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Abstract. Let (H, α) be a monoidal Hom-Hopf algebra and H
HHYD the Hom-Yetter-Drinfeld category over

(H, α). Then in this paper, we first introduce the definition of braided Hom-Lie algebras and show that
each monoidal Hom-algebra in H

HHYD gives rise to a braided Hom-Lie algebra. Second, we prove that if
(A, β) is a sum of two H-commutative monoidal Hom-subalgebras, then the commutator Hom-ideal [A,A]
of A is nilpotent. Also, we study the central invariant of braided Hom-Lie algebras as a generalization of
generalized Lie algebras. Finally, we obtain a construction of the enveloping algebras of braided Hom-Lie
algebras and show that the enveloping algebras are H-cocommutative Hom-Hopf algebras.

1. Introduction

Hom-algebras were first introduced in the Lie algebra setting [14] with motivation from physics though
its origin can be traced back in earlier literature such as [15]. In a Hom-Lie algebra, the Jacobi identity is
replaced by the so called Hom-Jacobi identity via a homomorphism. In 2008, Makhlouf and Silvestrov [20]
introduced the definition of Hom-associative algebras, where the associativity of a Hom-algebra is twisted
by an endomorphism (here we call it the Hom-structure map). The definition of BiHom-Hopf algebras
given in [12] is even more general, and involves four different structure maps, including Hom-bialgebras,
Hom-Hopf algebras were developed in [9], [21], [22], [23]. Further research on Hom-Hopf algebras could
be found in [5], [11], [17], [31], [33] and references cited therein.

In [4], Caenepeel and Goyvaerts studied Hom-Lie algebras and Hom-Hopf algebras from a categorical
view point, they proved a (co)monoid in the Hom-category is a Hom-(co)algebra, and a bimonoid in the
Hom-category is a monoidal Hom-bialgebra. Note that a monoidal Hom-Hopf algebra is a Hom-Hopf
algebra if and only if the Hom-structure map is involutive. Later, Graziani et al. [12] defined BiHom-Hopf
algebras using two commuting multiplicative linear maps α, β, unified Hom-Hopf algebras and monoidal
Hom-Hopf algebras by setting α = β and α = β−1 respectively.

2010 Mathematics Subject Classification. 17B05; 17B30; 17B35
Keywords. Hom-Yetter-Drinfeld category; braided Hom-Lie algebra; enveloping algebra; central invariant.
Received: 11 December 2019; Revised: 07 June 2020; Accepted: 24 August 2020
Communicated by Dijana Mosić
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Recently, the theory of Hom-Yetter-Drinfeld categories has attracted attention in mathematics and
mathematical physics. In [19], Makhlouf and Panaite defined Yetter-Drinfeld modules over Hom-bialgebras
and showed that Yetter-Drinfeld modules over a Hom-bialgebra with bijective structure map provide
solutions of the Hom-Yang-Baxter equation. Also Liu and Shen [18], Chen and Zhang [7] studied Hom-
Yetter-Drinfeld modules over monoidal Hom-bialgebras in a slightly different way to [19]. As a part of the
theory of Hom-Yetter-Drinfeld categories, we [29] gave sufficient and necessary conditions for the Hom-
Yetter-Drinfeld category H

HHYD to be symmetric and pseudosymmetric respectively. With the symmetries
of Hom-Yetter-Drinfeld categories, it is a natural question to ask whether we can extend the notion of
monoidal Hom-Lie algebras to Hom-Yetter-Drinfeld categories. This becomes our first motivation of
writing this paper.

It is well known that Lie algebras in braided monoidal categories is a very important part of Lie theories.
As a generalization of Lie superalgebras [16] and Lie color algebras [25], Manin [24] studied Lie algebras
in some symmetric categories from an algebraic point of view. Later, Cohen, Fishman and Westreich [8]
studied Lie algebras in the category of modules over triangular Hopf algebras and proved Schur’s double
centralizer theorem, Fishman and Montgomery [10] did similar work in the category of comodules over
cotriangular Hopf algebras. Later, Bahturin, Fishman and Montgomery [3] studied the structure of the
generalized Lie algebras in the category of comodules.

