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Cosmological Meaning of Geometric Curvatures

Nenad O. Vesié?

“Mathematical Institute of Serbian Academy of Sciences and Arts

Abstract. In this paper, we analyzed the physical meaning of scalar curvatures for a generalized Rieman-
nian space. It is developed the Madsen’s formulae for pressures and energy-densities with respect to the
corresponding energy-momentum tensors. After that, the energy-momentum tensors, pressures, energy-
densities and state-parameters are analyzed with respect to different concepts of generalized Riemannian

spaces. At the end of this paper, linearities of the energy-momentum tensor, pressure, energy-density and
the state-parameter are examined.

1. Introduction

The main purpose of this paper is to find a physical meaning of scalar curvatures for a generalized
Riemannian space [5] and complex or anti-symmetric metrics as well.

1.1. Physical motivation for differential geometry: basics of cosmology
Many geometric papers start with the motivation from General Relativity. In the paper (Ivanov, Zla-

tanovi¢ [6]), the physical motivation with respect to the Einstein’s works [2—4] is well explained. Some other
papers where these Einstein’s works are cited as the motivations for further researches about the spaces
with torsion are [15, 19-23] and many others.

Einstein involved the concept of a complex metric whose real part corresponds to the gravity but the
imaginer part suits to the electromagnetism. Moreover, the affine connection coefficients F;k of spaces in
Einstein’s works are determined by the Einstein Metricity Condition.

The Einstein’s Theory of General Relativity is a cosmological model which was developed. The Kaluza-
Klein cosmological model [7, 8] is one of commonly used models in the theory of cosmology. In this model,
unlike in the Einstein’s one, the electromagnetism is covered by the additional dimension of the symmetric
(real) part of metrics.

The question that arises is whether the anti-symmetric parts of metric tensors are important for any
physical application or they are excessive. We will physically and geometrically answer to this question in
this paper.

The Kaluza-Klein model will not be studied here. The computational methodology applied in the book
[1] but also in the article [17] combined with torsion tensors will be used in this study:.
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1.2. Geometrical motivation: Generalized Riemannian space
An N-dimensional manifold My, equipped with a non-symmetric metric tensor § of the type (0,2)

whose components are g;; is the generalized Riemannian space GRy (in the sense of Eisenhart’s definition

[5]). S. M. Minci¢ [13-15], M. S. Stankovié¢ [19, 20, 22, 23], Lj. S. Velimirovi¢ [15, 19, 22], M. Lj. Zlatanovi¢
[6, 22, 23] and many others have continued the research about these spaces, the mappings between them
and their generalizations.

1
The symmetric and anti-symmetric part of the tensor g are the tensors § = E(gj +g")and § = 13- 4"),
- \%

respectively. Their components are

1 1
gii = 5(@ij+g;) and  gij = 5(gij + ;- (L.1)

For our research, the matrix [g,-]-]NxN should be non-singular. The metric determinant for the space R4

is g = det[g;;] and it is different of 0 because of the non-singularity of the matrix [gij]. The components gﬁ
for the contravariant symmetric part of the metric tensor § are the corresponding elements of the inverse
, -1
matrix [gﬁ]NxN.
The components of the affine connection coefficients for the space GRy are the components of the
generalized Christoffel symbols of the second kind

1
Iy = Egg(gja,k = Jjka + gak,j), (1.2)

for partial derivative d/dx’ denoted by comma.
The components of the symmetric and anti-symmetric parts of the generalized Christoffel symbol of the
second kind are

1, . 1, A
Ty = 5T +Tyy) and T = (T ~T}). (1.3)
After some computing, one gets
i 1 i i 1 i
rﬁ = Egi<g]ﬂ,k - gﬁ,a + gﬂ,j) and r]‘k = ng(gj\nlv,k - g]f,a + gavk,]')- (1.4)

The doubled components of the anti-symmetric parts F;.k are the components of the torsion tensor T for
the space GRRy, i.e. the components of the torsion tensor are Tj.k = ZFj.k. The components of the covariant

torsion tensor are Tijx = giq T;?(k.

The manifold My equipped with the tensor 4 is the associated space Ry of the space GRy. The
components of the symmetric part (1.3) of the generalized Christoffel symbols are the Christoffel symbols
of the second kind. Hence, they are the affine connection coefficients of the associated space Ry.

