(Mﬂmw=f“2ﬁ@%i%wﬂv64a. @

k=0
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In [22], the Kantorovich form of the operator (4) and its bivariate is defined along with some important
approximation results.

The aim of this paper is to discuss some approximation properties of operator (4) along with some
graphs and an error estimation table for a numerical example. Further we define its Bézier variant and
estimate the rate of convergence for functions with derivatives of bounded variation, a direct approximation
theorem using Ditizan-Totik modulus of smoothness, and a Voronovoskaya type result . The last section is
dedicated to bivariate generalization of operator (4) and its convergence properties.

2. Basic Results

In this section, we discuss some auxiliary results to prove our main results for the operators (4).
Lemma 2.1. For e,-(s) =s,i=0,1,2,3,4and A > 0, we have

(i) (Raeo(s))(x) =

(ii) (Raei(s))(x) = Ag\—lx

(ii1) (Ryeax(s))(x) = (A+1)(2/\+2) T (Ai\l)zx/'
) =
) =

A3 A2(3A+4)

(iv) (RresG)() = oo * e ™ * (/\+1)
24 4 2A3(3A2+111+9) A2(7A2+18A+12) o
(@) (Raes(®)®) = rmrmmms © + (/\+1)2(/\+2)2(/\+3)2 A+’ (27 (A+1)4x

Lemma 2.2. If iy = (Ra(s — x)™) (x) denote the central moments of the operators (4), then for m = 1,2, 4, we have

(i) Ha, 1(x) = (Ail) ;
(1=2)

(i) paa(x) = mx + (A+2) /
(3A2—467+24)x* /\( —61343612421614216)° | A(313—6A2-361-32)x Ax
(i) (%) = A+D(A+D)(A+3)(A+9) R Ve P A A WE T Ve R FWE

Remark 2.3. For sufficiently large A, we have
(i) Alim Appi(x) = -
(ii) Alim Apap(x) = x(1 - x);
(iii) }im A2y a(x) = 3x%(x — 1)2.
Lemma 2.4. Let f be a continuous function in [0, 1], then we have

|RafN@)] < |I£]]-

3. Main results
Theorem 3.1. Suppose f be a continuous function in [0, 1], then (Ra f(s))(x) — f(x) uniformly in [0, 1].

Proof. From Lemma 2.1, (Ryeo(s))(x) = 1, (Rye1(s))(x) — x and (Ryex(s))(x) — x* as A — oo. Then by Bohman-
Korovkin theorem, (R f(s))(x) = f(x) uniformly in [0,1]. O

For Cg [0,1], the space of all continuous and bounded functions on [0, 1], let us consider the following
K-functional:

Ka(f0)= inf {If =l +ols

7

>0,

where Cé [0,11={g€Cg[0,1]: ¢’,9” € Cp[0,1]}. By [7], for f € C[0, 1], there exists a constant L such that
Ka(f;6) < Lan(f; Vo). 5)

Now we estimate the rate of convergence of operators (4), with the help of first and second order modulus
of continuity (see also [27]).
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Theorem 3.2. For f € C[0,1], A > 0, we have

(Rif6)@ - £ < Can [f; —W] )
where (x) = /3 and pao(x) is stated in Lemma 2.2.
Proof. We consider auxiliary operators

RSO = RO ~ f (77 ) + ), ©

Suppose g € C?[0, 1], by Taylor’s expansion, we have

4) = 90x) + 9/ (X)(s — x) + f (s - w)g” ().

X

From (6), (Ryeo(s))(x) = 1, (Rye1(s))(x) = x and (R (s — x))(x) = 0, we have

Ax
A+l

f(% - u) g" (w)du

X

i t
< ||g|| [f ’% — ul|du + (RA [flt - udu])(x)]

<[lg"|| (a2 (x) + () . @)
From (6) and using Lemma 2.4, we get
(Rife)@] <317 ®)

Using equations (6) -(8), we have

t

(Ra( [ = 0" i)

X

|(Ri(g(s) = 90| < .

|(RifEE) = F0] < [RA(f6) = 9N@) = (f = D) + [(Ra(g(s) - 9G] + ‘f( - s

. w 9" ||| + w(f; 2. ©)

