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The Composition of Linear Canonical Wavelet Transforms on
Generalized Function Spaces
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Abstract. The main goal of this paper is to study the continuity of composition of linear canonical wavelet
transform (LCWTs) on generalized test function spaces LP, GP* and B4(IR®). The boundedness result for
composition of linear canonical wavelet transforms on H' , is given .

1. Introduction

The comprehension of wavelets as a family of functions are constructed by using translation and dilation
of a single function, called the mother wavelet. It was first introduced by Jean Morlet in 1982’s as:

1 x-B
x)= —yY|——), a>0,BeR, 1
Yial) = <2 (=) B (1)
where a is called a scaling parameter which measures the degree of compression or scale, and f§ a translation

parameter which determines the time location of the wavelet. Mathematically it is a square integrable
function 1 on R which satisfies the condition

00 |7 2
I ll!}'(;)l dé < oo, (2)

where 1 denotes the Fourier transform of 1. Condition (2) is known as admissibility condition for mother
wavelet 1p. The mother wavelet appear as a local oscillation or wave, in which most of the energy of the
oscillation is located in a narrow region in the physical space. This localization in the physical space limits
the localization in the frequency or wave number domain due to the uncertainty principle. The dilation
parameter a controls the width and rate of this local oscillation. The translation parameter g ingenuously
moves the wavelet throughout the domain. Wavelet analysis is about analyzing signal with short duration
finite energy functions. They transform the signal under observation into another representation which
presents the signal in a more useful form. This transformation of the signal is called wavelet transform. If
scale and position are varied smoothly then the transform is called continuous wavelet transform (CWT).
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The continuous wavelet transform of a signal f € L*(R) with respect to a mother wavelet 13, is defined as
[8, 11, 12]

Wy B, ) = {f, Ypa) = f : FO)pal)dx.

Using the Parseval’s relation of the Fourier transform, the CWT can be rewritten as

Wof)Ba) = Va f &P F(E) Dlat)e.

The continuous wavelet transform was developed as an alternative approach to the short time Fourier
transform to overcome the resolution problem. Continuous wavelet transform has been regularly developed
in the field of mathematics viz Yang et al. [45] developed the continuous wavelet transform in the framework
of the local fractional calculus and Pandey et al. [28] extend the theory of classical continuous wavelet
transform in multidimensional on the Schwartz tempered distribution space S’(IR"). Moreover, Srivastava
etal. [38] studied the fractional wavelet transformation and discussed some of its basic properties. Recently,
continuous wavelet transform is one of the great achievements in the field of harmonic analysis [23, 42].
The continuous wavelet transform can effectively useful in the study of signal analysis, image processing,
pattern recognition and it also can solve many difficult problems that cannot be solved by using Fourier
transform and Laplace transform. The continuous wavelet transform involving many integral transform
have emerged as one of the most useful function transform of this century with a huge application in the
field of science and engineering like in signal processing [10, 20, 36], image processing [5, 7], computer
vision [6], biomedical engineering [1] and geophysics [14] etc. Presently, Prasad et al. [30] and Guo et
al. [15] constructed the continuous wavelet transform by using the theory of linear canonical transform
(LCT) and discussed its some properties. Motivated from the previous progressive works, in this paper we
proved the continuity of composition of LCWTs on some function spaces.

The LCT is a four parameter a,b,c,d class of linear integral transformation for studying the behavior of
many useful transformations like Fourier transform [8, 11, 12], fractional Fourier transform [3, 24, 32-35],
Fresnel transform [16], Laplace transform and scaling operator in physics and engineering in general. The
LCT is a powerful mathematical tool in the understanding and solution of problems of classical mechanics
[2,3,8,9,22,24,29,46]. It also used to the study of Wigner-Ville distribution and ambiguity function [47, 48]
as well as for windowed linear canonical transform [18]. The linear canonical transform [4, 16, 22, 46, 48}
with four parameters in terms of (2 X 2) unimodular matrix (i.e, determinant is one) A = [i Z] = [_dc _ab]
of a function ¢ € L'(IR) denoted by (La¢)(&) is given by

(Lag)(©) = p(&) = fR Ka(E, p )i, )

where the kernel

1 igx?—ilxE+ide?
Ka(E,x) = \/Zm:b‘f 2(”2 b ;b , ifb#0,
%e’(%)g S(x—%), ifb=0.

