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The Natural Operators Similar to the Twisted Courant Bracket on
Couples of Vector Fields and p-Forms

Wlodzimierz M. Mikulski?

Institute of Mathematics, Jagiellonian University, ul Lojasiewicza 6, 30-348 Cracow, Poland

Abstract. Given natural numbers m and p with m > p +2 > 3, all Mf,,-natural operators A sending closed
(p + 2)-forms H on m-manifolds M into R-bilinear operators Ay transforming pairs of couples of vector
fields and p-forms on M into couples of vector fields and p-forms on M are found. If m > p+2 > 3, all
Mf,-natural operators A (as above) such that Ay satisfies the Jacobi identity in Leibniz form are extracted,
and that the twisted Courant bracket [—, —] is the unique Mf,,-natural operator Ay (as above) satisfying
the Jacobi identity in Leibniz form and some normalization condition is deduced.

1. Introduction

All manifolds considered in this paper are assumed to be finite dimensional second countable Hausdorff
without boundary and smooth (of class C**). Maps between manifolds are assumed to be smooth (of class
%)

In [2, 4], the authors found all R-bilinear operators A : (X(M)® QP (M)) X (X(M)SQF(M)) — X(M)DQF (M)
on couples of vector fields and p-forms on a m-dimensional manifold M, which are Mf,-natural, i.e.
invariant under the morphisms in the category Mf,, of m-dimensional manifolds and their submersions.
The principal result of [3] (or of [2] if p = 1) is precisely the full classification of such operators which also,
like the Courant bracket, satisfy the Jacobi identity in Leibniz form. The Courant bracket, defined in [1] (if
p = 1) and in [6] (for any p), is of particular interest, because it involves in the concept of Dirac structures
and in the concept of generalized complex structures on M, see [1, 5, 6].

In the present paper, we find all Mf,,-natural operators A sending (closed) (p + 2)-forms H € QZ 12 i(M)
on a m-manifold M into R-bilinear operators

Ap  (XM) & P (M)) x (X(M) & QP (M)) — X(M) & QP (M)
transforming pairs of couples of vector fields and p-forms on M into couples of vector fields and p-forms on

M. The principal result of the present paper is precisely the full classification of such Mf,,-natural operators
Ap which also, like the twisted Courant bracket [—, -]y, satisfy the Jacobi identity in Leibniz form

An(p1, Au(p2, p3)) = Au(Au(p1, p2), p3) + Au(p2, Au(p1, ps))
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forall p1, p2, p3 € X(M)® P (M) and all H € QZ; i(M) and all m-manifolds M. Thus for p = 1 we reobtain the
results from [9]. It is well-known that the twisted Courant bracket [—, ]y is of particular interest because
its properties (if p = 1) were used in [8, 10] to define the concept of exact Courant algebroid.

At the end of the present paper, we observe that the twisted Courant bracket [—, =]y can be characterized
as the unique Mf,,-natural operator Ay (as above) satisfying both the Jacobi identity in Leibniz form and
the normalization condition

Ap(X'®0,X?®0) = [X', X?| @ ixixH

for all vector fields X', X* and closed (p + 2)-forms H on m-manifolds.
From now on, (x') (i = 1, ..., m) denote the usual coordinates on R” and d; = % are the canonical vector
fields on R™.

2. The Courant like brackets

The general concept of natural operators can be found in [7]. In the present paper, we need only some
particular cases of natural operators.

Definition 2.1. An Mf,,-natural operator sending pairs (X! @ w!, X*> ® w?) € (X(M) ® QO (M)) X (X(M) & QP (M))
consisting of couples of vector fields and p-forms on m-manifolds M into couples A(X' ®w', X?®w?) € X(M)®QF (M)
of vector fields and p-forms on M is an Mf,,-invariant family A of operators

A (X(M) & P (M) X (X(M) & OF(M)) = X(M) & QP (M)

for m-dimensional manifolds M, where X(M) is the vector space of vector fields on M and (P (M) is the vector space
of p-forms on M. Such natural operator A is called bilinear if A is a bilinear (over R) function V XV — V with
V = X(M) & QOF (M) for any m-manifold M.

Remark 2.2. The Mfy-invariance of A means that if (X' ® @', X* @ @) € (X(M) & (M) X (X(M) & (M)
and X'® o', X? @ 2) € (X(M) ® QP (M)) X (X(M) & QP(M)) are p-related by an Mf,-map ¢ : M — M (ie.
Xiop=TpoX and @ op = N\ T'pow fori=1,2), then soare AX' ® w', X> ® w?) and AX' @ @', X* & @?).