The associated space Ry is the Riemannian space (in the sense of Eisenhart’s definition [5] )

N. S. Sinyukov [18], Josef Mikes§ with his research group [10-12] and many other authors have devel-
oped the theory of Riemannian spaces.
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With respect to the affine connection of the associated space Ry and a tensor 4 of the type (1, 1), it is
defined one kind of covariant derivative [10-12, 18]

“]|k a +l"aka —F]k% (1.5)

Based on this covariant derivative, it is founded one identity of the Ricci Type. From this identity, it is
obtained one curvature tensor R of the space Ry (see [10-12, 18]). The components of this tensor are

jmn jmn jnm

Rin = i = Vi * i L = T Tl (1.6)

The components of the corresponding tensor of the Ricci curvature are R;; = R;?;.a. The scalar curvature

of the associated space Ry is R = g@Raﬁ.
A. Einstein studied the spaces whose affine connection coefficients are not functions of the metric tensor
[2-4]. With respect to the Einstein Metricity Condition

Fijk = Uybaj = T}9ia = 0, (1.7)

as the system of differential equations which generate the affine connection coefficients for the affine
connection space, two kinds of covariant derivatives are defined

i i i i a a i
a”k a T ka - F]ka and Ay = a T Fk].aa. (1.8)
1 2

ka? j

M. Prvanovi¢ [16] obtained the fourth curvature tensor for a non-symmetric affine connection space.
S. M. Minci¢ [13, 14] defined four kinds of covariant derivatives. These four kinds are the covariant
derivatives (1.8) and two novel ones

i i i i i
By = @ + l"aka’]?‘ - F?jaa and By = a ¢ T ,a ’;‘ F]ka (1.9)
3 4

With respect to these four kinds of covariant derivatives, S. M. Min¢i¢ obtained four curvature tensors,
eight derived curvature tensors and fifteen curvature pseudotensors of the space GIRy. The components of

curvature tensors for the space GIRy are elements of the family

K. =R +ul

jmn jmn jmin

1
+u T]nlm

+ vT]mTl + UIT;-YHTI +wT® T (1.10)

mn a]/

for the corresponding coefficients u, u’, v, v, w. Six of them are linearly independent.
The components of Ricci-curvatures for the space GRRy are

— (@ +w)T® Tﬁ (1.11)

Kij = Ryj +uT?, :

ifla

Three of these tensors are linearly independent.
The family of scalar curvatures K = gﬁK},;; for the space GIRy is

K=R~ (@ +w)g2g° g’ Ty Test. (1.12)

Two of these curvatures are linearly independent.
In this paper, we will stay focused on the space-time GIR4 equipped with a non-symmetric metric tensor
g whose symmetric part is diagonal.
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1.3. Motivation

In the Theory of General Relativity, the Einstein-Hilbert action is the action that yields the Einstein field
equations through the principle of least action. Let the full action of the theory be

S= fd%c\@(mLM), (1.13)

for the scalar curvature R of the associated space IRy. The term L in the last equation is describing matter
fields.

The Ricci tensor R;; and the scalar curvature R for the space GIR, satisfy the Einstein’s equations of
motion

1

where T; are the components of the energy-momentum tensor T. The last equations are generalized by the
cosmological constant A as [1, 17]

1

Remark 1.1. The equation (1.14) is obtained from the Einstein-Hilbert action
S = fd4x \/Ig_I(R + LM) but the equation (1.15) holds from the Einstein-Hilbert action
Sa = [dx\lgl(R - 2A+ Lu), S = So.

In general, the components T;; of the corresponding energy-momentum tensor T (at the right sides of the equations

(1.14, 1.15)) are multiplied by the constant x, x = 8nGc™ for the speed of light ¢ and Newton's gravitational constant
G but we will chose such coordinates to be x = 1 in further research.

The Friedman-Lemaitre-Robertson-Walker (FLRW) and the Bianchi Type-I cosmological models are
solutions of the Einstein’s equations of motion.
This article is consisted of five sections plus conclusion. The purposes of this paper are:

1. To recall and develop the Madsen’s formulae [9] for pressure, energy-density and state parameter,

2. To correlate the space-time model caused from the article [6] with the Einstein’s equations of motion,

3. To analyze the linearity of energy-momentum tensors, pressures, energy-densities and state-param-
eters under summings of fields.