The LCT obeys the additivity and reversibility by L4Ls = L4 and .L;ll =Ly.
Inversion of LCT is given by

000 = (Laa@)(x) = fR Ko (x, )P(EVE, @

where K41 (x, &) is the complex conjugate of K (&, x). For typographical convenience, we write the param-
eter matrix A as A = (a, b; ¢, d) in the text. Thought out the paper, we shall use b # 0.
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1.1. Properties of linear canonical transform

Definition 1.1. The Schwartz space S(R) is the set of rapidly decreasing complex-valued infinity differentiable
functions ¢ on R such that for every choice of p and q of non-negative integers, it satisfies

d
Vpa(@) = sup IxPDZ(p(x)| <oco, Dy= I
xeR X

Definition 1.2. The Schwartz type space Sa(R) is defined as follows: ¢ is a members of SA(R) iff is a complex-valued
C*-function on R and for every choice of p and q of non-negative integers it satisfies

T4 () = sup W Alp(x)] < oo, 5)
xeR
where A, = —(d”’—x +i3x) and a, b as above. If matrix A = (0, 1; —1, 0), then it turus into Schwartz space S(R).
The space S A(R) is equipped zyith the topology generated by th? co.lleclfion of semi-norm Fﬁq; it is a Fréchet space. The
dual of Sy is denoted by S, its element are called tempered distribution.

If @ is of polynomial growth and a locally integrable function on R, then @ generates a distribution in Sa(R) as
follows:

(0,0) = [ wtovis, ye e Si
Definition 1.3. The canonical convolution of two functions @, € Sa(R) is defined as[4]
((P * A ¢)(z) = jl; (P(x)ll)(z _ x)e—iz%(zz_xz)dx' (6)

Lemma 1.4. (Parseval’s identity): Let (Lap) and (Lay) denote the LCT of the functions ¢, € L*(RR) respectively,
then from [4, 15, 30] we have

f PP (x)dx = f (LA@)ENLaP)(©)dE,
R R

and

f lp()Pdx = f (Lap)EPE.
R R

Lemma 1.5. Let ¢ € Sa(R) and Ka(&, x), Ka-1(x, &) be, respectively the kernel of the LCT and the inverse of LCT.
Then

() OKaE D) = (35) Kale, ),
() AT (0 8) = (55) K 6),

(i) fR (A KA (E, ) ()x = fR Ha(E, )AL (),

(iv) f}R ALK (&, D)p()x = fR K (&, DALY P,

O (L) = (52) (Lag)@), ¥reNy

(V) (A (Lag)®) = La((2) @)@, for d=a,
(Vi) (Lo (AP = (T) (L @), for d=a,

where A, is defined as above and A}, = (;’—x —i5X).
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Proof. The proof of Lemma is state forward see [32]. [

Lemma 1.6. If p(x), P(x) € Sa(R). Then

A Tp@P@] = Z Bir(A) o)D), ¥ k € No,

where A, defined as above and By, are constants.
Proof. Proof is straight forward as ([35], p. 207) and avoided. [

The article is organized as follows. Section 1, is introduction of LCT, in which different relation and
properties of LCT are given. In section 2, we provide a brief review of the LCWT and its composition. In
section 3, the generalized test function spaces L7, G and B4(IR?) are introduced and proved the continuity
of the linear canonical composition operator (WA¢)(8,@,7) on [P, G4 and BA(R®). Finally in section 4,
boundedness result of (WAp)(B, a,y) on the space HZ 4(R) is given.

2. Linear canonical wavelet transform and its composition

Prasad et al. [30] and Guo et al. [15] defined the canonical wavelet as:

—_ 1 x_ﬁ —l X
Ypaa@) = 9T, 7)

and the linear canonical transform of 15 4 4(x) is given by

Ppaa(®) = Vae b HHEITECE L[ 50 g ag), ®)
for all &, f and A as above.