The most important example of a natural bilinear operator A in the sense of Definition 2.1 is the Courant
bracket on couples of vector fields and p-forms.

Example 2.3. ([6]) The Courant bracket (on couples of vector fields and p-forms) is defined by
X'ow!, X?®0?]¢ = [X!, X & (Lyw? - Lxw' + %d(ixzw1 — ixyi?))

for any X' @ ' € X(M) ® QF(M), i = 1,2, where L denotes the Lie derivative, d the exterior derivative, [—, -] the
usual bracket on vector fields and i is the insertion derivative. For p = 1 we obtain the usual Courant bracket as in

[1].

Remark 2.4. Ifm = p, we have Lxw = dixw+ixdw = dixw for any vector field X and any m-form w on a m-manifold
Mas dw = 0. Consequently, [X' @ 0!, X* @] = [X', X?]® 3 (Lx1w® — L") for any X' © w' € X(M) & Q™ (M),
i=1,2

Theorem 2.5. ([4])Ifm > p+1> 2 (or m = p > 3 respectively), any Mf,,-natural bilinear operator A in the sense
of Definition 2.1 is of the form

A(X1 ® wl,Xz ® 0)2) = LI[Xl, XZ] D (b1£sz1 + b Ly o+ C1d(ixza)1) + cod(ix a)z))

for uniquely determined by A real numbers a, b1, by, c1, ¢ (or a, by, by, c1, ¢ with c1 = ¢ = 0 respectively).



W. M. Mikulski / Filomat 34:12 (2020), 40714078 4073

Corollary 2.6. ([4])Ifm>p+1>2(orm =p > 3), any Mf,,-natural skew-symmetric bilinear operator A in the
sense of Definition 2.1 is of the form

AX'® 0!, X2 @ w?) = a[X', X?] ® (W(Lxw* — L) + cd(ixew! — ixyiw?))
for uniquely determined by A real numbers a, b, c (or a, b, c with ¢ = 0, respectively).

Roughly speaking, Corollary 2.6 says thatif m > p+1 > 2 (or m = p > 3 respectively), then any skew-
symmetric bilinear Mf,,-natural operator A in the sense of Definition 2.1 coincides with the generalized
Courant bracket up to three (or two respectively) real constants.

Definition 2.7. A Mf,,-natural bilinear operator A in the sense of Definition 2.1 satisfies the Jacobi identity in
Leibniz form if

Alp1, An(p2, p3)) = A(A(p1, p2), p3) + Alp2, Ap1, p3))
forall p1, p2, p3 € X(M) & QF (M) and all m-manifolds M.

Remark 2.8. The Courant bracket presented in Example 2.3 is skew-symmetric but not satisfying the Jacobi identity
in Leibniz form. The bracket A<*%> from Theorem 2.9 below (also called the Courant bracket) is not skew-symmetric
but it satisfies the Jacobi identity in Leibniz form.

Theorem 2.9. ([3]) If m > p+1 > 2 (or m = p > 3 respectively), any bilinear Mf,,-natural operator A in the sense
of Definition 2.1 satisfying the Jacobi identity in Lelbniz form is one of the following operators A<1%>, A<2#>, A<34>,
A40> (o A<VA> | A<20> | A38> yespectively) given by

A<1,a>(p1, PZ) = a[Xl,Xz] @0,
A<2,a>(p1, pZ) = a[Xl,XZ] &) (17[(-[:)(1(1)2 — szwl)) s
A<3'a>(Plr p2) = a[Xl,Xz] @ a_EXlg)z ’

A (1, p?) = al X', XP] @ (a( Ly 0” = Lew' +dixw')),

where a € R is an arbitrary real number, and where p' = X' ® o', i = 1,2. For any a € R each of operators
ASI> A<2> A3a> A<4a0> gatisfies the Jacobi identity in Leibniz form.