<l -
Taking infimum on the right hand side of (9), we have

356000 - F] < 4 15220 IO 1 o g2,

By using relation (5), we get the desired result. [

In our next theorem, we discuss the rate of convergence for the operators (R, f(s))(x) using the functions
of Lipschitz class Lipy(B) defined by Lenze [20], where M > 0 and 0 < § < 1. The function f € Lipm(B) if

|f) = f)| < Mls—xff s, xeR. (10)

Theorem 3.3. Let f € Lippm(B), x € [0,1] and A > 0, we have

(RAF)() = F)] < M(pa2())?
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Proof. For the linear positive operators (Ry f(s))(x) and f € Lippm(B) , we have
Ry &) @) = F@)] <Ra(|f(t) = FEPE)

AA +k)F!
et Y AT oy f( - flx >’
k=0 ’
k-1 ﬁ
SME—/\xZ /\(Azk) ( —x) ,
k=0 ’

using Holder’s inequality,

Ry fE)() = f0)] < M 2]
Hence the proof. [

B
2

Theorem 3.4. If the function f(x) is bounded on [0,1], x € (0,1) and for which f’(x), f”(x) exist then, we have

. / x(1-x 7
tim A[(R ) ~ ] = ') + X o),
Proof. Suppose x € [0,1] be a fixed point, by Taylor’s formula, we can say

2
£6) = £+ =000 + L @) 4 6,205 - 0 a

r(s, x) € C[0, 1] be the Peano form of the remainder. By using L’hospital rule we can easily say that r(s, x) converges
to 0 when s approaches to x.
In (11), applying (Ra(.))(x), we obtain

hm ALRAf(N() = f(x)] =f"(x) hm AR (s — x))(x) +
+kmAﬂhﬂ&@@—xYﬂ@. (12)

f 2(’() lim A(Ry(s = xP)()

Applying Cauchy-Schwarz inequality in the last term of (12), we get

ARAT(s,%)(s = 2)7)(x) < V(RAr2(5, ))(x). A2 (Ra(s — x)*)(x)
Since *(x,x) = 0 and from Remark 2.3, we obtain
FmA@ﬂ@@@—@Wﬂz& (13)

From (12), (13) and using Remark 2.3, we get the required result. [

From [10] the unified Ditzian-Totik modulus of smoothness is given as follows:
ho™ (x) he™ (x) he™ (x)
f(x+T —f X — > , X+ 5 E[O,l] .
Further, the appropriate K-functional is defined by
Ko (f,)= _inf {||f - g] + t]|lo"7'||} (t>0),

_l]EW@T[OJ]

W (f;t) = Sup{

O<h<t

where 0 <7 <1, Wy [0,1] = {g g € ACi [ }, g € ACj,c [0,1] denotes the class of all locally
absolutely continuous function and ||.|| is the sup norm on C[0,1]. It is well known [10] that there exists a
constant C > 0 such that

Clwye (f;£) < Kie (f;1) < Cwge (f31).- (14)
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Theorem 3.5. Let f € C[0,1]. Then for ¢(x) = /x(1 — x) and for every x € (0, 1), we have

gbl*’[ (x) )

I(Rag(s)(x) — 90| < Caogr (h, =

where C is a constant.

Proof. Since g € Wy, we obtain

9(5) = () + f ()i,

Therefore, we can write

|(Rag(s)(x) — 9(0)| < [RA [

j g’ (w)du

Applying Holder’s inequality, we get

)

S S d
f g (wdu| <||¢"g’ f ¢—u <|l¢7g
and
t d_u _ fs du
y P(u) S ul-u)

| =

X

|S _ xll—’(

<2l|¥E - v+ |V Ts - VT

[ du
J 9w

1 1
—2|s—x|[\/§+ i N s+ x/1—x]
20|

2V2]s - x|
<« ZF A
P(x)

From (16), we have

S

T

s — x|2°22

fg’(u)du < ||qug'

X

P(x)

s - x|1-7(2 V2Is - ) ot

Pr(x)

4048

(15)

(16)
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Applying Cauchy-Schwarz inequality,

221 [|o°g/|| (R Is — ()
[(Rag©)() - ()] < e
< 2% ||¢7g'|| y(Rals = )(x)
) )
2377 ”(PTg, Cl(P(X) _ C1232l (P'fg' (pl—’[(x)
oT(x) A Vi :

Therefore

|RAfE)(x) = £()] < |Ra(f = 9)@)| + [(Rag(6)(x) = g(x)| + |9x) = £ ()|
<2||f - gl| + [Rag(6)@) - g()|
Ci2% [|og || ' ()
Vi

