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The Natural Operators Similar to the Twisted Courant Bracket on
Couples of Vector Fields and p-Forms

Włodzimierz M. Mikulskia
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Abstract. Given natural numbers m and p with m ≥ p + 2 ≥ 3, allM fm-natural operators A sending closed
(p + 2)-forms H on m-manifolds M into R-bilinear operators AH transforming pairs of couples of vector
fields and p-forms on M into couples of vector fields and p-forms on M are found. If m ≥ p + 2 ≥ 3, all
M fm-natural operators A (as above) such that AH satisfies the Jacobi identity in Leibniz form are extracted,
and that the twisted Courant bracket [−,−]H is the uniqueM fm-natural operator AH (as above) satisfying
the Jacobi identity in Leibniz form and some normalization condition is deduced.

1. Introduction

All manifolds considered in this paper are assumed to be finite dimensional second countable Hausdorff
without boundary and smooth (of class C∞). Maps between manifolds are assumed to be smooth (of class
C
∞)

In [2, 4], the authors found all R-bilinear operators A : (X(M)⊕Ωp(M))×(X(M)⊕Ωp(M))→ X(M)⊕Ωp(M)
on couples of vector fields and p-forms on a m-dimensional manifold M, which are M fm-natural, i.e.
invariant under the morphisms in the categoryM fm of m-dimensional manifolds and their submersions.
The principal result of [3] (or of [2] if p = 1) is precisely the full classification of such operators which also,
like the Courant bracket, satisfy the Jacobi identity in Leibniz form. The Courant bracket, defined in [1] (if
p = 1) and in [6] (for any p), is of particular interest, because it involves in the concept of Dirac structures
and in the concept of generalized complex structures on M, see [1, 5, 6].

In the present paper, we find allM fm-natural operators A sending (closed) (p + 2)-forms H ∈ Ω
p+2
clos(M)

on a m-manifold M into R-bilinear operators

AH : (X(M) ⊕Ωp(M)) × (X(M) ⊕Ωp(M))→ X(M) ⊕Ωp(M)

transforming pairs of couples of vector fields and p-forms on M into couples of vector fields and p-forms on
M. The principal result of the present paper is precisely the full classification of suchM fm-natural operators
AH which also, like the twisted Courant bracket [−,−]H, satisfy the Jacobi identity in Leibniz form

AH(ρ1,AH(ρ2, ρ3)) = AH(AH(ρ1, ρ2), ρ3) + AH(ρ2,AH(ρ1, ρ3))
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for all ρ1, ρ2, ρ3 ∈ X(M)⊕Ωp(M) and all H ∈ Ω
p+2
clos(M) and all m-manifolds M. Thus for p = 1 we reobtain the

results from [9]. It is well-known that the twisted Courant bracket [−,−]H is of particular interest because
its properties (if p = 1) were used in [8, 10] to define the concept of exact Courant algebroid.

At the end of the present paper, we observe that the twisted Courant bracket [−,−]H can be characterized
as the uniqueM fm-natural operator AH (as above) satisfying both the Jacobi identity in Leibniz form and
the normalization condition

AH(X1
⊕ 0,X2

⊕ 0) = [X1,X2] ⊕ iX1 iX2 H

for all vector fields X1,X2 and closed (p + 2)-forms H on m-manifolds.
From now on, (xi) (i = 1, ...,m) denote the usual coordinates on Rm and ∂i = ∂

∂xi are the canonical vector
fields on Rm.

2. The Courant like brackets

The general concept of natural operators can be found in [7]. In the present paper, we need only some
particular cases of natural operators.

Definition 2.1. AnM fm-natural operator sending pairs (X1
⊕ω1,X2

⊕ω2) ∈ (X(M)⊕Ωp(M))× (X(M)⊕Ωp(M))
consisting of couples of vector fields and p-forms on m-manifolds M into couples A(X1

⊕ω1,X2
⊕ω2) ∈ X(M)⊕Ωp(M)

of vector fields and p-forms on M is anM fm-invariant family A of operators

A : (X(M) ⊕Ωp(M)) × (X(M) ⊕Ωp(M))→ X(M) ⊕Ωp(M)

for m-dimensional manifolds M, where X(M) is the vector space of vector fields on M and Ωp(M) is the vector space
of p-forms on M. Such natural operator A is called bilinear if A is a bilinear (over R) function V × V → V with
V = X(M) ⊕Ωp(M) for any m-manifold M.