2. Pressure, density, state parameter and Madsen’s formulae

Based on the action I = f d*x M(%(% - égbz)R + 19,09%¢ — V[gb]), the energy-momentum tensor is
(see [9])

T, = (1-&6%) " [Sy + Elgm@® - 2] 1)

for the constant &, the time-like scalar field ¢ which has unit magnitude, the operator O defined as

Da;', = giﬁajlalﬁ and the tensor S;; = ¢,¢,; — (%gﬁQa({),ﬁ - V[q)])gj. Madsen also chosen the units such

thati=c=1and M%) = 8t for the Planck mass Mp.
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In the second section of the paper [9], Madsen deals with the problem of finding a unique vector 7
related to the scalar field ¢, appears in the energy-momentum tensor (2.1). The components for this vector
are u' and they satisfy the equation

u*u, = 1. (2.2)

The components u' are

ul = (°90u0) 9. 2.3)

For the symmetric tensor /1 of the type (0,2) whose components are [9]

hij = gij — uju;, (2.4)

the energy-density p, the pressure p, the vector-field § such that u,4* = 0 and the tensor 7t of the type (0, 2)
whose components satisfy the equalities 7t;,u* = 0 and 5 = 0, the components of the energy-momentum
tensor T of the type (0, 2) are [9]

Tij = pujuj + qiuj + qju; — (phij + T(,']'). (25)

-3
(2.4) by ¢, one obtains #* = 6" — . If compose the equation (2.5) by the tensor g2, use the symmetry
Ti; = Tj;, the relation u®u, = 1 and the previously founded components h’]., we will acquire the following
expressions

It holds (see [9]) p= 1I_Ig and p = Taﬁu"‘uﬁ, for IT;; = phjj+m;j = — D,ﬁh;"h’? . After composing the equation

H,‘]‘ = —T,‘j + T,-au“u]- + Tjau"‘ui - Tal;u“uﬁu,-uj and Hg = —Tg + Taﬁu"‘uﬁ. (26)

Hence, the energy-momentum tensor T, the pressure p, the energy-density p and the state parameter @
satisfy the next equalities

1 1 1 -1 1
p= _ET(C): + gTaﬁu“uﬁl p = Taﬁuauﬁ, w = —ET‘;(TI;),L{‘BMV) + 5 (27)

In the comoving reference frame, u' = 66, the equalities (2.7) reduce to

1 1 1 -1 1
po = —gTﬁ + gTool po=To, @o= —§T§<T00) +3 (2.8)
After composing the equation (1.15) by u/u/ and gﬁ but using the equation (2.2) as well, we get
1
Tapuf = Ropu®uf — SR+A and Tg=-R+4A. (2.9)

In the case of i = j = 0, one obtains

(1.15) 1
Too = Rgo— ERg@ + Ag@ (210)
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If substitute the equations (2.9, 2.10) into the expressions (2.7, 2.8), we will find

p = sRapuuf + IR — A
p = Ropuuf — IR + A

In a reference system '

In the comoving reference system u' = 9
Po = %R00+%R—A
Po = Rgg — %R + A

4112

w=pp”! wo = popy’

Table 1: Pressures, energy-densities and the state parameters

3. Generalized Einstein’s equations of motion I

Let us consider the Einstein-Hilbert action

= f d'x\igl(K - 20), (3.1)
with respect to the Shapiro’s cosmological model [17].
Based on the equation (1.12), we transform the Einstein-Hilbert action (3.1) to
f d*xlgl(R - 2A - (@ + w)g T, T)- (3.2)
After lowering the contravariant indices into the last equation, we get
= f d'x \Igl(R = 22 — (@ + w)g22 005 T ey s T ). (3.3)
If compare the variations of the functional (3.3) and the Einstein-Hilbert action
S=[d*x \/Ig_I(R -2A + .EM), one finds
Lyt = —(0 +w)g2g% G T g T . (34
The variation of the functional S; = S1[9] = f dx \/I;]_I(R - ZA) is [1]
1
851 = f d*x igl(Rap — S Ras + Agap)0gE. (3.5)
The variation of the functional S, = S>[g] = f d*x+/lgl g’/b cagf < = TeypTasc is
8S, = fd4x \/@(3’[04; +2Wp - gy‘sge"‘gﬁcTayﬁTebcg,])égf (3.6)
d ' (5Ta ’
for 7i; = g—g 245 Teys Taoc and Wiy = 9229224 T, s ’]ﬁ '
og” U