<c{lr-dl+ 2 Jore

<2|f -+

(Pl_T (X) )

} < CKyye (f, "

where C = max {2, C123f}.
Using relation (14), we get required result. [

Example 3.6. For A = 10,20,100 the rate of convergence of the operators (R f(s))(x) to the function f(x) =
9x% — 6x +6/5 is illustrated in Fig 1. Further, in Table 1, we estimated the absolute error E) = |(RA fENx) = f (x)| for
different values of A and given the corresponding graph for error depicting the convergence in Fig 2 . It can be clearly
seen from Fig 1, Fig 2 and from the Table 1 that for larger values of A the proposed operator (4) converges to f(x).

0 [ L L L 1 L L L 1 L L L 1 L L L 1

0.0 0.2 0.4 0.6 0.8 1.0

— A=10 A=20 A=100 =—— f(x)

Figure 1: The Convergence of operators (R f(s))(x) to the function f(x) = 9x2 — 6x + 6/5 for A = 10, 20,100
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Figure 2: Graphical representation of absolute error of operators (R f(s))(x) to the function f(x) = 9x2 —6x+6/5 for A = 5,10,20,50, 100.
The error clearly is converging to zero for the given function.

Table 1: Error of approximation process for f(x) = 9x2 — 6x +6/5

X

Es

Eqo

Exo

Exo

Eq00

0.08

0.156686

0.089180

0.047780

0.019951

0.010122

0.16

0.266743

0.150426

0.080101

0.033300

0.016867

0.24

0.330171

0.183749

0.096962

0.040046

0.020235

0.32

0.346971

0.189144

0.098363

0.040189

0.020226

0.40

0.317143

0.166612

0.084304

0.033729

0.016834

0.48

0.240686

0.116152

0.054786

0.020667

0.010077

0.56

0.117600

0.037765

0.009808

0.001002

0.000064

0.64

0.052114

0.068549

0.050630

0.025266

0.013581

0.72

0.268457

0.202790

0.126528

0.058137

0.030475

0.80

0.531429

0.364959

0.217885

0.097610

0.050747

0.88

0.841029

0.555055

0.324702

0.143686

0.074395

0.96

1.197260

0.773078

0.446979

0.196364

0.101421

4. Bézier Variant of Ismail-May Operators

Zeng and Piriou [34] in the year 1997, constructed the Bernstein-Bézier type operators and studied
its rate of convergence for bounded variation functions. Gupta et.al.[15] proposed the Bézier variant
of the Szasz-Kantorovich operator and investigated a convergence theorem for locally bounded func-
tions subsuming the approximation of functions of bounded variation as a special case. These works
have been continued ever since by several authors with construction of Bézier variants of different
operators and analyzed their approximation properties.For further references, one can refer to articles
(3], [e], [13], [14], [15], [18], [25], [29], [32] , [33]).

Motivated by the above stated work, in this section, we define the Bézier variant of the operators (4) as

follows:

s

(R3f(s)) () =

o~
1l

of(m

)Sj,k (x), a>1,x€e][0,1],

(17)
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where 8%, (x) = (Pax(x))" = (Prx+1(x))", and Py (x) = X 72,(x) for k = 0,1,2, .1 are the Bézier basis functions
, o
and

A+ R

o (xe™), xe]0,1].

rak(x) =e

Lemma 4.1. Let f € C[0, 1]. Then the Bézier variant of the operators based on the Ismail-May operators verify:

() [[Rg]| < 1]l
(i) (R}f(s)(x) < a(Ryf())(x)-

Proof. (i) (R}(e0))(x) = kgol.Sf{,k(x) =1,
it follows that

(R feNE)| < (A Y 85,00 = 1A
k=0

(i) using the inequality |[a* — b*| < ala — bl where 0 < a,b <1,and a > 1, we get

0 < (Pa(0)" = (Pags1 ()"
S a(Pax(x) = Ppier(x))
= aryx(x),

Hence in view of definition of R{ and the positivity of f, we get the result.

O

4.1. Global approximation theorem

Now we establish a global approximation theorem for the operator (4) using the first order Ditizan Totik
modulus of smoothness defined in [10] as follows:

)

The corresponding K-functional is given as:

,X + hcpz(x) € [0,1]}.

w¢(f;t)=5“P{

O<h<t

. — : _ ’ 2 ’
Ko(fi=_inf (I =all+¢llogl+ )
where W, [0,1] = {g 1 g € AC,c [0,1], ||@g’|| < oo} ,g € ACyc [0, 1] denotes the class of all locally absolutely

continuous function and ||.|| is the sup norm on C[0,1].