Remark 2.2. TheM fm-invariance of A means that if (X1
⊕ ω1,X2

⊕ ω2) ∈ (X(M) ⊕ Ωp(M)) × (X(M) ⊕ Ωp(M))
and (X̃1

⊕ ω̃1, X̃2
⊕ ω̃2) ∈ (X(M̃) ⊕ Ωp(M̃)) × (X(M̃) ⊕ Ωp(M̃)) are ϕ-related by an M fm-map ϕ : M → M̃ (i.e.

X̃i
◦ϕ = Tϕ ◦Xi and ω̃i

◦ϕ =
∧p T∗ϕ ◦ωi for i = 1, 2), then so are A(X1

⊕ω1,X2
⊕ω2) and A(X̃1

⊕ ω̃1, X̃2
⊕ ω̃2).

The most important example of a natural bilinear operator A in the sense of Definition 2.1 is the Courant
bracket on couples of vector fields and p-forms.

Example 2.3. ([6]) The Courant bracket (on couples of vector fields and p-forms) is defined by

[X1
⊕ ω1,X2

⊕ ω2]C := [X1,X2] ⊕ (LX1ω2
− LX2ω1 +

1
2

d(iX2ω1
− iX1ω2))

for any Xi
⊕ ωi

∈ X(M) ⊕Ωp(M), i = 1, 2, where L denotes the Lie derivative, d the exterior derivative, [−,−] the
usual bracket on vector fields and i is the insertion derivative. For p = 1 we obtain the usual Courant bracket as in
[1].

Remark 2.4. If m = p, we haveLXω = diXω+iXdω = diXω for any vector field X and any m-formω on a m-manifold
M as dω = 0. Consequently, [X1

⊕ω1,X2
⊕ω2]C = [X1,X2]⊕ 1

2 (LX1ω2
−LX2ω1) for any Xi

⊕ωi
∈ X(M)⊕Ωm(M),

i = 1, 2.

Theorem 2.5. ([4]) If m ≥ p + 1 ≥ 2 (or m = p ≥ 3 respectively), anyM fm-natural bilinear operator A in the sense
of Definition 2.1 is of the form

A(X1
⊕ ω1,X2

⊕ ω2) = a[X1,X2] ⊕ (b1LX2ω1 + b2LX1ω2 + c1d(iX2ω1) + c2d(iX1ω2))

for uniquely determined by A real numbers a, b1, b2, c1, c2 (or a, b1, b2, c1, c2 with c1 = c2 = 0 respectively).
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Corollary 2.6. ([4]) If m ≥ p + 1 ≥ 2 (or m = p ≥ 3), anyM fm-natural skew-symmetric bilinear operator A in the
sense of Definition 2.1 is of the form

A(X1
⊕ ω1,X2

⊕ ω2) = a[X1,X2] ⊕ (b(LX1ω2
− LX2ω1) + cd(iX2ω1

− iX1ω2))

for uniquely determined by A real numbers a, b, c (or a, b, c with c = 0, respectively).

Roughly speaking, Corollary 2.6 says that if m ≥ p + 1 ≥ 2 (or m = p ≥ 3 respectively), then any skew-
symmetric bilinear M fm-natural operator A in the sense of Definition 2.1 coincides with the generalized
Courant bracket up to three (or two respectively) real constants.

Definition 2.7. A M fm-natural bilinear operator A in the sense of Definition 2.1 satisfies the Jacobi identity in
Leibniz form if

A(ρ1,AH(ρ2, ρ3)) = A(A(ρ1, ρ2), ρ3) + A(ρ2,A(ρ1, ρ3))

for all ρ1, ρ2, ρ3 ∈ X(M) ⊕Ωp(M) and all m-manifolds M.