Based on the variation rule, the variational derivatives 6T4,s/06 gﬁ are the components v,,4; for the tensor
0 of the type (0, 5).
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With respect to the equations (3.5, 3.6), we obtain

fd4x \/_{ ap — Rgaﬁ + Agap — (@ + w)[S’raﬁ +2Wop - gyégenge Tr[yGTengaﬁ]} g2,

The right side of the last equation vanishes if and only if

1 ’ .
Rij _ ERgﬂ + Agl =+ w)(3’l’,] + 2(W1] - yogexgﬁcTayﬁTengzj) (3.7)

The family of Einstein’s equations of motion is presented by the equation (3.7).
We proved the following theorem in this way.

Theorem 3.1. With respect to the equations of motion (3.7), the families of the energy-momentum tensors and its
traces are

Tij _ (U, + ’(,U)(3Tl] + 2(W1] Zg geagﬁCTayﬁTeécgﬁ)/ (3 8)

TS = (0 +w)(318 + 2W — 202205 Ty s Tesc ),

respectively, for the coefficients v', w and the above defined tensors & and ‘W in the analyzed cosmological model.
With respect to the equations (2.7, 2.8) and the equalities (3.8), the families of the pressures and energy-densities
are

p= -3 +w)[3s +2W; - g’ G Ty T = (3tap + 2Wap)u'u]

Pressure : (3.9)

po = =5 + w314 +2W - gy‘sgeag“:ra),ﬁnéc — 3100 — 2Wuo),

p=@@ + w)[(Sraﬁ + ZWaﬁ)u“uﬁ g V0 gea g CTayﬁTeéc]

(3.10)
Po = (v + ZU)[(3T00 + ZWOO) g geagﬁcTayﬁTeé(:]

Energy — density :

The state-parameters w = p - p~™* and wy = po - py* do not depend of the coefficients u, u’, v, v', w which generate
curvature tensors of the generalized Riemannian space GRy. [

Corollary 3.2. The next equations hold

%Raﬁuauﬂ + %R A= —%(v’ +w)[37% + 2WS - g”gmgﬁ TaygTeor — (3Tap + 2 Wag)u®uf], (3.11)
1
Raﬁu“uﬁ - ER + A=+ w)[(STaﬁ + ZWaﬁ)u“uﬁ - gyogmgﬁ TayﬁTebC] (3.12)

in the reference frame u' and

1 1 1

FRo0+ ZR=A=—2(0'+ w)[ 318 + 2W — Végf“gﬁCT ysTesc = 3700 = 2Woo |, (3.13)
1 ,

Ry~ 3R+ A= (0 + w)[3700 + 2 Woo - 97 "geagﬁ‘?nyﬁnbc] (3.14)

in the comoving reference frame.
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Proof. After equalizing the expressions of the pressures p, pp and the energy-densities p, po from the
Table 1 and the equations (3.9, 3.10), we complete the proof for this corollary. [J

The equations (3.11, 3.13) are the equations of equilibrium for metric with respect to the pressure p (PEQM).
The equations (3.12, 3.14) are the equations of equilibrium for metric with respect to the energy-density p ()EQM).

With respect to the equations (1.4, 3.4) and the meaning of the term Ly, the torsion-free affine connection
spaces (the Riemannian spaces R4 are the special ones) describe spaces without matter. Hence, the anti-
symmetric part of the metric tensor § and the torsion tensor of the space GIRy4 as well are correlated to a
matter.

3.1. Non-symmetric metrics and lagrangian
In this part of the paper, we will examine what are components for the anti-symmetric part § of the
\

metric tensor § which correspond to the summand £y in the Einstein-Hilbert action f d*x VIgl(R + Ly).
Let us consider the non-symmetric metric § whose components are

s mol)  m)  m)
Sno®) s ma®) )
“m() —ns) s ns() (3.15)
i) —mat) —ns() st

The components of the symmetric and anti-symmetric parts for this metric are

so) 0 0 0 0 n(t) m(t) mnaf)
0 s 0 0 —no() 0 m(t)  ma(h)
= d = 3.16
951 0 0 s@® 0 | ™ IT| pn®) —m® 0 ns() (3.16)
0 0 0 s —ma(t)  —ma(t) -ns(t) 0
The components of the corresponding Christoffel symbols of the first kind are
1o
Logo = 355(f),
Tou1 = —35,(t), Tror =T110 = 38(H), (3.17)