Corollary 2.10. ([3)) Ifm >p+1>2o0rm =p > 3, any Mf,,-natural Lie algebra brackets on X(M) & QO (M) (i.e.
Mf-natural skew-symmetric bilinear operator satisfying the Jacobi identity in Leibniz form) is the constant multiple
of the one of the following two Lie algebra brackets:

[X'® o', X*®o?]' = [X}, X?]®0),
[X'® o', X2 o?]]? = [X', X2 & (Lxyw? — Lywt).
3. The twisted Courant like brackets

Definition 3.1. Let p be a fixed positive integer. A M fy-natural operator B sending (p + 1)-forms F € QP*1(M) on
m-manifolds M into R-bilinear operators

Br : (X(M) ® O (M)) X (X(M) & O (M)) — X(M) & (M)
is a M fy-invariant family of regqular operators (functions)
B : Q"*Y(M) — Liny(X(M) & QP (M)) X (X(M) & QP (M), X(M) & QF (M)

for all m-manifolds M, where Liny(U X V, W) denotes the vector space of all bilinear (over R) functions UXV — W
for any real vector spaces U, V, W.
Such natural operator B is called admissible if Br = B.ap for any F € QP*Y(M) and F' € QP(M).
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Remark 3.2. The invariance means that if F* € QP*Y(M) and F* € QF*Y(M) are p-related and (X' ® w', X*> ® w?) €
(X(M) & QP(M)) X (X(M) ® QP(M)) and (X' & &', X ® @?) € (X(M) & QP(M)) X (X(M) & QP(M)) are p-related
by an Mf,-map ¢ : M — M, then so are B (X! @ o', X? ® w?) and Bp (X' ® &', X* @ @?).

Remark 3.3. The regularity of B means that it transforms smoothly parametrized families (F;, X! @ w}, X2 ® w?) into
smoothly ones Br,(X} @ w}, X? & w?).

Proposition 3.4. Let B be an admissible Mf,,-natural operator in the sense of Definition 3.1. Assume that m >
p + 2 > 3. Then there exist uniquely determined real numbers a, by, by, c1, c2, e such that

Br(p', p?) = alX', X*] &

(b1£Xza)1 + bz.EXla)z + Cldixla)z + czdina)l + eix iXZdF)
forany F € QP*Y(M) and any p', p* € X(M) @ (M) and any Mf,,-object M, where p! = X' @' and p* = X?@w?.

Proof. Operator By, where 0 is the zero (p + 1)-form, can be treated as the natural bilinear operator in the
sense of Definition 2.1. Then By is described in Theorem 2.5. So, replacing B by B — By, we have assumption
By = 0. Then, by the admissibility of B, Bgp: = 0 for any p-form F’.

Put Bp(—, —) = (B}(—, =), BX(—,-)) , where BL(...) € X(M) and B%(...) € Q’*'(M). By the Mf,,-invariance,
B is determined by the values

< B}(X1 ow', X*®w?) n>eRand < BIZ:(X1 ow,X*® a)2)|0, u>eR

los
for F e O*{(R™), X'@w!, X* 0w € X(R")®QP(R™), n € T{R™, u € APToR™. We can assume X‘lo /\X|2O Ap#0,
and then by the invariance we can assume
X|10 = 31|0 p X‘ZO = 82|0 s U= 83|0 A A a]:JJrZIO .
By Corollary 19.9 of the non-linear Petree theorem in [7] there exists a finite number r (possible depending
on (X!, X2, @', w?, F)) such that from (jiF = jiF, jiX! = iX, jro! = ji@", jiX2 = ;X ji? = i@ it follows

Br(X'@®w!, X2 ®w?) = Bf(il O, X ®@°)p. So, we may assume F, X', X2, 0!, w? are polynomial of degree
not more than r.

Using the invariance of B with respect to the homotheties and the bi-linearity of Br we obtain the
homogeneity condition

1 1 1 1
1 : 1 . 1 . 2 . 2
< B(%id)*F(t(?ld)*X @t(?d)*w ,t(?d)*X @t(;ld)*w or 1 >
=t<Br(X'® o', X*®@?),,n> .

Then, by the homogeneous function theorem, since By = 0and p+1 > 2, wehave < Bi(X'®w!, X*@w?),, 1 >=
0.
Using the same arguments we get homogeneity condition

1 1 1 1
2 . 1 . 1 . 2 . 2
< B(%id)*F(t(?ld)*X ® t(;ld)*w ,t(;ld)*X éBt(?ld),,a) os 1 >
=2 <B(X'@ !, X2 ®w0?),, u> .