Theorem 4.2. Let f € C[0, 1] and ¢(x) = /x(1 = ). For every x € [0, 1) and sufficiently large A, we have
|(Rif(5)) (¥) - f(x)| < Cwy (f; %)

Proof. By definition of Ky(f, t), for fixed A, x we can choose g = g« € Wy[0, 1) such that

S
A

LTI : L
I =ol+ oo+ 319 < o () a9
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Then

(R3£6) ) - £ < |(R3(F = 96)) | + |F - 9]+ |(R395)) ) - 90|
< cllf - all+|(Ri9) 0 - 9.

Now to estimate the second relation above, we split the domain into two subintervals, x € I} = [0, %] and
xel{= (1,1). Using the representation

S

g(s) = g(x) + f 9 (2)dz,

X

we can write

(Ri9(5)) ) - 9] < {R;‘ { f g'(z)dz}] () (19)
Letx € IS = (1,1), we have x
j 7' (2)dz| < ||opg| f @dz
g f mdl
<|l¢g' %- (20)
By combining (19) and (20), we have
(R3g(s)) () - 90| < - ﬁ(“;i’g' (RgIs = ) o)
- zﬁﬁgl ((Ri6 =) <x>)1Q|
_2V2alog|| [ =y
T 90 A
]

Again forx € I = [0, %], using Lemma 4.1 and Remark 2.3

(R34(5)) () — gv)

S g/l

< Va
< Va

C
< g
A

(Ry1s 1) )
(Ras = x2)’
cx(1 —x)

A

}g//

}g//

’’
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Therefore,

/

“qi)g” + g_] (21)

Vi A

Collecting equations (18)-(21), we obtain the required result. [

(Rig(s)) () = 90| < C(

4.2. Voronovoskaya theorem

In this section, we present a quantitative Voronovoskaya theorem for operators (4) involving Ditizan
Totik modulus of smoothness (see also [30]).

Theorem 4.3. Let f € C?[0,1],x € [0, 1). For sufficiently large A the following inequality hold

R0 - 0 - W0 ) - 320 )

_ [Cop(fia o0
hS C(P(X)wqb(f”; A—l/Z)’

where y(;fzx(x) = (R4 (s — x)")(x).

Proof. Let f € C?[0,1] be given and s, x € [0, 1]. Using Taylor’s expansion

£65) — ) = (s — 1)) + f (s — )" (u)du,

we get

£ £ = (=07 @) = 56 =070 = [ (6=~ [ (="

- f (s — L") — £ ()l

X

Applying R¢ to both sides of the above relation, we obtain

(R £ = 709 = 07 ) = 30,0

S
SRi[fls—ul
X

From ([11]), for g € W, the following estimates can be obtained,

s
fls—ul
X

f//(u) _fu(x)|du

;x] . (22)

<2 dL(¥)ls — xP. (23)

Fru) = f@)|dul < 2|7 - g]| s - 02 + 2|0’
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Using relations (22)-(23), Lemma 4.1, Remark 2.3 and Cauchy-Schwarz inequality, we have

(R 9)0 - 10 - 10 - zuAL(x>f”<x>

<2|f" - g” R ((s - x)z;x) (Is - x|3;x)
<2[|f" - gllari (6 =) o R - 22 Rts - b
<2|f" - g” aRy ((s — x)z;x) + — ! {RA(s - x)z;x}
., Cx(1 2 C Cx(1 -
<2|f —g”a x(}L a x(A X)
< ool -d+ A‘”qux) ' },

where the constant C > 0 is not the same at each occurrence.
Since ¢%(x) < ¢(x) < 1 and x € [0, 1), we obtain

‘(Rif(s))(x)—f(x) uO @ f () - nyyx)f“(x)

< Sl - gl + a0 o). 4

The above inequality can be rewritten as

(R F©0) = £ = W) = )
C(,‘b(x) {

—g||+A I} (25)

Taking 1nf1mum on RHS of (24) and (25) and for g € W, we have
CK¢ (f//; A_l/z(P(X))
CO@Ky (£7;47172).