Definition 2.1. (Admissibility condition). A function i € L*(R) is known as canonical wavelet. if it satisfies the
following admissibility condition:

—iﬁ(-)z 2
Cya = f Mdg < oo. 9)
R

As per [15, 30] the linear canonical wavelet transform (LCWT) of ¢ € L*(R) with canonical wavelet Pp,a,a(X)
is defined by

Wp,0) = | goiTpmaids. (10)

Now, using Parseval’s relation for linear canonical transform and (8), the above expression for linear
canonical wavelet transform (W$(p)(ﬁ, a) can be written as:

Wip)(B,a) = Va fR BTG £ [ B O ] (@) Lap) ()L, (11)

and using inversion formula of linear canonical transform, we have

W) (B, a)) = \/@e’%wz&[e—%<->2¢](a5)(LA(p)(é). (12)

The linear canonical wavelet transform is a generalization of continuous wavelet transform with the param-
eters of matrix A. If we put in the matrix A = (0, 1; —1, 0), then it reduced to the conventional continuous
wavelet transform. The earlier work on the linear canonical wavelet transform was published by authors
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[15, 30, 43, 44]. The wavelet transform has major applications in the field of image and signal processing,
mathematical analysis, communications, radar and other [7, 13, 19, 21, 37, 39, 40].

Let (Wfp‘](p)(ﬁ, @) and (Wfp‘z(p)(p, y) be two LCWT of a function ¢ € L?*(R) w.rt. canonical wavelets
P1aa € LA(R) and 3,4 € L'(R) respectively defined as (10), for all o,y > 0,8,p € R and A is the
unimodular matrix as above. Then their canonical composition operator is defined as [31]:

(W9),a,7)

Wﬁl(W&(p)(ﬂ, a,7)

f (WA 0)(p, ) Brpmn()dp 13)

f LW NE N Zalprpmal @

Va f o % EBE- lzb[32+1zbaZEZ_LA[e—iﬁ(-)zll)l](aé),fg{(Wﬁz(p)}(g,)/)dé

Vznmf AP L [Py ag)

X Lale 5Pl () Lag) O, (14)

where .Ef; denotes the linear canonical transform w.r.t. the variable p.
Therefore,

LAW ), a, 7)) = Lale 5P Y1) Lale 5 Po](rE)Lag)(£) (15)

Definition 2.2. (Admissibility condition). Let Y € L*(R) , ¥, € L}(IR) be such that there exists a positive constant
Cyy,yp,a < 00 and for & almost every where on R

27Tb 'V CV')/ ei%(a2+}’2)(§2
1

dady
ay ’

Cwl,wz/‘:f f | Lale B Y1) (&) PLLAle ™ E P o] (pE) P (16)
R+ R+

where L denotes the LCT defined as (3).

3. Composition of LCWTs on generalized test function spaces

In this section, the generalized test function spaces P4, GP4 and B4(IR%) are introduced and proved the
continuity of composition of LCWTs on that spaces.

Definition 3.1. For 1 < p < oo, we define the generalized test function space L by [27]:
A= {(p 1 € CP(R) and X Ap(x) e L¥, Vr,s € ]NO} (17)

where A, is defined as above with the usual point wise operation of addition and scalar multiplication, LA becomes a
linear space for all ¢ € LP4, its norm defined as

ol = I sell, Vrs € No. a8)
The space of all continuous linear functionals (distributions) on LPA is denoted (LP) and is called dual space of L’

Definition 3.2. The generalized test function space GP*(R x R* X R") is defined, for 1 < p < o0, a,y > 0 and
BER, by

GPAR x R* X RY) = {qo(ﬁ, a,7) € CARXR* X R*) :

fl]‘+ f+ alBly VD;D;AE[(P(Ij}_;y)]d ad |d[3) <oo} (19)
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where Ag = —(% +i¢B)and p,q,1,s,t,k € Ny satisfying k + t +s—p —r—2 > 0. For all (WA)(B,a,y) € G4, its
norm is defined by
— pqrstk(p(ﬁ”y)] )
||(P(ﬁ/a/y)||cp,A (L|f+ jl;+ a ﬁ y D]/DOCA [ \/—,)/ d d | d:B (20)
Theorem 3.3. Ifa = d and assume ¢ € LP and yn, ¥, € Sa(R) satisfies the condition:
0<Chos = | [ [ evoipfese L

X Lale 50 go)|)|dedv)| < oo (21)
then, the canonical composition operator (WAp)(B, a, ) : LPA(R) — GPA(R x R* x R*) is linear and continuous.