Then, by the homogeneous function theorem and the bi-linearity of Br and the assumption B;r = 0,
<Bx(X'® w', X* ® w?)p, p > is linear in F and it is determined by the values

B? (0190,0,90), 83\0 A A 8p+2|0 >

x1dx2 A... Adx'P+2
foralliy =1,...,m gnd i3, .. ipr2 With 1 < iy < ... < iy < m. Then using the invariance of B with respect to
(t'x!, ..7™x™) for T' > 0 we deduce that only

B? (0190,0,90), &3|0 A A ap+2‘0 >

Xdx A AdXIA.. NP2
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fori=1,..,p + 2 may be non-zero. Butif p +2 >i > 2, then
(1) 2 A o AP = —xX X A A A o A AP+ (AR A o A XA A PR
Then < B4(X' ® w!, X? ® w?)), i > is determined by
<Bion pg2(01©0,0,80),030 A ... Adpioo >

because of the assumption Br = Br,p.
Then the vector space of all such B (with By = 0) is at most 1-dimensional. On the other hand,
Br(X! ® !, X2 ® w?) = 0@ ixix2dF is an example of such B. [J

Definition 3.5. Let p bea fixed positive integer. A Mf,-natural operator A sending closed (p+2)-forms H € Q’c7 ;; i(M)
on m-manifolds M into bilinear operators

Ap  (X(M) & P(M)) X (X(M) & (P (M)) — X(M) & (M)
is a Mfy-invariant family of reqular operators (functions)

A Qp+2
T Tl

0s

(M) = Liny((X(M) @ Q" (M)) X (X(M) & Q' (M)), X(M) & QF (M))
for all m-manifolds M.
Example 3.6. The most important example of such Ay is the twisted Courant bracket

(X' @ w!, X2 0 w?ly = [X!, X?] & (Lxyiw? — ixdw +ixixH)

for all closed (p + 2)-forms H € () (M) and all m-manifolds M.

clos

Lemma 3.7. Any natural operator A in the sense of Definition 3.5 defines an admissible natural operator B> in
the sense of Definition 3.1 by Bf"> := Agr for any F € QP*Y(M). If A" is another natural operator in the sense of

Definition 3.5 such that B> = B<A™ then A = A.

Proof. The first sentence is clear. To prove the second one, we observe that B<4> = B<4’> means that Ay = Al
for exact (p + 2)-forms H. Since the Mf,,-invariance of A and A! implies that A and A! are local operators,
we can replace “for exact” by “for closed” because of the Poincare lemma. [

Combining Lemma 3.7 and Proposition 3.4 we immediately get the following complete description of
natural operators in the sense of Definitin 3.5.

Theorem 3.8. Let p be a fixed positive integer. Let A be a Mf,,-natural operator in the sense of Definition 3.5.
Assume that m > p + 2 > 3. Then there exist uniquely determined real numbers a, by, by, c1, 2, e such that

Au(p', p?) = alX', X*] @
(1 Lo + b Lxiw? + cidixi0® + codixpw! + eixiiyeH)

forany H € QZ&(M) and any p*, p* € X(M)®QP (M) and any m-manifold M, where p' = X'@w' and p> = X*®w?.

4. The twisted Courant like brackets satisfying the Jacobi identity in Leibniz form

Definition 4.1. Let p be a fixed positive integer. A Mf,,-natural operator A in the sense of Definition 3.5 satisfies
the Jacobi identity in Leibniz form if

An(p1, An(p2, p3)) = Au(An(p1, p2), p3) + An(p2, Au(p1, p3))
forall p1, p2, p3 € X(M) @& QP(M) and all H € Q’:+2S(M) and all m-manifolds M.

lo:
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Example 4.2. The twisted Courant bracket [—, =1y is an example of natural operator in question satisfying the Jacobi
identity in Leibniz form. (Namely, it is A<*'> from Theorem 4.3, below.)

Theorem 4.3. Let m > p + 2 > 3. Any Mf,-natural operator A in the sense of Definition 3.5 satisfying the Jacobi
identity in Leibniz form is one of the following operators

A (p1, p2) = al X, X @0,

AT (Pt ) = alX!, X @ (a( Ly 0 - Liew"),

AF (0" p7) = alX!, X @ (1Lxi o),

A (p1, p?) = al XY, XA @ (L o? — Ly’ + diew") + eixiixH) ,

where p* = X' ® ' and p? = X*> @ w?, and a and e are arbitrary real numbers. For any a,e € R each of operators
ASIa> A<2a>  A3>  A<dae> sptisfies the Jacobi identity in Leibniz form.