A [Ree9@ - 0 - W7 @ - 302w <

O

4.3. Functions of bounded variation
Let DBV]0,1] be the space of all absolutely continuous functions f defined on [0,1] and having a
derivative f” equivalent with a function of bounded variation on [0, 1]. For f € DBV[0,1] we may write,

f@) = | g@®dt+f(0)
/

we can rewrite the operators given by (4) as

1
(Rf @)@ = [ 13 M3 09w
0

where

Y Q (x) ,0<s<1
MY (x,S)={ Fep < }
0 ,s=0.

We mention the following Lemma which is necessary to prove the main theorem (see also [28]).
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Lemma 4.4. Let x € [0, 1), then for sufficiently large n, we have

(i) 9% (x,5) < <3,

= Ax—s)?
(ii) 1- 9% (x,2) < Cj;fjlz)")
N aa 3 r o N Cx—o\ 9 N 1 R ) Cax(1 - x)
Proof. (i) 99 (x,5) = f%{MA(x,v)}dv < f( ) 8v{M (x,v)}dv = P —— (R{(x —v)")(x,v) < W

0 0
(ii) The proof of this part is left to the readers which is similar to part (i).
U

In the theorem given below, we study the rate of convergence for functions with derivative of bounded
variation (see, e.g. [8])

Theorem 4.5. Let f € DBVI0, 1]. Then, we have

R e - fi] < [T CED |+ af o]y S
, Cali - [VA] Coe WA [(x 1 ,
CDFN e s [fo] TYVE|
k=1 x-x/k x —x/ VA k=1 x
where
f's)—f'(x=), 0<s<x
f(s) = s=x (26)
f(s)— f(x+), x<s<oo.
Proof. For f € DBV|Q, 1] we may write
F16) = £6) 4 —= (F/0#) + af (x) + (7 (4) = 1) (sens -0 + 23
0.0 [£6) - 3 (@0 + o)), @7)
where
1 s=x
0x(s) = {O, S # X.

Again, we have

(RYf(s)(x) = f(x)
1

- f (F6) ~ F) o | M x5} s

f (F6) — ) 2 (MG (3,9} ds + f (£6) ~ ) 5 (M5 (x,9) s

f [ [r (u)du] (M5(x,9) ds + f { [ 1 u)du] (Mo ) s

= A;(x)+33( x). (28)
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Now, from equation (27), we have

py < LED ) F -9 L (M9} ds ¢ f [ [ (u)du] (M, 9) s

a+1
_ailf(“) f(x)f( —s)— (M3 (x, ) ds. (29)
Similarly,
1 s
BY(x) = x+)a++a1f (x— ))f( _ )_ Ma(x s) ds+f[ffx u)du]a— Mo(x, s)}
+azf1f(x+)2f(x f( _x)g{/\/(ﬁ(x,s)} : (30)

X

Using (29)-(30)and from (27), we get
(R f(9))(x) = f(x)
_ () +af'(x-) f( M“(x 9 }ds+ 2 f'(x+) = f(x-)

a+1 a+1 2

f(x—s)i MG, s)}ds+ 2“ foeh) — f(x )f( M“(x ) ds

f [f S ] Ml 9)fds + fl [ f £ (u)du] (M5 (x,5)) ds.

Hence

1 ls = x[)(x) +

= f/(x=)|[RS 1s = x)()|
f[ffx (u)du] M“(x s)}ds

d
f[fﬂ (u)du] {M“(x s)}
Applying Cauchy-Schwarz inequality, we get

(f’(x+)a ++oz1f’(x—)) M+ /
f[ffx (u)du] Ma(x 5 ds f[ffx (M)du] M“ (x, S)}

Now, using Lemma 2.1 and integration by parts, we get

f[ffx (u)du] /\/(a(x 5)}ds = f[ffx (u)du] {83(x,9)}d ff" ()92 (x, s)ds

|RSF(s) () - f)| <

+

(Raals = x))(x)

|(RSFs) () = f)] <

+ (31)
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Therefore

X X a
| [ | fr'(u)du]g My, 9) s
0 s

X

< '(s)| 9%(x, s)ds

0

=X
x X

< f (5)] 9%(x, s)ds + f

X
0 =5

5

Using f.”(x) = 0 and 99 (x,s) < 1, we get

f ¥ (x, 8)ds = f

x—- x—

'(s) — £ (x)| 8% (x, 5)ds

VA A
f\/(fr)ds< \/ £ f\/fxds—— \/ £
x— ( x—x/ VA x—i x—x/‘/>

Again, using 94(x,s) < Corlly)