Proof. Letp,q,1,5,t,k € Ny be such thatk + ¢ + s —p —r —2 > 0 and using (14) then, we have

A
ot )DL D! (A )k[( )(ﬁ a y)]

af BTy DDl (Ap)* f \/2” i B S fri (@P e

X Lale  F P [(a&) Lale T Yol (PENLap)(E)dE

— apﬁqyrDsD[tx , 7T e—iz‘ihéz+iﬁ{—iﬁﬂzﬂ'%(azﬂ/z)éz

x(_Tig)kLA[e—i;ﬂ-fwl](aaLA[e—%<‘>Z¢z](yé)(£A<P>(5)d5-

I

Using the change of order of integration and putting a& = 7 and y& = v. Hence

[ [ waty = ERG [ et g

A [ [y Dt L e Zale Sl day o

VG )ﬁqf TEEHPIR gt Lyg) )

X f f TPVVD;Di[ei%waZ) LaleH0P (1) LA[e‘%(~)2¢2](v)]d7dv)d5
+ JR

Taking modulus both side and using (21), we have

| f f ldady| < V2rC, . , b|k” f e BT 2 £ ) E)de]
e
< arc, e R L [ L))
< 2nCy a5 L [@are s L))

Therefore,

14
Idad d) < 2nC’
(vﬁl;|jl;+jl;+ y’ ﬁ lplll}ZA

L f]R £ [(Az)‘75"””—’7—“2(12/«(P>(5>](ﬁ)'pdﬁ);'
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Now, using the Riesz-Thorin interpolation formula [17, 41], we have

(fR|f f+ldady’pdﬁ);

< Cl’AC;’lrlerA(L l(A:f)qék+t+s_p_r_2(‘EA(P)(é)rdé)[1]
= C{p’l,wz,A|bl"”+s_”_’_2( fR ‘(Az)q-ﬁA[(Ax)k+t+s_7’_’_2(p(x)](cf)'qdcf);

= C, gl f]R [£afranrr=rr2oe] )| e)

1
N
< CZ,AC:/jl,IpZ,A|b|k+t+5_q_p_r_2(f |xq(Ax)k+t+s—p—r_2(P(x)' dx)ﬂ
R
" k —p—r—
= ClrinalP @200, gy

= Corp A”(p(x)”LPA(]R)

This complete the proof of the theorem. [

In above we defined the test function spaces L4 and GP4.
Now, we define the test function space B4 (IR*) and prove that the canonical composition operator (WAp)(8, a, )
is continuous on that space corresponding to [25].

Definition 3.4. A complex valued smooth function (B, a,y) belong to the test function space Bo(R®) iff

)IV"(V% +1) (Ofai +1 (A )M[Wﬁ, /y)”

foralll,m,n,k,p € No, A is the matrix defined as above and Ag = —(% + i%ﬁ).
In order to prove the Theorem 3.7, we need the following Lemmas.

Lemma 3.5. Let 1, a(x) be a canonical wavelet. Then

(i) (A)( (4””( )) 56 Vr e Ny,

(i) (Ax)r( (- 1)’DT(¢P"’Y )—iﬁ(xz_pZ)l

-)=o
=)
)=

(iii) (Ap)r( _ (‘szVA x))’
(iv) (7/%+1)r(%’)\”/;( ))_( o )r(%(x))r

where Ay and A, are defined as Lemma 1.5.

Proof. The proof of Lemma 21 is straight forward as see [4, 15]. O
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Lemma 3.6. Forall ¢ € SA(R), r € Ng and n € R, we have

(i) fR(AZ)rlpp,y,A(x)(P(x)dx:£¢p,)/,A(x)(Ax)r¢(x)dx
(i) fR (DY) Pp,y,a(X)p(x)dx = f]R Vp,a(@X)(Ay) p(x)dx
(iii) fl; (xA;+n)1,bp,y,A(x)(p(x)dx= fl; (xAx+(n—l))(p(x)gbp,),,A(x)dx

(iv) j]; (XA + 1)y, A(X)p(xX)dx = jﬂ; (XA + (n + 1)p(xX)p,y,a(x)dx.