Remark 2.8. The Courant bracket presented in Example 2.3 is skew-symmetric but not satisfying the Jacobi identity
in Leibniz form. The bracket A<4,1,0> from Theorem 2.9 below (also called the Courant bracket) is not skew-symmetric
but it satisfies the Jacobi identity in Leibniz form.

Theorem 2.9. ([3]) If m ≥ p + 1 ≥ 2 (or m = p ≥ 3 respectively), any bilinearM fm-natural operator A in the sense
of Definition 2.1 satisfying the Jacobi identity in Lelbniz form is one of the following operators A<1,a>,A<2,a>,A<3,a>,
A<4,a,0> (or A<1,a>,A<2,a>, A<3,a> respectively) given by

A<1,a>(ρ1, ρ2) := a[X1,X2] ⊕ 0 ,
A<2,a>(ρ1, ρ2) := a[X1,X2] ⊕ (a(LX1ω2

− LX2ω1)) ,
A<3,a>(ρ1, ρ2) := a[X1,X2] ⊕ aLX1ω2 ,

A<4,a,0>(ρ1, ρ2) := a[X1,X2] ⊕ (a(LX1ω2
− LX2ω1 + diX2ω1)) ,

where a ∈ R is an arbitrary real number, and where ρi = Xi
⊕ ωi, i = 1, 2. For any a ∈ R each of operators

A<1,a>,A<2,a>,A<3,a>, A<4,a,0> satisfies the Jacobi identity in Leibniz form.

Corollary 2.10. ([3]) If m ≥ p + 1 ≥ 2 or m = p ≥ 3, anyM fm-natural Lie algebra brackets on X(M) ⊕Ωp(M) (i.e.
M fm-natural skew-symmetric bilinear operator satisfying the Jacobi identity in Leibniz form) is the constant multiple
of the one of the following two Lie algebra brackets:

[[X1
⊕ ω1,X2

⊕ ω2]]1 := [X1,X2] ⊕ 0 ,
[[X1
⊕ ω1,X2

⊕ ω2]]2 := [X1,X2] ⊕ (LX1ω2
− LX2ω1) .

3. The twisted Courant like brackets

Definition 3.1. Let p be a fixed positive integer. AM fm-natural operator B sending (p + 1)-forms F ∈ Ωp+1(M) on
m-manifolds M into R-bilinear operators

BF : (X(M) ⊕Ωp(M)) × (X(M) ⊕Ωp(M))→ X(M) ⊕Ωp(M)

is aM fm-invariant family of regular operators (functions)

B : Ωp+1(M)→ Lin2((X(M) ⊕Ωp(M)) × (X(M) ⊕Ωp(M)),X(M) ⊕Ωp(M))

for all m-manifolds M, where Lin2(U × V,W) denotes the vector space of all bilinear (over R) functions U × V →W
for any real vector spaces U,V,W.

Such natural operator B is called admissible if BF = BF+dF′ for any F ∈ Ωp+1(M) and F′ ∈ Ωp(M).
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Remark 3.2. The invariance means that if F1
∈ Ωp+1(M) and F2

∈ Ωp+1(M̃) are ϕ-related and (X1
⊕ω1,X2

⊕ω2) ∈
(X(M) ⊕Ωp(M)) × (X(M) ⊕Ωp(M)) and (X̃1

⊕ ω̃1, X̃2
⊕ ω̃2) ∈ (X(M̃) ⊕Ωp(M̃)) × (X(M̃) ⊕Ωp(M̃)) are ϕ-related

by anM fm-map ϕ : M→ M̃, then so are BF1 (X1
⊕ ω1,X2

⊕ ω2) and BF2 (X̃1
⊕ ω̃1, X̃2

⊕ ω̃2).

Remark 3.3. The regularity of B means that it transforms smoothly parametrized families (Ft,X1
t ⊕ω

1
t ,X

2
t ⊕ω

2
t ) into

smoothly ones BFt (X1
t ⊕ ω

1
t ,X

2
t ⊕ ω

2
t ).