; )
251
Loz = —355(t), Tage =Ta20 = 385(),
355(8), Tags =T330 = 385(),
but I'; x = 0 in all other cases.
The components of the covariant torsion tensor are

Torz = —To21 = —T102 = T120 = Too1 = —T210 = —15(t),
To13 = —Toz1 = —T103 = T130 = T301 = —T310 = —1y(t), (3.18)
Toos = =Tozz = —T203 = T30 = T30 = —T320 = —15(1),

and T3 = 0 otherwise. As we may see, the components of the torsion tensor T do not depend of the

components no(t), n1(t), na(t) of the anti-symmetric part of the metric tensor 4.
With respect to the equation (3.3), we obtain that the term Ly is

L= 5@ + )7 sofssO(0) + s20( ) +510(50) ) (3.19)
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After basic computing, one gets

w00 = 6(s10) " (5200) " (530) " ((50) 53 + (my®) 520 + (m() s10),
ti = 6(s0() " (520) " (530)” () 5308) + (w0 s20),
w2 = 6(s0() (s16)  (530) (50 55t + (m(0) s1(0),
T35 = 6(s0(t)) 1(51(15) 1(Sz(f)) 1(( 4(t))252(t)+( ng(t) )25 h),
1 -1 -1 -1 (3.20)
12 = T = 6(s0(8))” (s3<t)) & (O, T =T = 6(s0(8) (51(0) (B (0),

Ti3 = T31 = —6(So(f)) (Sz(f))_lné(t)ng(t)l
= (s0) (s10) (20 (sa0) " {(m0) ss(s(t) ~ 55(0)
+ () 520(56) — 5208) + (58 510560 - 1)),

4 4 4 4 4 4
Wi=) 22, Z Y 050 (sa () ) (550) " (50)” To.worwme (3.21)

a=1 =1 y=1 6=1 e=1 (=1

for s(t) = so(t) +s1(t) +s2(t) +s3(t), the above defined tensor 0 and 7;; = 0 in all other cases. The brackets about
the indices in the equation (3.21) mean that the Einstein’s Summation Convention should not be applied to
them.

It holds the next theorem.

Theorem 3.3. The functions sy(t), s1(t), s2(t), s3(t), ns(t), na(t), ns(t) are the components of a metric tensor (3.15)
which corresponds to the Einstein-Hilbert action S = f d*x \/@(R + .EM), for Ly given by the equation (3.19) if and
only if they satisfy all of the equations of motion (3.7). O

In the sense of the research in this subsection, the equations of motion (3.7) are differential equations by
the functions n3(t), n4(t), ns(t) with respect to the known functions sy(t), si(t), s2(t), s3(t). They express the
correlation between the energy-momentum tensor with respect to the symmetric and anti-symmetric parts
of metrics.

Let us consider a functional proportion n}(t) : n)(t) : ni(t) = as : a4 : as. Hence, it exists a non-trivial
function n(t) such that n; (t) = axn(t), k = 3,4, 5. With respect to these changes, the equation (3.19) transforms
to

Ly = —g(v' +w)g so(t)] s () + afsa(t) + agsl(t)](n(t))2. (3.19)

If Ly # 0, the last equation involving n(f) as the unknown has two solutions if and only if
(v + w)[ai%(t) + agsa(t) + aésl(t)] # 0. In the case of (v + w)[ai%(t) + agsa(t) + aésl(t)]LM # 0 and with
respect to the Existence and Uniqueness Theorem, the differential equation (3.19) has two solutions by the
functions (n3(t), ny(t), ns(t)). These solutions are

M (£) = f a \/—ﬁ(so(t))_l[aé%(t) +a2s;(t) +a§sl(t)]_1g.£Mdt, 1, () = —11g, (1) (3.22)

In other words, the 3-tuples (Tl3o(t), 14, (1), n50(t)) and (ng1 (1), na, (1), n51(t)) are the corresponding compo-
nents of the anti-symmetric part of the metric tensor 4.

