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Abstract. The ruled surface is formed by the movement of a director based on a curve. The point P not
on the director vector at fixed frame o-ijk draws a curve. However, each position of this point on the curve
always corresponds to position of director on the ruled surface, or this point is adjoint to director vector.
Thus, the curve is adjoint to the ruled surface. In this study, we expressed the adjoint trajectory of robot
end effector. We can change the trajectory of the robot movement by defining the adjoint trajectory when
it may not be physically achievable and not re-computation of the robot trajectory. We investigated the
angular acceleration and angular velocity of adjoint trajectory of the robot end effector. Also, we obtained
the condition that moving point is a fixed point.

1. Introduction

The curvature theory examines the distribution of velocity and acceleration and the motion of a rigid
body. Therefore, the curvature theory is useful to determine the differential properties of the motion of a
robot end effector. In [1], the authors showed that the differential properties of the ruled surface generate
the linear and angular motion properties of the robot end effector for robot path planning. In [11], the
authors showed that relate to the motion of body carrying the line that generates the curvature theory
of line trajectories seeks to characterize the shape of the trajectory ruled surface. Ryuh and Pennock [4],
made use of the curvature theory of a ruled surface to study the instantaneous motion properties of a
robotic device. Also, Ryuh [5] proposed a method which geometric modeling technique is related to robot
trajectory planning which is based on the curvature theory of a ruled surface. Ryuh et al. [6] studied a
precision control method of a robot path generation based on the dual curvature theory of a ruled surface.
Güler and Kasap [9] obtained new technique for robot trajectory which ensures the calculation of robot’s
next path using the curvature theory. In [12] the authors obtained Dual unit spherical Bézier-like curves
on the dual unit sphere (DUS) by a novel method with respect to the control points. Ding H. et al. [8]
investigated the solution of the problem of large rotation angle for the algorithm combining A* algorithm
and Bezier curve. Also, the curvature theory of ruled surfaces has been an interesting research topic in
Minkowski space, [2,7,13].

A robot end effector motion is defined as a robot trajectory, and the robot’s trajectory can be determined
by a ruled surface and spin angle. The robot trajectory consists of the velocity and acceleration of the
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positions of the end effector at a fixed point, and a series of orientations, angular velocity and angular
acceleration of the end effector. The direction of the end effector is determined by a coordinate frame
connected to the end effector. This coordinate frame is called the tool frame. In addition, TCP which the
central point of the striction curve is taken as the origin of this frame. Each vector of the tool frame forms
three ruled surfaces that share a common direction followed by the center point. It is enough to use one of
them to represent the robot trajectory. The point P not on the director vector at fixed frame o-ijk draws a
ΓP curve. However, each position of point P on curve ΓP always corresponds to a position of the director
on the ruled surface or point P is adjoint to director vector. Multiple coordinate systems can be placed at a
point in three-dimensional space. A point can be represented by a vector defined according to the center
of this coordinate system. Thus, the position of the robot is determined. In this study, we investigated the
differential properties of the robot end effector at a moving point that was not on the director vector. We
determined the coordinates of this point according to the tool frame. We calculated the angular acceleration
and angular velocity of trajectory adjoint of the robot end effector depending on the curvature functions of
the ruled surface. We also obtained the condition that the moving point P is a fixed point.

2. Preliminaries

A parametric representation of a ruled surface is

X
(
ϕ, v

)
= α

(
ϕ
)

+ vR
(
ϕ
)
, (2.1)

where α
(
ϕ
)

represents a space curve which is called the directrix of the ruled surface and R
(
ϕ
)

is a curve
on the surface of sphere called the spherical indicatrix or director vector. The standard parameter may be
based on the ruling as

s
(
ϕ
)

=

∫ ϕ

0

∣∣∣dR/dϕ
∣∣∣ dϕ (2.2)

where R =
∣∣∣dR/dϕ

∣∣∣ may be considered to be the speed of R
(
ϕ
)

. If R , 0 then Eqn. (2.2) can be inverted to
yield ϕ (s) allowing the definition of R

(
ϕ (s)

)
= R (s) ·R (s) has unit speed, that is its tangent vector is of unit

magnitude, where ”·”is the standart inner product.{
e, t, 1

}
is called the generator trihedron of the ruled surface X such that e = R/

∣∣∣R∣∣∣ , t = R
′

and 1 = e×t are
the unit vector in R direction, the central normal and the asymptotic normal direction of X, respectively.