Proposition 3.4. Let B be an admissible M fm-natural operator in the sense of Definition 3.1. Assume that m ≥
p + 2 ≥ 3. Then there exist uniquely determined real numbers a, b1, b2, c1, c2, e such that

BF(ρ1, ρ2) = a[X1,X2] ⊕
(b1LX2ω1 + b2LX1ω2 + c1diX1ω2 + c2diX2ω1 + eiX1 iX2 dF)

for any F ∈ Ωp+1(M) and any ρ1, ρ2
∈ X(M)⊕Ωp(M) and anyM fm-object M, where ρ1 = X1

⊕ω1 and ρ2 = X2
⊕ω2.

Proof. Operator B0, where 0 is the zero (p + 1)-form, can be treated as the natural bilinear operator in the
sense of Definition 2.1. Then B0 is described in Theorem 2.5. So, replacing B by B−B0, we have assumption
B0 = 0. Then, by the admissibility of B, BdF′ = 0 for any p-form F′.

Put BF(−,−) = (B1
F(−,−),B2

F(−,−)) , where B1
F(...) ∈ X(M) and B2

F(...) ∈ Ωp+1(M). By theM fm-invariance,
B is determined by the values

< B1
F(X1

⊕ ω1,X2
⊕ ω2)|0 , η >∈ R and < B2

F(X1
⊕ ω1,X2

⊕ ω2)|0, µ >∈ R

for F ∈ Ωp+1(Rm), X1
⊕ω1,X2

⊕ω2
∈ X(Rm)⊕Ωp(Rm), η ∈ T∗0Rm, µ ∈ ∧pT0Rm. We can assume X1

|0∧X2
|0∧µ , 0,

and then by the invariance we can assume

X1
|0 = ∂1 |0 , X2

|0 = ∂2 |0 , µ = ∂3 |0 ∧ ... ∧ ∂p+2 |0 .

By Corollary 19.9 of the non-linear Petree theorem in [7] there exists a finite number r (possible depending

on (X1,X2, ω1, ω2,F)) such that from ( jr0F = jr0F, jr0X1 = jr0X
1
, jr0ω

1 = jr0ω
1, jr0X2 = jr0X

2
, jr0ω

2 = jr0ω
2) it follows

BF(X1
⊕ω1,X2

⊕ω2)|0 = BF(X
1
⊕ω1,X

2
⊕ω2)|0. So, we may assume F,X1,X2, ω1, ω2 are polynomial of degree

not more than r.
Using the invariance of B with respect to the homotheties and the bi-linearity of BF we obtain the

homogeneity condition

< B1
( 1

t id)∗F
(t(

1
t

id)∗X1
⊕ t(

1
t

id)∗ω1, t(
1
t

id)∗X2
⊕ t(

1
t

id)∗ω2)|0 , η >

= t < B1
F(X1

⊕ ω1,X2
⊕ ω2)|0 , η > .

Then, by the homogeneous function theorem, since B0 = 0 and p+1 ≥ 2, we have< B1
F(X1
⊕ω1,X2

⊕ω2)|0 , η >=
0 .

Using the same arguments we get homogeneity condition

< B2
( 1

t id)∗F
(t(

1
t

id)∗X1
⊕ t(

1
t

id)∗ω1, t(
1
t

id)∗X2
⊕ t(

1
t

id)∗ω2)|0 , µ >

= tp+2 < B2
F(X1

⊕ ω1,X2
⊕ ω2)|0 , µ > .

Then, by the homogeneous function theorem and the bi-linearity of BF and the assumption BdF′ = 0,
< B2

F(X1
⊕ ω1,X2

⊕ ω2)|0, µ > is linear in F and it is determined by the values

< B2
xi1 dxi2∧...∧dxip+2

(∂1 ⊕ 0, ∂2 ⊕ 0), ∂3 |0 ∧ ... ∧ ∂p+2 |0 >

for all i1 = 1, ...,m and i2, ..., ip+2 with 1 ≤ i2 < ... < ip+2 ≤ m. Then using the invariance of B with respect to
(τ1x1, ...τmxm) for τi > 0 we deduce that only

< B2
xidx1∧...∧d̂xi∧...∧dxp+2

(∂1 ⊕ 0, ∂2 ⊕ 0), ∂3 |0 ∧ ... ∧ ∂p+2 |0 >
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for i = 1, ..., p + 2 may be non-zero. But if p + 2 ≥ i ≥ 2, then

(−1)ix1dx2
∧ ... ∧ dxp+2 = −xidx1

∧ ... ∧ d̂xi ∧ .... ∧ dxp+2 + d(x1xidx2
∧ ... ∧ d̂xi ∧ ... ∧ dxp+2) .