Proof. Using Lemma 1.5 (iii), the proof of part (i) and (ii) are straight forward. (iii) we have

jﬂ; (XA} + 1),y A(X)p(x)dx jﬂ; (ADYp,y,4(X)(xp(x))dx + n jl; Ypy,a(X)p(x)dx

f VA0 Ax(xp(x))dx + n f Vp,y,AX)Q(x)dx
R R

fR Vpyalx) = (% + igx)(x(p(x))dx+n fR Dy (X)p(x)dx

f gbp,),,,q(x)( - p(x) + xAx(p(x))dx +n f Vpy,A(X)p(x)dx
R R

e 0= DY o
Thus
f (XA + 1)y, A()P(xX)dx = f (xAy + (n = 1)p()py,a(x)dx, ¥ n e R.
R R

(iv) The proof is similar to that of (iii). [

Theorem 3.7. Let U1, ¢, € S(R) and ¢ € Sa(R). Then the canonical composition operator (WA)(B,a,y) is a
continuous linear mapping of Sa(R) into Bo(R).

Proof. By applying Fubini’s Theorem and using (13), Lemma 1.6, Lemma 3.5 (iii), (iv), Lemma 3.6 (ii) and
integrating by parts, we have

(WA0)(B, a,7) (W25 9)p,7) N
(Aﬁ)]ﬂk( W ) — i Y \/)_/ (Aﬁ)p+k[¢1/ﬁ/\//§(p) ]dp
(W$2 (P)(Pr )/) \p+ 1#1,,3,0(,14 (p)
e i
W2 00, V)\D1pan(p)
_ A 18.0,4(P
- fR((AP y N ) Ve ap

[ froin By esto,
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+1P,,,(x) P18a,4(P)
S ooy R,

L f(p(x (AX)P+k V2, A(x ]dx)ll’lﬁ\f;;(.o) 0

. P2, A(x) Y18a,4(P)
jﬂ; f (A )| ”y ]dx) N

Hence,

J J H(WA)(B,a,y)
(g + 1) g + 1) gy ==

. 0T A\ D Frpan(p)
= Sl e (R o (R e
. e P20 ) oy P D)
= [ ([ @r oo -sra (P = o (S
m+n + n17n Hb,,,(X) i (22
- fR[H) f (O i) = p) D=L P

X(P ﬁ)mDm[wli/“_(p)]l (P - ]dp

Now, using the inequality,

' < o -l + ol < a2 L2+ [2]), 150
Therefore,

‘ﬁ + 1) (ai + 1) (A )p+k%\/ﬂ0¢,7>‘

< Cla |)( K |(ﬁ DL 2 [l - o

) p 5 '"1_(’”) 5)eiz”b<p2—ﬁ2>|dp)
(2=

‘14,—(” s
y

< [ r‘ﬁ Pu Ly L e s
[ o igeac— |7 ("’(xyp ) £l *P>|dx)
< lal)( f |<ﬁ p>|| P-p mlwm) et B)lap I fR A @) x = p)"]
) 1 Py =t

(n)x P‘d)

f (A )P”‘[qz(x)(x p>"1|
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< Qla |)](I|U|l| pP=p ml¢—(m) d ‘d )
{J, |2% (6= pOp qo(x>||1 v (D))
+2 f|p|‘ P ‘B ml—(m) )
(5ol
p+k

<2<1+|a|>’ZBP+k[sup\<x Py (A ()|

f|||p ﬂm1—<m>p ﬁld f|1 ()x p

+sup|<x oy e [ [ ! TG

LRk

")

a

Hence,
B N w. @ i 9 w(WA9)(B,a,7)
o Sl;)IZR3 (—1 " |6V|) )4 (7/5 + 1) (a% + 1) (Ap) k N '

p+k
<2)5 [sup|(x oY T8y )

fW By L B [ (2
sugle=pr-aref 1S et
f‘l () xX— p ]
SZI;B;Jrk,y[Fﬁ_nmk_r(go)( f |u|” |u+ “¢ )| du)( LWW@)) dv)
+FA_ rpker (@) f|u|]+m|1/;1(m)(u)|du f)gbz" (v))dv)]

p+k

<ZZZBp+k[Z() ) T @) sup |1+ D10

Z)Dvlﬁz(v)‘(fR 1 :uzd”)(fR 1 :vzdv)