Proof. Let Abe a Mf,,-natural operator in the sense of Definition 3.5 satisfying the Jacobi identity in Leibniz
form. By Theorem 3.8, A is of the form

ApX'® 0!, X2 @ 0?) = a[X!, X?] ®

(b1.£X2a)1 + b2£X1w2 + Cldixza)l + ngixla)z + eixiix2H)

for (uniquely determined by A) real numbersa, by, by, 1, ¢, . Then forany X', X2, X° € X(M) and o', 0?, 0® €
QM) and H € Qﬁlfs(M) we have

Ap(X' @0, Ap(X* @ o?, X @ o) = (X}, [X2, X*]| @ Q,
Agp(ApX' @ 0!, X* @ 0?), X’ @ 0°) = *[[X}, X?], X°] 0 O,
An(X2 @ o?, Ap(X' @ 0!, X2 @ ) = A2 [ X% XL, Xl & T,
where
Q = b Lpe @ + adigye oo + eixiigpe xH

+b2.£X1 (b1£X3a)2 + b2£X2w3 + C1diX3a)2 + Czdixza)3 + eixzist)
+eodixi (M Ly ? + by Lyp® + c1dixs? + codixe® + eixeiaH)

0= bz.ﬁﬂ[xl,Xz]a)S + C2dl’u[Xllxz](U3 + Eiﬂ[XgXZ]l’XsH
+b1£X3(b1£sz1 + b2£X1a)2 + Cldixza)l + czdixm)z +exiix2H)
+C1dix3(b1.£x2&)l + bz.lea)z + Cldina)l + Czdixla)z + eixlinH) ,

T = b1.£a[X1,X3]a)2 + Cldia[Xl,X3]a)2 + Eixziﬂ[xlrxs]H
+b2£Xz(b1£X3wl + b2£X1a)3 + Cldixsa)l + czdiX1a)3 + eixiixsH)
+C2dixz(b1.£x3&)l + bz.[:Xm)S + Cldi}@ﬂ)l + Czdixl 0)3 + eixlist) .

The Jacobi identity in Leibniz form of Ay is equivalentto Q=0 + 7 .

Putting H = 0, we are in the situation of Theorem 2.9. Then by Theorem 2.9 we get (b1, by, c1,c2) =
(0, 0, 0, 0) or (bl, bz, c, C2) = (0, a, 0, 0) or (bl, bz, c, Cz) = (—61, a, 0, 0) or (bl, bz, Cc1, Cz) = (—Ll, a,a, 0) More, A() for
such (b1, by, c1, ) satisfies the Jacobi identity in Leibniz form.
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Therefore (as c; = 0) the Jacobi identity in Leibniz form of Ay is equivalent to the equality

eaix i[XZ,XB]H + bheLyiixixsH
= eai[xl,Xz]ix3H + ble.gxaixl inH + Cledix3ixl inH
+e€ll‘le‘[Xllx3]H + bze.ﬁxz ixl ix3H .

Putw’:=dx* A .. AdxP™2ifp+2>4and 0®:=1ifp+2=3.
If (b1, by, c1,¢2) = (0,0,0,0), the above equality is equivalent to

eﬂixli[lex3]H = eai[Xlllel')@H + eaixzi[Xng]H .

Putting X! = 91, X? = 91 + x193 and X® = 9, we have [X?, X°] = 0, [X', X®] = 0 and [X!, X?] = 05, and then
0 = eaiy,iy,H for any closed H (for example for H = dx! A dx? A dx® A °). Consequently e = 0 or a = 0.
If (b1, by, c1,¢2) = (0,4,0,0), the above equality is equivalent to

eqix i[XZ,XS]H +eaLxixixsH = e‘al‘[X1,X2]l‘X3H + E‘aile’[xl,)@]H +ealxixiixsH .

Putting X! = 91, X?> = d, and X® = 93 and H = x%dx! A dx? A dx® A o (it is closed) we have [X?, X°] = 0,
[X,X%] =0, [X},X3] = 0, LyixiixsH = Ly,x%dx> A @° = dx? A 0° and LxiixeixsH = Ly, (—x%dx! A o°) = 0.
Then eadx? A w® =0. So,a=0ore=0.

If (b1, by, c1, c2) = (—a,4,0,0), the above equality is equivalent to

eqix i[XZ,XB]H + ea£xl ix2ixsH
= eai[xl,Xz]ix3H - eﬂzx3ixlinH + eaixzi[xll)@]H + Eﬂ.EXzixl ixaH .

Putting X! = 91, X? = 9, and X® = 93 and H = x?dx! A dx* A dx® A ° we have (see above) [X?, X°] = 0,
[Xl,XZ] =0, [Xl,X?’] =0, LyixiixsH = dx? A o°, LxiixixH = 0 and LysixiixeH = Laa(—xzdx3 A w®) = 0.
Then eadx®> A w° = 0. So,a =0ore = 0.