The angular variation of the frame
{
e, t, 1

}
is obtained by computing dt/ds and d1/ds in terms of e, t, 1 .

Since e · t = 0 we have dt/ds · e = −t · de/ds = −1. Defining dt/ds · 1 as the function γwe obtain the generator
trihedron equations of R

(
ϕ
)

by [11]:

 de/ds
dt/ds
d1/ds

 =

 0 1/R 0
−1/R 0 γ/R

0 −γ/R 0


 e

t
1

 , (2.3)

where γ is the geodesic curvature of R
(
ϕ
)

and the formula for γ is obtained in terms of R
(
ϕ
)

and its
derivatives with respect to ϕ is by,[10]

γ =
e × de/dϕ · d2e/dϕ2∣∣∣de/dϕ

∣∣∣3 . (2.4)

The striction curve β (s) of ruled surface X is obtained as

β (s) = α (s) − µ (s) e (s) , (2.5)
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where

X (s, v) = α (s) + vR (s) , µ = α′ (s) · R
′

(s) . (2.6)

dβ/ds expanded in terms of the frame e, t, 1 is

dβ
ds

=

(
dβ
ds
· e

)
e +

(
dβ
ds
· t

)
t +

(
dβ
ds
· 1

)
1. (2.7)

Using Eqn. (2.5) , we obtain

dβ
ds

= Γ (s) e (s) + ∆ (s) 1 (s) (2.8)

where

Γ (s) = (1/R) dα/ds · e − Rdµ/ds, ∆ (s) = (1/R) dα/ds · e × de/ds. (2.9)

The functions γ,Γ and ∆ are defined to be the curvature functions of the ruled surface X . The ruled
surface X is competely defined together with this functions, [11].

The Frenet frame {t,n, b} along α (s) is defined, where t (s) = α′ (s) , n (s) = α” (s) and b (s) = t (s)× n (s) are
the unit tangent, principal normal and binormal vector fields of the curve, respectively. The derivative
formulas of the Frenet frame are governed by the following relations [10]:

 t′

n′

b′

 =

 0 κ 0
−κ 0 τ
0 −τ 0


 t

n
b

 , (2.10)

where κ and τ are the curvature and torsion of α, respectively.
Let η be the angle between the vectors e and b, (Fig 1.). Here, the generator trihedron and the Frenet

trihedron have the central normal vector in common. Then, the relations between these frames can be given
as follows, [5]

 e
t
1

 =

 0 − sin η cos η
1 0 0
0 cos η sin η


 t

n
b

 , (2.11)

where t = R
′

= Rr′, n = (1/κ) t′, b = t × n and κ = |t′| the torsion of the curve α is equal to the angular
velocity of the angle of rotation of the central normal vector. So,[5]

η′ = −τ. (2.12)

Path of a robot may be represented by a TCP and tool frame of end effector. The tool frame is represented
by three mutually perpendicular unit vectors {O,A,N} ,where O is the orientation vector, A is the approach
vector and N is the normal vector. The path of the tool center point and the vector O are called director and
ruling, respectively. Then, the surface frame {O,Sn,Sb} of the ruled surface X may be determined as follows

Sn =
Xs × Xv

|Xs × Xv|
|v=0, Sb = O × Sn, (2.13)
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where Sn is the unit normal vector of ruled surface X and Sb is the unit binormal vector of the surface. Let ζ
be the angle between the surface binormal vector Sb and the approach vector A. Then, the relations between
tool trihedron and surface trihedron can be given as follows, [5]

 O
A
N

 =

 1 0 0
0 cos ζ sin ζ
0 − sin ζ cos ζ


 O

Sn
Sb

 . (2.14)