W+ uz)Dm¢1(u)| sup |(1 + vz)DZ¢2(v)|
veER

Xsup
veR

A
+rn—r,p+k—r((P) sup
u€eR

A forrmel [ )
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p+k

<22 Z Bﬁkr[Z( ) B @) sup (1 + )" D] @)

]

where B;Hw > 0. Since ¢ € SA(R) and 1, ¢, € S(R) each term of the right-hand side is finite. Hence, the

canonical composition operator (W) is a continuous linear mapping of S4(RR) into B4(R®). O

Xsuﬂ1;>|(1 + DY)+ L, ()

W1+ u2)Dm¢1(u)| sup |(1 + oAD"

Xsup |u
ueR

4. Composition of LCWTs on generalized Sobolev space Hf 4L (R)

Pathak [26] obtained certain boundedness results for continuous wavelet transform on LP-Sobolev space,
Motivated by this work we have defined the generalized Sobolev space H” , and discuss the boundedness

for composition of linear canonical wavelet transform on H .

Definition 4.1. For s € Rand p € [1, o), the generalized LP-Sobolev space Hf 418 defined as

= {‘P | p(x) € S,(R) and |EF(Lag)(E) € L’”(]R)}.
Its norm is defined by
lelly, = P Lag)Ol,

Definition 4.2. The generalized Sobolev space HZ:Z of all measurable function (B, o, y) defined on (R X R* x R*)
satisfying

botw el = ([ [ ([ lots.enfa) ntanay) <o @)

where1 <p, g < oo, s€R.
Theorem 4.3. Assume that the canonical wavelets yn, Y, satisfies the following admissibility condition:
| Lale 5O 1 1(@&) Lale O Yol (pE)|] dady _
Ciina 111;+ f (aylely ay
Then the canonical composition operator (WA@)(B, @, y) is a bounded linear operator from H' s4(R) into Hq (R X
R*xXR*) for1<p<2, ;+E—1[mdse]R

(23)

Proof. From (15), we have

AWAQ)(B,a,y)} = Lale 5P Pr1(a€) Lale 5T Pal(yE)Lag)(©)- (24)

Using the Riesz-Thorin interpolation formula [17, 41] for LCT, we have

2mh AV 4 2yt
1

b I N VAV Y] %
(ju; IMETN I Lale 50" Yn)(ak) Lale 50 ¢2](V€)(£A<P)(5)|qd5)
f ([ leatwio)e.alae)

< Coal [ I(Wr)g. ')

==
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where C, 4 > 01is a constant. Multiplying by (ay)~*'dady and integrating over R* x R*, we get

f (ay)™'dady f | Lale 50"y 1(@8) Lale E O Yol (yE) Lag)(E)|'dE
R+ R+

an\/— f f f’ (W) 6, a, y)lpdﬁ) (ay)™"‘dady.

Now, using (23) the above expansion can be written as

(CwupzA% f|é|)£A(P)(é)|qdé) < 2n(;pj_(fR+ f}R+(f]R|(WA(P)(ﬁ/a,V)(pdﬁ)Z(aV)_S_ldadV);

b \/—”( )(ﬁ' &, y)"HZ:Z(]I{XR+><R+)'

A

IA

Moreover, we have
Cpa

2mth Afay(CT P A
Furthermore, based on the Riesz-Thorin interpolation formula [17, 41] for LCT and using (24), then
1
q
([ Iwe)sa ')
‘2nb \ay
B ( fR i

il < ol (020! I (25)

L[5 Ly [ B P (@) Lale 5P o] ()
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where D, 4 > 0 is a constant. Therefore
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where C J o is given by (24). Thus
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From (25) and (26), we conclude that canonical composition operator (W) is a bounded linear operator
from HpA(]R) into Hq J(RXRTXRY). O

5. Conclusion
In this work, we defined the canonical composition operator and proof the continuity of this operator on

the generalized test function spaces LP*!, G»* and BA(R%). Also, we proved that the canonical composition
operator as a bounded linear operator from the generalized Sobolev space Hf 4 into HZ’Z.
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