If (b1, by, c1,¢2) = (—a,a,a,0), the above equality is equivalent to

ea Z{ixl ipe oy H + LyiixeixH) = eadigiixixsH

where }’ is the cyclic sum }.,x1,x2,x3)- Then e is arbitrary real number because of from dH = 0 it follows

Z{ixl i[XZ,XB]H + ~£X1 iXZiXSH} = dixl ixixsH,
see Lemma 4.4, below.
Summing up, given a real number a # 0 we have (b1, by, c1,¢2,¢) = (0,0,0,0,0) or (b1, by, c1,¢2,€) =

(0,a,0,0,0)0r (b1, by, c1,c2,€) = (—a,a,0,0,0,) or (b1, by, c1,¢2,€) = (—a,a,a,0,¢e). Ifa = 0wehave (b1, by, ¢1,¢2,€) =
(0,0,0,0,¢e). Theorem 4.3 is complete. [J

Lemma 4.4. Let H € Qi’lfs(M) and X', X2, X3 € X(M). Then the equality
Z{iX1 ipeseH + LyixeixoH) = dixiixeiaH ,
holds.
Proof. We have an Mf,,-natural 4-linear operator C : X(M) & X(M) & X(M) & QP*1(M) — QP(M) given by

C(X', X%, X3 F) := Z {ixiipe xodF + LxiixeixedF) — dixiixzixedF
cycl(X1,X2,X3)

for any X!, X2, X3 € X(M) and F € Q"*}(M).
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By the Poincare lemma, it is sufficient to show C = 0, i.e. that C(X', X?, X3, F), = 0 for any X!, X?, X3, F
as above and x € M.

Because of the invariance of C we may assume that M = R” and x = 0. Since C is 4-linear, we may assume
thatF = fdg' A...AdgP*!, where f, g', ..., g"*! : R" — R are maps. More, we may assume that do(f, g1, ..., Jp+1)
is of rank p + 2. Then (by the Mf,,-invariance of C) we may assume F = (x! + A)dx? A ... A dxP*2. We else
may assume X' = 1'9; and X? = h?dy and X® = h39; for some h', %, 1® : R™ — R.

Now, to complete the lemma, it is sufficient to verify the following two facts:

(1) We have C(9j, 9, 91, (x! + A)dx? A ... AdxP*2)y = 0;

(2) We have implication: If C(X!, X2, X3, F)y = 0, then C(hX*, X2, X3,F)y = 0 and C(X',hX?,X3,F)y = 0
and C(X!, X2, hX3,F)g = 0 forany h : R" — R.

ad(1) We can easily see that ¥.c,c9, 9,9, 19,i10,010%" A-.. AdxP*? = 0and ¥y3,.9, 0, La;10,12,8X" A... AddxP*? = 0
and diajiaki,;ldxl A ... AdxP*? = 0. That is why C(0, 9, d;, (x" + A)dx? A ... A dxP*?)g = 0.

ad(2) We have

C(th,Xz, XB, F) = ithi[XZ,XS]dF + iX3i[hX1,X2]dF + iXZi[X3,hX1]dF +
+'£hX1 iniXde + £X3ihX1 indF + ‘LXZiX3 ith dF — dihxl in ixde

= ]’liX1 l'[Xz/Xs]dF + hl'Xsl'[X1,X2]dF - Xz(h)iXSixl dF +

+hiX2i[X3,X1]dF + Xs(h)ixzi)@d]: + h.[:xl ixzixde +dh A ixiixeixsdF +
+hLysixiixedF + X3 (h)ixiixedF + hLxeixsixidF + X2(h)ixsixadF +
—hdixiixeixsdF — dh A ixiixeixsdF = hC(X, X2, X3, F) +0 .

So, C(hX!,X?,X3,F) = 0 if C(X!,X? X3 F)y = 0. Similarly, we get that C(X!,hX? X3, F)y = 0 and
C(X!, X2, hX3, F)y = 0 if C(X!, X2, X3,F)y = 0. [J

From Theorem 4.3 it follows the following interesting characterization of the twisted Courant bracket
[, —]x (from Example 3.6).

Corollary 4.5. Let m > p + 2 > 3. The twisted Courant bracket is the unique Mf,-natural operator A in the sense
of Definition 3.5 satisfying the Jacobi identity in Leibniz form and the normalization condition Ap(X' ©0, X*®0) =
[X!, X2] @ ixiix2H for all vector fields X*, X* and closed (p + 2)-forms H on m-manifolds.
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