< e and putting s = x — 7, we get

-

\f X

0 1 x—x/VA k=1 x—x/k

Hence
f [ f f (u)du]i{w(x 5)}d
! J

1

f { [ (u)du] (MG, 9)ds
f [ [ fx(u)du] (1= 31} ds + f [ [ ] (1 9966,9)
[ f fx’<u>du] {1-95@2) - f £ © {1 - 959} ds
[ [ (u)du] (1 81602) - f £ [1 - 95019 ds

(s) 1 ¥(x, 5) ds+ffx (s) 1 ¥ (x, s)}

< f\/ fi'ds + Cax(i ) f[\/ fx'] (s —x)"*ds

[VA] x
COl(l ’
SN

x—x/ VA

Now

()] 9% (x, s)ds.

4057

(32)



Km. Lipi, N. Deo / Filomat 34:12 (2020), 4043—4060 4058

Now, letz = x + \M = and then putting u = =, we get
1 o .C (1 )
-x , ax(l—x
[ f £ (u)du] (M) asl < —=1 \/ £ f [V £ ) x) 2ds
T e C (1 y [07
- X ax(l —x
< \/ £ |+ f { \/ £ J(l — x)"du
\/X X 1 X
3 VI (x5
1-x[\7 Cax |
< A+ (33)
V) y (Vo)

Collecting estimates from (31-33), we get required result. [J

5. Bivariate Generalisation of Ismail-May Operators

In this section, we introduce the bivariate generalisation of the operators (4). A lot of work has already
been done on construction of bivariate form of various linear positive operators and analysis of their conver-
gence results. Werefer to the readers some interesting articles (see [1],[2],[4],[9],[5],[12],[17],[19],[23],[26],[31])
for more information. The bivariate extension of the operators (4) for (x,y) € I> = [0,1] x [0,1] and
A1 > 0,A, > 0 is defined as follows:

Rk ks ky ka )
R fo s = Y YA G ) (34)

k1=0ko=0

where the basis function is considered as:

(A]X+/\2y) /\] AZ(Al + kl)kl (Az + k2) ( e—x)kl (ye—y)kz
k1 Ve !

Lemma 5.1. Let ey,,(51,52) = s s 2,0 <n +ny <2. For (x,y) € 1> =10,1] x [0,1] and A1, A5 € [0, ), we have

ik (x,y) =

Ay

(Raego(s1,52))(x, y) = 1;

A
(Raeio(s1,82))(x, y) = " i 1%
A
(Raeoi(s1,82))(x, y) = R j_ L
_ A’ 2 M
(Raexo(s1,82))(x, ) = D0, Z)X + it 1)236
Ap? A
(Raeoa(s1,82))(x, y) = 2 2 2

+
M+ D +27 T, 12
Remark 5.2. Using Lemma 5.1, we have

(R} (er0 = 1))(x, y) = ﬁ;
(R (o1 — )(x, ) = —ﬁ;

(=2 5 A
LaDL+2) T+
(A2 =2) 2 Az
Lhm+2Y Th+Y

(R (e20 = %)), y) = -

(R (e = ), y) = =
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Now we estimate the degree of approximation of bivariate operators (34) with the help of Lipschitz

class functions. We define Lipschitz class Lipm(Cy, Cz) for bivariate functions for 0 < (; <land 0< (; <1
as follows:

|f(51,52) - flx, y)| < Misy — 1" |52 - y|Cz‘

Theorem 5.3. If f € Lipm(Cq, C2), then for C1, Cp € (0,1]

|(R§11kfzf (51,52)) (6, 9) = f(x, y)' <Moo,

Proof. If f € Lipp(Cy, Cp), we can write

|(Rl/(\11kaf(sl’sz)) (X, y) - f(x/ y)'
< (R |15 - f ) o w)
< (RS (M =2 -

< M(Ry,Js1 - %) @) (R,\z(sz - y|(’2) W).

Using Holder’s inequality

O

(R f51,92) €0, = £ )
< M(Ry, (exo — 96)2)L71 (5 1) Ry, ) T (x,9)
% (Rislen ~9P) " (@ 9) Ry, lew) = (x,9)

9 o

<Mb2o,2.
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