Wang [27] studied the central invariant of ρ-Lie algebras in Yetter-Drinfeld categories. Wang [28]
introduced the notion of generalized Lie algebras in Yetter-Drinfeld categories and extended the Kegel’s
theorem to generalized Lie algebras. Later, we [30] extended Wang’s results in [28] to Hom-Lie algebras in
Yetter-Drinfeld categories, which unifies the notions of Hom-Lie superalgebras in [1] and Hom-Lie color
algebras in [32]. In the present paper, we will study monoidal Hom-Lie algebras in Hom-Yetter-Drinfeld
categories, which is different from [30] in two aspects. First, Hom-Yetter-Drinfeld categories include Yetter-
Drinfeld categories as a special case. Second, the main purpose of this paper is to study the central invariants
and enveloping algebras of braided Hom-Lie algebras, which has not been involved in [30].

This paper is organized as follows. In Section 2, we recall some basic definitions about monoidal
Hom-Hopf algebras and Hom-Yetter-Drinfeld modules.

In Section 3, we define braided Hom-Lie algebras and show that any monoidal Hom-algebra in H
HHYD

gives rise to a braided Hom-Lie algebra by the natural bracket product (see Proposition 3.2), and prove
that if (A, β) is H-semisimple and a sum of two H-commutative monoidal Hom-subalgebras, then (A, β)
is H-commutative (see Corollary 3.9). In Section 4, we consider the central invariant of braided Hom-Lie
algebras (see Theorem 4.7). In Section 5, we construct the enveloping algebras of braided Hom-Lie algebras
and present its Hopf structures. As an application, we study the enveloping algebra of End(V) and construct
a Radford’s Hom-biproduct (U(End(V))×

]
H, δ ⊗ id) (see Proposition 5.10).

2. Preliminary

In this section, we recall some basic definitions and results related to our paper. Throughout the paper,
all algebraic systems are supposed to be over a field k of characteristic not 2. The reader is referred to
Caenepeel and Goyvaerts [4] as general references about monoidal Hom-algebras and monoidal Hom-Lie
algebras, to Sweedler [26] about Hopf algebras and Liu and Shen [18] about Hom-Yetter-Drinfeld categories.

If C is a coalgebra, we use the Sweedler-type notation for the comultiplication: ∆(c) = c1 ⊗ c2, for all
c ∈ C, in which we often omit the summation symbols for convenience.

2.1 Hom-category
Let C be a category. We introduce a new category H (C) as follows: the objects are couples (X, αX),

with X ∈ C and αX ∈ AutC(X). A morphism f : (X, αX) → (Y, αY) is a morphism f : X → Y in C such that
αY ◦ f = f ◦ αX.

Specially, let Mk denote the category of k-spaces. H (Mk) will be called the Hom-category associated
to Mk. If (X, αX) ∈ Mk, then αX : X → X is obviously an isomorphism in H (Mk). It is easy to show that
H̃ (Mk) = ( H (Mk), ⊗, (k, id), ã, l̃, r̃)) is a monoidal category by Proposition 1.1 in [4]:
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• the tensor product of (X, αX) and (Y, αY) in H̃ (Mk) is given by the formula (X, αX) ⊗ (Y, αY) = (X ⊗
Y, αX ⊗ αY);
• for any x ∈ X, y ∈ Y, z ∈ Z, the associator is given by the formulas

ãX,Y,Z((x ⊗ y) ⊗ z) = αX(x) ⊗ (y ⊗ α−1
Z (z));

• for any x ∈ X, λ ∈ k, the unit constraints are given by the formulas

l̃X(λ ⊗ x) = r̃X(x ⊗ λ) = λαX(x).

2.2 Monoidal Hom-Hopf algebras

Definition 2.1. A monoidal Hom-algebra is an object (A, α) in the Hom-category H̃(Mk) together with an
element 1A ∈ A and a linear map m : A ⊗ A→ A, a ⊗ b 7→ ab such that

α(a)(bc) = (ab)α(c), α(ab) = α(a)α(b), (1)
a1A = 1Aa = α(a), α(1A) = 1A, (2)

for all a, b, c ∈ A.
As noted in [4], the definition of monoidal Hom-algebras is different from the definition of Hom-

associative algebras defined in [22]. Specifically, the unitality condition in [22] is the usual untwisted one:
a1A = 1Aa = a, for any a ∈ A, and the condition (2) is not desired there. These Hom-algebras are sometimes
called multiplicative Hom-algebras.