Let σ be the angle between the vectors Sn and t. Then, the relations between tool trihedron and generator
trihedron can be given as follows, [5]

 O
Sn
Sb

 =

 1 0 0
0 cos σ sin σ
0 − sin σ cos σ


 e

t
1

 . (2.15)

From Eqns. (2.14) and (2.15), the relations between tool trihedron and generator trihedron can be written
in the matrix form as,[5]

 O
A
N

 =

 1 0 0
0 cos Σ sin Σ
0 − sin Σ cos Σ


 e

t
1

 . (2.16)

where Σ = ζ+ σ.Differentiating Eqn. (2.16) and substituting Eqn. (2.16), the first order angular variation of
the tool trihedron may be expressed in the matrix form as, [5]

d
ds

 O
A
N

 =


0 1

R cos Σ −
1
R sin Σ

−
1
R cos Σ 0 Σ′ +

γ
R

1
R sin Σ −

(
Σ′ +

γ
R

)
0


 O

A
N

 . (2.17)

3. The Adjoint Trajectory of Robot end Effector using the Curvature Theory of Ruled Surface

The parametric representation of ruled surface is

X (s, v) = α (s) + vR (s) , (3.1)

where α (s) is called the directrix of ruled surface and R (s) is director vector which is called the spherical
indicatrix. By using Eqns. (2.8) and (2.16) the tangent of striction curve of this ruled surface according to
tool trihedron is

β′ (s) = Γ (s) O (s) + ∆ (s) sin Σ (s) A (s) + ∆ (s) cos Σ (s) N (s) . (3.2)

Let the point P be not on the director vector. This point draws a curve Γp. Let rP be the trajectory of the
curve Γp. This curve is adjoint to the surface X (s, v) . So, we write parameter form of this curve depending
on the generator curve trihedron

{
e, t, 1

}
, (Fig 1.),

Γp : rP (s) = β (s) + x1 (s) e (s) + x2 (s) t (s) + x3 (s) 1 (s) , (3.3)
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where x1, x2 and x3 are coordinates of point P according to the generator trihedron. By using Eqns.(2.16)
and (3.3), the parameter form of curve Γp with respect to tool trihedron is

rP (s) = β + x1O + (x2 cos Σ + x3 sin Σ) A + (x3 cos Σ − x2 sin Σ) N. (3.4)

Differentiating Eqn.(3.4) and substituting Eqns.(3.2) and (2.17), into the result, the first order positional
variation of the moving point P with respect to the tool trihedron is

r′P (s) =
(
Γ + x′1 −

1
R x2

)
O

+ (Ω1 sin Σ + Ω2 cos Σ) A + (Ω1 cos Σ −Ω2 sin Σ) N
(3.5)

Ω1 = ∆ + x′3 +
γx2

R
Ω2 = x′2 +

x1−γx3

R
(3.6)

Differentiating Eqn.(3.5) and substituting Eqns. (2.17) and (3.6), into the result, the second order
positional variation of the moving point P is

r′′P (s) =
[
Γ′ + x′′1 + 1

R2

(
γx3 − x1 − 2Rx′2

)]
O

+

 1
R2

(
ΓR + 2Rx′1 − R

(
γx3

)′
− γ

(
∆ + x′3

)
− x2

(
1 + γ2

))
cos Σ

+
(

1
R2

(
γx1 − γ2x3 + R

(
γx2

)′ + Rγx′2
)

+ ∆′ + x′′3
)

sin Σ

 A

+

 1
R2

(
x2

(
1 + γ2

)
+ R

(
∆γ − Γ + γx′3 − x′1 +

(
γx3

)′)) sin Σ

+
(

1
R2

(
γx1 − γ2x3 + R

(
γx2

)′ + Rγx′2
)

+ ∆′ + x′′3
)

cos Σ

 N.

(3.7)

Corollary 3.1 The angular velocity of the robot end effector of connected at the point P depending on the tool trihedron
can be given as

r′P (s) =
(
Γ + x′1 −

1
R

x2

)
O + (Ω1 sin Σ + Ω2 cos Σ) A + (Ω1 cos Σ −Ω2 sin Σ) N

Ω1 = ∆ + x′3 +
γx2

R

Ω2 = x′2 +
x1 − γx3

R
.