Then < B2
F(X1

⊕ ω1,X2
⊕ ω2)|0, µ > is determined by

< B2
x1dx2∧...∧dxp+2 (∂1 ⊕ 0, ∂2 ⊕ 0), ∂3 |0 ∧ ... ∧ ∂p+2 |0 >

because of the assumption BF = BF+dF′ .
Then the vector space of all such B (with B0 = 0) is at most 1-dimensional. On the other hand,

BF(X1
⊕ ω1,X2

⊕ ω2) = 0 ⊕ iX1 iX2 dF is an example of such B.

Definition 3.5. Let p be a fixed positive integer. AM fm-natural operator A sending closed (p+2)-forms H ∈ Ω
p+2
clos(M)

on m-manifolds M into bilinear operators

AH : (X(M) ⊕Ωp(M)) × (X(M) ⊕Ωp(M))→ X(M) ⊕Ωp(M)

is aM fm-invariant family of regular operators (functions)

A : Ω
p+2
clos(M)→ Lin2((X(M) ⊕Ωp(M)) × (X(M) ⊕Ωp(M)),X(M) ⊕Ωp(M))

for all m-manifolds M.

Example 3.6. The most important example of such AH is the twisted Courant bracket

[X1
⊕ ω1,X2

⊕ ω2]H := [X1,X2] ⊕ (LX1ω2
− iX2 dω1 + iX1 iX2 H)

for all closed (p + 2)-forms H ∈ Ω
p+2
clos(M) and all m-manifolds M.

Lemma 3.7. Any natural operator A in the sense of Definition 3.5 defines an admissible natural operator B<A> in
the sense of Definition 3.1 by B<A>

F := AdF for any F ∈ Ωp+1(M). If A1 is another natural operator in the sense of
Definition 3.5 such that B<A> = B<A1> then A = A1.

Proof. The first sentence is clear. To prove the second one, we observe that B<A> = B<A1> means that AH = A1
H

for exact (p + 2)-forms H. Since theM fm-invariance of A and A1 implies that A and A1 are local operators,
we can replace ”for exact” by ”for closed” because of the Poincare lemma.

Combining Lemma 3.7 and Proposition 3.4 we immediately get the following complete description of
natural operators in the sense of Definitin 3.5.

Theorem 3.8. Let p be a fixed positive integer. Let A be a M fm-natural operator in the sense of Definition 3.5.
Assume that m ≥ p + 2 ≥ 3. Then there exist uniquely determined real numbers a, b1, b2, c1, c2, e such that

AH(ρ1, ρ2) = a[X1,X2] ⊕
(b1LX2ω1 + b2LX1ω2 + c1diX1ω2 + c2diX2ω1 + eiX1 iX2 H)

for any H ∈ Ω
p+2
clos(M) and any ρ1, ρ2

∈ X(M)⊕Ωp(M) and any m-manifold M, where ρ1 = X1
⊕ω1 and ρ2 = X2

⊕ω2.

4. The twisted Courant like brackets satisfying the Jacobi identity in Leibniz form

Definition 4.1. Let p be a fixed positive integer. AM fm-natural operator A in the sense of Definition 3.5 satisfies
the Jacobi identity in Leibniz form if

AH(ρ1,AH(ρ2, ρ3)) = AH(AH(ρ1, ρ2), ρ3) + AH(ρ2,AH(ρ1, ρ3))

for all ρ1, ρ2, ρ3 ∈ X(M) ⊕Ωp(M) and all H ∈ Ω
p+2
clos(M) and all m-manifolds M.
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Example 4.2. The twisted Courant bracket [−,−]H is an example of natural operator in question satisfying the Jacobi
identity in Leibniz form. (Namely, it is A<4,1,1> from Theorem 4.3, below.)