After substituting the expressions (3.20, 3.21) into the equations (3.9, 3.10), one gets the corresponding
pressures p and po and the densities p and pg as well. The proportions p-p~! and po-p;* are the corresponding
state parameters.
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4. Generalized Einstein’s equations of motion II

L. Shapiro [17] studied the theory of gravity with torsion. He analyzed the four-dimensional space-time
cosmological models. Into the second section of the paper [17], I. Shapiro considered the non-symmetric
affine connection spaces whose affine connection coefficients are F’ = F’ + ‘Kl for the Christoffel symbols

F;.ﬁ (eq. 1.4, left) and the tensor K of the type (1,2) whose components satlsfy the equality ‘K]l.'k = —’K,i].. The

torsion tensor T is T = 2K in the Shaprio’s article [17].

We will analyze a generalization of this concept below.

Fourteen years after Shapiro, S. Ivanov and M. Lj. Zlatanovi¢ published the paper [6] where they
involved the model of the generalized Riemannian space that generalizes the Eisenhart’s one.

We considered above the Einstein’s equations of motion covered by the generalized Riemannian space
with respect to Eisenhart’s definition [5]. In this section, we will derive the equations of motion with respect
to the generalized Riemannian space GIR; defined by S. Ivanov and M. Zlatanovi¢ in [6] as the manifold
M, equipped with non-symmetric metric tensor 4.

The covariant affine connection coefficients fijk for the space GIRy are [6]

- 1ra ~ ~ 1
Lije = Tijie + E[Tjki + Tije — Tkij] - E[g@]\j * Jijlk — gg!i], (41)
for the Christoffel symbol of the first kind I';x obtained with respect to the symmetric metric tensor § and
the covariant derivative aél = a LI al ; f}?‘kafl
1

With respect to the equation (4.1), we obtain

- 1r- - 1 - 1.
1"% = FZE - E[Tﬁk + Tkij] - 5[9&1] + gﬂlk - gﬂll] and 1—',']3( = zTijk. (4.2)
After rising the index i in the last equation, we get
i i 1 ia| F 7 1 ia i 1 i
T = T - Eg*[Tjak + Tkaj] - E!?*[Wﬂlj + Gajlk = gﬂla] and I = ET;k (4.3)

The covariant derivative | with respect to the symmetric affine connection coefficients fj.k and the

covariant derivative (1.5) satisfy the equation

i

a]Tk = ,‘ g (Tﬁak + Tkaﬁ + gka\ﬁ + gaﬁ\k - gkﬁm)tl + g ( jak T Tka] + gkal] + %]|k gﬂla)a; (4.4)

The components of the curvature tensor R for the associated space Ry are

R =[i _fi yfepi _fofi 4.5)

jmn ]Wl}’l ]nm ]ﬂ’l an ]n am:*

These components and the components (1.6) of the curvature tensor R for the space Ry satisfy the
equation

. 1 . 1 . 1 ) . . ) 1 ) .
Rl = Ry = 5+ 5 = 5 (15T + MonT 5 = 05T = MenT) + 3 (057 = o). (46)

for
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T]]k g4 (T]ak + Tka] + gkaI] + gajlk - gk;la) (4.7)
With respect to the equations (1.5, 4.6), we proved the next proposition.

Proposition 4.1. The components of the curvature tensors Rand R respectively given by the equations (4.5) and
(1.6) satisfy the equation

1 i 1 i 1 a i a i
R;mn = Rl]mn Enjmln + Enjnlm + Z(’Lmﬂim - njnnixm)/ (4.8)
for the components n?.k of the tensor 1) of the type (1,2), defined by the equation (4.7). [

The space GIR is a special affine connection space. For this reason, the components of the curvature
tensors K of this space are elements of the family [13, 14]

Ky = Ry +uT o +w' T 40T Ty + 0 T4 T + 0T, T 4.9)
After applying the equations (4.4, 4.8) and the equality f?.k = I’j.k - %nj.k as well, one proves the next

proposition.