Corollary 3.2 The angular acceleration of the robot end effector of connected at the point P depending on the tool
trihedron can be given as

r′′P (s) =
[
Γ′ + x′′1 +

1
R2

(
γx3 − x1 − 2Rx′2

)]
O

+

 1
R2

(
ΓR + 2Rx′1 − R

(
γx3

)′
− γ

(
∆ + x′3

)
− x2

(
1 + γ2

))
cos Σ

+
(

1
R2

(
γx1 − γ2x3 + R

(
γx2

)′ + Rγx′2
)

+ ∆′ + x′′3
)

sin Σ

 A

+

 1
R2

(
x2

(
1 + γ2

)
+ R

(
∆γ − Γ + γx′3 − x′1 +

(
γx3

)′)) sin Σ

+
(

1
R2

(
γx1 − γ2x3 + R

(
γx2

)′ + Rγx′2
)

+ ∆′ + x′′3
)

cos Σ

 N.



F. Güler / Filomat 34:12 (2020), 4061–4069 4066

Theorem 3.3 Let X (s, v) = α (s) + vR (s) be the ruled surface and the point P be not on the director vector. If the
point P is fixed, then

Γ = c∆, (3.8)

where c = − x1
x3

= cons tan t, and Γ, ∆ functions are curvature functions of the ruled surface X (s, v) .

Proof. If P is a fixed point, then Eqn. (3.5) is zero. Then all coefficients in Eqn. (3.5) must be zero. Therefore,

Γ + x′1 −
1
R

x2 = 0, Ω1 sin Σ + Ω2 cos Σ = 0, Ω1 cos Σ −Ω2 sin Σ = 0. (3.9)

By using Eqns. (3.6) and (3.9), we have

{

x′1 = 1
R x2 − Γ

x′2 = 1
R
(
γx3 − x1

)
,

x′3 = − 1
Rγx2 − ∆.

(3.10)

Since point P is fixed, xi = cons tan t, i = 1, 2, 3. So, dxi
ds = 0. We can write using Eqn. (3.10)

∆ = −
x1

x3
Γ,

and since xi = cons tan t, we can get c = − x1
x3

= cons tan t. Thus the proof is completed.

Darboux vector of the natural trihedron is

W = τt + κb (3.11)

where κ and τ are curvature and torsion of the curve α (s) , respectively. By using Eqns. (2.11) and (2.16),
we can write

W = κ cos ηO +
(
τ cos Σ + κ sin η sin Σ

)
A +

(
κ sin η cos Σ − τ sin Σ

)
N. (3.12)

This formulation describes the angular motion of the ruled surface and useful for studying the rotational
motion of a rigid body. The velocity of point P can be obtained as

VP = W × P (3.13)

where W is Darboux vector and the moving point P according to generator trihedron is

P = x1 (s) e (s) + x2 (s) t (s) + x3 (s) 1 (s) , (3.14)

where x1, x2 and x3 are coordinates of point P according to the generator trihedron. Using Eq. (2.16), the
point P with respect to tool trihedron is

P = x1O + (x2 cos Σ + x3 sin Σ) A + (x3 cos Σ − x2 sin Σ) N. (3.15)
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Corollary 3.4 The velocity of the adjoint robot end effector of connected at the point P is

VP =
(
τx3 − κx2 sin η

)
O + (κΠ1 cos Σ + Π2 sin Σ) A + (Π2 cos Σ − κΠ1 sin Σ) N, (3.16)

where

Π1 = x1 sin η − x3 cos η
Π2 = κx2 cos η − τx1.

(3.17)

Components the orientation and normal directions in Eqn. (3.16) gives the velocity about an axis of the
robot end effector of connected at the point P and the component the approach direction give the velocity
of spin motion about the normal direction of the robot end effector of connected at point P.