Theorem 4.3. Let m ≥ p + 2 ≥ 3. AnyM fm-natural operator A in the sense of Definition 3.5 satisfying the Jacobi
identity in Leibniz form is one of the following operators

A<1,a>
H (ρ1, ρ2) := a[X1,X2] ⊕ 0 ,

A<2,a>
H (ρ1, ρ2) := a[X1,X2] ⊕ (a(LX1ω2

− LX2ω1)) ,

A<3,a>
H (ρ1, ρ2) := a[X1,X2] ⊕ (aLX1ω2) ,

A<4,a,e>
H (ρ1, ρ2) := a[X1,X2] ⊕ (a(LX1ω2

− LX2ω1 + diX2ω1) + eiX1 iX2 H) ,

where ρ1 = X1
⊕ ω1 and ρ2 = X2

⊕ ω2, and a and e are arbitrary real numbers. For any a, e ∈ R each of operators
A<1,a>,A<2,a>,A<3,a>,A<4,a,e> satisfies the Jacobi identity in Leibniz form.

Proof. Let A be aM fm-natural operator in the sense of Definition 3.5 satisfying the Jacobi identity in Leibniz
form. By Theorem 3.8, A is of the form

AH(X1
⊕ ω1,X2

⊕ ω2) = a[X1,X2] ⊕
(b1LX2ω1 + b2LX1ω2 + c1diX2ω1 + c2diX1ω2 + eiX1 iX2 H)

for (uniquely determined by A) real numbers a, b1, b2, c1, c2, e. Then for any X1,X2,X3
∈ X(M) andω1, ω2, ω3

∈

Ωp(M) and H ∈ Ω
p+2
clos(M) we have

AH(X1
⊕ ω1,AH(X2

⊕ ω2,X3
⊕ ω3)) = a2[X1, [X2,X3]] ⊕Ω ,

AH(AH(X1
⊕ ω1,X2

⊕ ω2),X3
⊕ ω3) = a2[[X1,X2],X3] ⊕Θ ,

AH(X2
⊕ ω2,AH(X1

⊕ ω1,X3
⊕ ω3)) = a2[X2, [X1,X3]] ⊕ T ,

where

Ω = b1La[X2,X3]ω
1 + c1dia[X2,X3]ω

1 + eiX1 ia[X2,X3]H

+b2LX1 (b1LX3ω2 + b2LX2ω3 + c1diX3ω2 + c2diX2ω3 + eiX2 iX3 H)
+c2diX1 (b1LX3ω2 + b2LX2ω3 + c1diX3ω2 + c2diX2ω3 + eiX2 iX3 H) ,

Θ = b2La[X1,X2]ω
3 + c2dia[X1,X2]ω

3 + eia[X1,X2]iX3 H

+b1LX3 (b1LX2ω1 + b2LX1ω2 + c1diX2ω1 + c2diX1ω2 + eX1 iX2 H)
+c1diX3 (b1LX2ω1 + b2LX1ω2 + c1diX2ω1 + c2diX1ω2 + eiX1 iX2 H) ,

T = b1La[X1,X3]ω
2 + c1dia[X1,X3]ω

2 + eiX2 ia[X1,X3]H

+b2LX2 (b1LX3ω1 + b2LX1ω3 + c1diX3ω1 + c2diX1ω3 + eiX1 iX3 H)
+c2diX2 (b1LX3ω1 + b2LX1ω3 + c1diX3ω1 + c2diX1ω3 + eiX1 iX3 H) .

The Jacobi identity in Leibniz form of AH is equivalent to Ω = Θ + T .
Putting H = 0, we are in the situation of Theorem 2.9. Then by Theorem 2.9 we get (b1, b2, c1, c2) =

(0, 0, 0, 0) or (b1, b2, c1, c2) = (0, a, 0, 0) or (b1, b2, c1, c2) = (−a, a, 0, 0) or (b1, b2, c1, c2) = (−a, a, a, 0). More, A0 for
such (b1, b2, c1, c2) satisfies the Jacobi identity in Leibniz form.
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Therefore (as c2 = 0) the Jacobi identity in Leibniz form of AH is equivalent to the equality

eaiX1 i[X2,X3]H + b2eLX1 iX2 iX3 H
= eai[X1,X2]iX3 H + b1eLX3 iX1 iX2 H + c1ediX3 iX1 iX2 H
+eaiX2 i[X1,X3]H + b2eLX2 iX1 iX3 H .