Proposition 4.2. The family of components of the curvature tensors K for the generalized Riemannian space GIRy is

1 . 1 . 1 ) )
Rl = R = 5+ 5+ 3 (Maen = 1)
+ult +uw' T +oTe T +vT"‘T’ +wTe T,

jmln jnlm jm*an am mn* aj

- —9 (Tﬁan + Tnaﬁ + gnalﬁ + gaﬁln gﬁla)T}]gm

- —!7 Tjan + Taj + Gnalj ¥ Gajin = gnJ\a) mp (4.10)

EK

u T T ~
_ E 1 ( pam + Tmaﬁ + 9@1;5 + giﬁlm - gﬂﬁ!a)Tfn
ST

jom + Tmaj + Gma)j + Jajim = gmj\a)T;ﬁ
1 -1 —1

u+u
+ 5 gaﬁ(Tm(m + Tnam + gnalm + gamln _t]nmm) iB

The corresponding family of components K;; = Kf,;,a of the Ricci curvatures is

N 1 1, 1 B o B
Kij = Rij - 5’7% + Q%U + _(’73‘%5 ﬂfﬁ’?,a)

+ uTl AT P vT“Tﬁ — @+ w)Tf;;Tfa

u o ~
5904 Tiay + Tyaj + Gyali + Gajly — ﬁljla)TZ;

Tyap + Gyalp * Japly ~ 9@3) zﬁf
~ (4.11)
Tiay + Tym + gyalz + gazly 911'111)71;3

+

u’ - - .
+ ?g%(Tm] + Tjai + g]—“ll + gﬂl] - ‘qﬁla)Tl);}’
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The family R = gX°R.s of scalar curvatures of the space GIRy is

1
PY By o P p 0 B
K R - _g T]ﬁy\a 29 ngﬁb/ 19*<773577aﬁ - ngynab) (U + Zl))g T;(ﬂTba (4 12)
+u gﬁ) T§a|y fﬁgbe(T@ae + Teas + !7670116 + goﬁle - 9@16*)773’)/'
In the equations (4.10, 4.11, 4.12), u, u’,v,v’, w are the corresponding coefficients. [
As we may see, the part of the scalar curvature K which corresponds to the matter is
~ 0 ) B B /07 B
Lu= 9ﬁ e+ 29’3 Ly + 4g’ (s = i sy) = (@ + w)g°To, Th s
+ g Tg o+ S0P Tone + Teas + Gealo + Jaoje — Gesja) T},

Let be Ly = L[, v, w], ~for the coefficients u’, v, w. The meaning of the square brackets in the
last equality is that the field £ depends of the linear combination of necessary terms with respect to the

coefficients u’, v’, w. In this case, the full lagrangian with torsion is £ = (R —2A+ L[, v, w]) |g1.
The corresponding Einstein-Hilbert action with torsion is

§= f d'xlgl(R - 2A + L', v/, w]). (4.14)

We need to consider the variations of the functionals

5 - f #xyg(R-24) and 3= f dix gL LI, o ],

The variation of the first of these functionals is given by the equation (3.5). The variation of the second
functional is

fd4x\/_{5£[u ;ﬁ] ] %g%f[[u’,v',w]}ég%. (4.15)

With respect to the Quotient Rule, the variational derivatives oL, v, wl]/ (Sgﬁ are the components of
the tensor V of the type (0,2), i.e.

=Vij. (4.16)
If sum the equations (3.5) and (4.15), we will obtain

- 1 1 .
05 = fd4x \/@{Raﬁ - ERgﬁ + Agag + Vap - EgﬁL[u’, v, w]}c‘ig—ﬁ. (4.17)

The right side of the last equation vanishes if and only if

1 1 1 7 o

which are the corresponding Einstein’s equations of motion.
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It holds the following theorem.

Theorem 4.3. With respect to the family of the Einstein’s equations of motion (4.18), the family of energy-momentum
tensors and the family of their traces are

Tij=-Vi+ %g,']]:[u’,v’,w] and T, v, w] = -V + 2L, v, w]. (4.19)

The pressure, energy-density and state-parameter may be obtained by the substituting the equation (4.19) into the
equations (2.7, 2.8).

The pEQM and pEQM are

1 1 1. 1. 1+, ,

gRaﬁuauﬂ +ZR-A= g(vg - g(vaﬁuauﬁ - 5L, ', w], (4.20)
1 - 1.

Raﬁu“uﬁ - ER + A= —‘Va/;u“uﬁ + EL[u', v, w], (4.21)

in the reference frame u' and

1 1 1. 1. 1-

“Rypp+=R-A==Vi-= - =L, v 4.22

3R + = 3(Va 3(Voo 2L[u,v,w], (4.22)

1 - 1 .
Roo — ER + A= —(V()() + Eg@L[u’, U’, ZO], (423)

in the comoving reference frame. [J

The part L[u’,v’,w] which corresponds to the matter with respect to the space GIR; and the corresponding
part Ly which corresponds to the matter with respect to the space GIRy satisfy the equality

L', v, w] = Ly + (L', v, w] = Lug).