Figure 1: The adjoint trajectory of robot end effector at the point P

Example 3.5 Consider the ruled surface

X (s, v) =
(1

2

√

2v cos2 s +
3
5

cos s,
1
2

√

2v sin2 s +
3
5

sin s,
4
5

s +
1
2

v sin 2s
)
, (3.18)

where α (s) =
(

3
5 cos s, 3

5 sin s, 4
5 s

)
is the base curve, R (s) =

(
1
√

2
cos2 s, 1

√
2

sin2 s, 1
2 sin 2s

)
is the director,

−2 < s < 2, −2 < v < 2,(Fig. 2).
The generator trihedron

{
e, t, 1

}
is defined by

e (s) =
(
cos2 s, sin2 s,

√
2

2 sin 2s
)

t (s) =
(
−

1
√

2
sin 2s, 1

√
2

sin 2s, cos 2s
)

1 (s) =
(
cos 2s sin2 s − 1

2 sin2 2s,− cos 2s cos2 s + 1
2 sin2 2s, 1

√
2

sin 2s
)

and if we take Σ = s , then the tool trihedron {O,A,N} is
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O (s) =
(
cos2 s, sin2 s,

√
2

2 sin 2s
)

A (s) =


[− 1
√

2
cos s sin 2s + cos 2s sin3 s − 1

2 sin2 2s sin s,
1
√

2
cos s sin 2s − cos 2s cos2 s sin s − 1

2 sin2 2s sin s,
cos 2s cos s + 1

√
2

sin 2s sin s]


N (s) =


[ 1
√

2
sin s sin 2s + cos 2s sin2 s cos s − 1

2 sin2 2s cos s,
−

1
√

2
sin 2s cos 2s sin s − cos 2s cos3 s − 1

2 sin2 2s cos s,
− sin s cos 2s + 1

√
2

cos s sin 2s]


By using Eqn. (2.5) , the striction curve β (s) of ruled surface X is obtained as

β (s) =


[ 3

5 cos s −
(
cos2 s

) (
4
5 cos 2s + 3

10

√
2 cos s sin 2s + 3

10

√
2 sin s sin 2s

)
,

3
5 sin s −

(
sin2 s

) (
4
5 cos 2s + 3

10

√
2 cos s sin 2s + 3

10

√
2 sin s sin 2s

)
,

4
5 s − 1

2

√
2 (sin 2s)

(
4
5 cos 2s + 3

10

√
2 cos s sin 2s + 3

10

√
2 sin s sin 2s

)
]

 .
If we take x1 = s, x2 = 2s, x3 = 2s + 1, then the curve Γp which draws of moving point P is (Red)

ΓP : rP (s) =


[((cos s) (2s + 1) − 2s sin s)

(
cos s cos 2s sin2 s + 1

2

√
2 sin s sin 2s − 1

2 cos s sin2 2s
)
,

− ((cos s) (2s + 1) − 2s sin s)
(
cos 2s cos3 s + 1

2 cos s sin2 2s + 1
2

√
2 sin s cos 2s sin 2s

)
,

−

(
sin s cos 2s − 1

2

√
2 cos s sin 2s

)
((cos s) (2s + 1) − 2s sin s)]

 .

Figure 2: The trajectory of robot end effector and the adjoint trajectory at the point P

4. Conclusion

In this paper, we introduce a method for finding adjoint trajectory of robot end effector. This method
used to replace the trajectory of the robot movement with the adjoint trajectory when not re-computation
of the robot trajectory. Also, we calculate the angular accelaration and angular velocity of adjoint trajectory.
We illustrate the presented method with an example.
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[12] Taş, F., & İlarslan, K. A new approach to design the ruled surface. International Journal of Geometric Methods in Modern Physics,

(2019), 1950093.
[13] T. Turhan and N. Ayyıldız, On curvature theory of ruled surfaces with lightlike ruling in Minkowski 3-Space, Int. J. Math. Sci.

Appl. (2011), 1(3).


	Introduction
	Preliminaries
	The Adjoint Trajectory of Robot end Effector using the Curvature Theory of Ruled Surface
	Conclusion