Put ωo := dx4
∧ ... ∧ dxp+2 if p + 2 ≥ 4 and ωo := 1 if p + 2 = 3.

If (b1, b2, c1, c2) = (0, 0, 0, 0), the above equality is equivalent to

eaiX1 i[X2,X3]H = eai[X1,X2]iX3 H + eaiX2 i[X1,X3]H .

Putting X1 = ∂1, X2 = ∂1 + x1∂3 and X3 = ∂2 we have [X2,X3] = 0, [X1,X3] = 0 and [X1,X2] = ∂3, and then
0 = eai∂3 i∂2 H for any closed H (for example for H = dx1

∧ dx2
∧ dx3

∧ ωo). Consequently e = 0 or a = 0.
If (b1, b2, c1, c2) = (0, a, 0, 0), the above equality is equivalent to

eaiX1 i[X2,X3]H + eaLX1 iX2 iX3 H = eai[X1,X2]iX3 H + eaiX2 i[X1,X3]H + eaLX2 iX1 iX3 H .

Putting X1 = ∂1, X2 = ∂2 and X3 = ∂3 and H = x2dx1
∧ dx2

∧ dx3
∧ ωo (it is closed) we have [X2,X3] = 0,

[X1,X2] = 0, [X1,X3] = 0, LX2 iX1 iX3 H = L∂2 x2dx2
∧ ωo = dx2

∧ ωo and LX1 iX2 iX3 H = L∂1 (−x2dx1
∧ ωo) = 0.

Then eadx2
∧ ωo = 0. So, a = 0 or e = 0.

If (b1, b2, c1, c2) = (−a, a, 0, 0), the above equality is equivalent to

eaiX1 i[X2,X3]H + eaLX1 iX2 iX3 H
= eai[X1,X2]iX3 H − eaLX3 iX1 iX2 H + eaiX2 i[X1,X3]H + eaLX2 iX1 iX3 H .

Putting X1 = ∂1, X2 = ∂2 and X3 = ∂3 and H = x2dx1
∧ dx2

∧ dx3
∧ ωo we have (see above) [X2,X3] = 0,

[X1,X2] = 0, [X1,X3] = 0, LX2 iX1 iX3 H = dx2
∧ ωo, LX1 iX2 iX3 H = 0 and LX3 iX1 iX2 H = L∂3 (−x2dx3

∧ ωo) = 0.
Then eadx2

∧ ωo = 0. So, a = 0 or e = 0.
If (b1, b2, c1, c2) = (−a, a, a, 0), the above equality is equivalent to

ea
∑
{iX1 i[X2,X3]H +LX1 iX2 iX3 H} = eadiX1 iX2 iX3 H ,

where
∑

is the cyclic sum
∑

cycl(X1,X2,X3). Then e is arbitrary real number because of from dH = 0 it follows∑
{iX1 i[X2,X3]H +LX1 iX2 iX3 H} = diX1 iX2 iX3 H ,

see Lemma 4.4, below.
Summing up, given a real number a , 0 we have (b1, b2, c1, c2, e) = (0, 0, 0, 0, 0) or (b1, b2, c1, c2, e) =

(0, a, 0, 0, 0) or (b1, b2, c1, c2, e) = (−a, a, 0, 0, 0, ) or (b1, b2, c1, c2, e) = (−a, a, a, 0, e). If a = 0 we have (b1, b2, c1, c2, e) =
(0, 0, 0, 0, e). Theorem 4.3 is complete.

Lemma 4.4. Let H ∈ Ω
p+2
clos(M) and X1,X2,X3

∈ X(M). Then the equality∑
{iX1 i[X2,X3]H +LX1 iX2 iX3 H} = diX1 iX2 iX3 H ,

holds.