Indirectly, we will find the difference between the energy-momentum tensors, pressures, energy-
densities and state parameters obtained with respect to the families (3.4) and (4.13) in the following section.

5. Linearity

The question which arises is how much would we change the energy-momentum tensor, the pressure,
the energy-density and the state-parameter obtained with respect to the part Ly if we get the part [Ly + fF
for some field  and the real or complex scalars l and f. We will answer this question more generally below.

Let us consider the field

Ly = ?{M +...+aly, (5.1)

for some s € IN, fields £, ..., £ and real or complex coefficients qz, ., Q.
1 H s

The corresponding Einstein-Hilbert action is

5= f d'x\lg(R - 2A + .ZM). (5.2)
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The last equation may be equivalently treated as the equation (4.14) after changing the field Ly[u’, v/, w]

by the field L. Any of the fields £, 7 = 1,...,s, generates the corresponding tensor ¥ analogous to the
r r

tensor ¥V whose components are given by the equation (4.16). For this reason, the components of the tensor

V obtained with respect to the field Ly are
(V,']' = qé(}/,j +...+ Csi(l/,] (53)
Hence, the Einstein’s equations of motion are
1 - 1 v
Rj = 5Rgy + 209 = - Z; aVij+ 3 Z; al. (5.4)
r= r=

It is the set of the corresponding Einstein’s equations of motion.
The equations of motion (5.4) may be rewritten as

s
Ri]' - %Rgﬂ + ZAgQ = - Z (}((yij - %gﬂ§) (5‘5)
r=1

Based on the equations (2.7, 2.8, 5.5), we obtain the following equalities

In reference system ' In comoving reference system u' = &
<
— s N
Tij ==Yy ‘}(qr/lj zgg{:)
<
Ty = - Y a(Vs-2L)

E = —% Yo %(?aﬁuauﬁ - (yg - -{3) i; = —% Yo f}(?oo - (y;z - .é:)
p=-Eaa(Vepeh =3£)  f=-To(Vu-15)
w=pp”! wo = 730/351

Table 2: Linear combinations of energy-momentums, pressures and energy-densities

With respect to the equalities (5.3) and the expressions in the Table 2, we proved the validity of the
following theorem.

Theorem 5.1. The energy-momentum tensor and its trace, the pressure and the energy-density are linear by the
summands into the lagrangian which corresponds the matter. Their values are equal to the linear combinations of the
corresponding values generated by the separate summands of the lagrangian.

The corresponding pEQM and pEQM of the system are the linear combinations of the pPEQMs and pEQMs of the
separate subsystems generated by the summands in the lagrangian which corresponds to the whole system.

The state-parameter is not linear as the previous magnitudes. [J

6. Conclusion

In the section 2, we geometrically interpreted the Madsen’s formulae about energy-momentum tensors,
pressures and energy-densities. With respect to these interpretations, we computed these magnitudes

(see the Table 1).
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In the section 3, we expressed the energy-momentum tensor with respect to the curvature tensors of
a generalized Riemannian space in the sense of Eisenhart’s definition. We also proved that the part Ly
generates two generalized Riemannian spaces in the sense of Eisenhart’s definition. In this section, it is
concluded that the anti-symmetric part of a metric tensor corresponds to a matter.

In the section 4, we analyzed the differences and similarities between the results presented in the
Shapiro’s paper [17] and the model of the generalized Riemannian space involved by S. Ivanov and
M. Lj. Zlatanovi¢ [6]. We explicitly obtained the corresponding energy-momentum tensor but the pressure,
energy-density and state parameter may be obtained with respect to the corresponding formulae from the
section 2.

In the Sections 3 and 4, we obtained the systems of equations for the equilibriums between symmetric

affine connections and torsions (the systems pPEQM and pEQM).
In the section 5, we analyzed the linearity of the energy-momentum tensors, energy-densities, pressures

and state parameters under summing of matter fields (see the Table 2). We also analyzed the linearity of
pEQOM and pEQM in this section.
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