Proof. We have anM fm-natural 4-linear operator C : X(M) ⊕ X(M) ⊕ X(M) ⊕Ωp+1(M)→ Ωp(M) given by

C(X1,X2,X3,F) :=
∑

cycl(X1,X2,X3)

{iX1 i[X2,X3]dF +LX1 iX2 iX3 dF} − diX1 iX2 iX3 dF

for any X1,X2,X3
∈ X(M) and F ∈ Ωp+1(M).
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By the Poincare lemma, it is sufficient to show C = 0, i.e. that C(X1,X2,X3,F)x = 0 for any X1,X2,X3,F
as above and x ∈M.

Because of the invariance of C we may assume that M = Rm and x = 0. Since C is 4-linear, we may assume
that F = f d11

∧ ...∧d1p+1, where f , 11, ..., 1p+1 : Rm
→ R are maps. More, we may assume that d0( f , 11, ..., 1p+1)

is of rank p + 2. Then (by theM fm-invariance of C) we may assume F = (x1 + λ)dx2
∧ ... ∧ dxp+2. We else

may assume X1 = h1∂ j and X2 = h2∂k and X3 = h3∂l for some h1, h2, h3 : Rm
→ R.

Now, to complete the lemma, it is sufficient to verify the following two facts:
(1) We have C(∂ j, ∂k, ∂l, (x1 + λ)dx2

∧ ... ∧ dxp+2)0 = 0;
(2) We have implication: If C(X1,X2,X3,F)0 = 0, then C(hX1,X2,X3,F)0 = 0 and C(X1, hX2,X3,F)0 = 0

and C(X1,X2, hX3,F)0 = 0 for any h : Rm
→ R.

ad(1) We can easily see that
∑

cycl(∂ j,∂k ,∂l) i∂ j i[∂k ,∂l]dx1
∧...∧dxp+2 = 0 and

∑
cycl(∂ j,∂k ,∂l)L∂ j i∂k i∂l dx1

∧...∧dxp+2 = 0
and di∂ j i∂k i∂l dx1

∧ ... ∧ dxp+2 = 0. That is why C(∂ j, ∂k, ∂l, (x1 + λ)dx2
∧ ... ∧ dxp+2)0 = 0.

ad(2) We have

C(hX1,X2,X3,F) = ihX1 i[X2,X3]dF + iX3 i[hX1,X2]dF + iX2 i[X3,hX1]dF +

+LhX1 iX2 iX3 dF +LX3 ihX1 iX2 dF +LX2 iX3 ihX1 dF − dihX1 iX2 iX3 dF
= hiX1 i[X2,X3]dF + hiX3 i[X1,X2]dF − X2(h)iX3 iX1 dF +

+hiX2 i[X3,X1]dF + X3(h)iX2 iX1 dF + hLX1 iX2 iX3 dF + dh ∧ iX1 iX2 iX3 dF +

+hLX3 iX1 iX2 dF + X3(h)iX1 iX2 dF + hLX2 iX3 iX1 dF + X2(h)iX3 iX1 dF +

−hdiX1 iX2 iX3 dF − dh ∧ iX1 iX2 iX3 dF = hC(X1,X2,X3,F) + 0 .

So, C(hX1,X2,X3,F)0 = 0 if C(X1,X2,X3,F)0 = 0. Similarly, we get that C(X1, hX2,X3,F)0 = 0 and
C(X1,X2, hX3,F)0 = 0 if C(X1,X2,X3,F)0 = 0.

From Theorem 4.3 it follows the following interesting characterization of the twisted Courant bracket
[−,−]H (from Example 3.6).

Corollary 4.5. Let m ≥ p + 2 ≥ 3. The twisted Courant bracket is the uniqueM fm-natural operator A in the sense
of Definition 3.5 satisfying the Jacobi identity in Leibniz form and the normalization condition AH(X1

⊕ 0,X2
⊕ 0) =

[X1,X2] ⊕ iX1 iX2 H for all vector fields X1,X2 and closed (p + 2)-forms H on m-manifolds.
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