Definition 2.2. A monoidal Hom-coalgebra is an object (C, γ) in the category H̃(Mk) together with linear maps
∆ : C→ C ⊗ C, ∆(c) = c1 ⊗ c2 and ε : C→ k such that

γ−1(c1) ⊗ ∆(c2) = ∆(c1) ⊗ γ−1(c2), ∆(γ(c)) = γ(c1) ⊗ γ(c2), (3)
c1ε(c2) = ε(c1)c2 = γ−1(c), ε(γ(c)) = ε(c), (4)

for all c ∈ C.
The definition of monoidal Hom-coalgebras is different from the definition of Hom-coassociative coal-

gebras defined in [22]. The coassociativity condition is twisted by some endomorphism, not necessarily
by the inverse of the automorphism γ. The counitality condition in [22] is the usual untwisted one:
c1ε(c2) = ε(c1)c2 = c, for any c ∈ C, and the condition (4) is not needed there.

Definition 2.3. A monoidal Hom-bialgebra H = (H, α,m, 1H,∆, ε) is a bialgebra in the category H̃(Mk). This
means that (H, α,m, 1H) is a monoidal Hom-algebra and (H, α,∆, ε) is a monoidal Hom-coalgebra such that
∆ and ε are Hom-algebra maps, that is, for any h, 1 ∈ H,

∆(h1) = ∆(h)∆(1), ∆(1H) = 1H ⊗ 1H,

ε(h1) = ε(h)ε(1), ε(1H) = 1k.

A monoidal Hom-bialgebra (H, α) is called a monoidal Hom-Hopf algebra if there exists a morphism (called
the antipode) S : H → H in H̃(Mk) (i.e. S ◦ α = α ◦ S), which is the convolution inverse of the identity
morphism idH (i.e. S ∗ idH = ηH ◦ εH = idH ∗ S), this means for any h ∈ H,

S(h1)h2 = ε(h)1H = h1S(h2).

2.3 Hom-Yetter-Drinfeld categories

Definition 2.4. Let (A, α) be a monoidal Hom-algebra. A left (A, α)-Hom-module consists of (M, µ) ∈ H̃(Mk)
together with a morphism ψ : A ⊗M→M, ψ(a ⊗m) = a ·m such that

α(a) · (b ·m) = (ab) · µ(m), 1A ·m = µ(m), µ(a ·m) = α(a) · µ(m),



S. Wang et al. / Filomat 34:12 (2020), 3893–3915 3896

for all a, b ∈ A and m ∈M.
Let (M, µ), (N, ν) be (A, α)-modules and the corresponding structure maps. A morphism f : M → N of

(A, α)-Hom-modules is called left A-linear if f (a ·m) = a · f (m), for any a ∈ A,m ∈M and f ◦ µ = ν ◦ f .
Definition 2.5. Let (C, γ) be a monoidal Hom-coalgebra. A left (C, γ)-Hom-comodule consists of (M, µ) ∈
H̃(Mk) together with a morphism ρM : M → C ⊗M, ρM(m) = m(−1) ⊗ m0 (here we omit the summation for
convenience) such that

∆C(m(−1)) ⊗ µ−1(m0) = γ−1(m(−1)) ⊗ (m0(−1) ⊗m00),

ρM(µ(m)) = γ(m(−1)) ⊗ µ(m0), ε(m(−1))m0 = µ−1(m),

for all m ∈M.
Let (M, µ) and (N, ν) be two left (C, γ)-Hom-comodules. A morphism 1 : M → N is called left C-colinear

if 1 ◦ µ = ν ◦ 1 and m(−1) ⊗ 1(m0) = 1(m)(−1) ⊗ 1(m)0, for any m ∈M.
Definition 2.6. Let (H, α) be a monoidal Hom-Hopf algebra. A monoidal Hom-algebra (A, β) is called a left
(H, α) Hom-module algebra, if (A, β) is a left (H, α) Hom-module with action φ : H ⊗ A → A, φ(h ⊗ a) = h · a
such that the following conditions satisfy:

h · (ab) = (h1 · a)(h2 · b),
h · 1A = ε(h)1A,

for all a, b ∈ A and h ∈ H.
Definition 2.7. Let (H, α) be a monoidal Hom-Hopf algebra. A monoidal Hom-algebra (A, β) is called a
left (H, α)-Hom-comodule algebra if (A, β) is a left (H, α) Hom-comodule with coaction ρ : A→ H ⊗ A, ρ(a) =
a(−1) ⊗ a0 such that the following conditions satisfy,

ρ(ab) = a(−1)b(−1) ⊗ a0b0,

ρ(1A) = 1H ⊗ 1A.

for all a, b ∈ A.
Definition 2.8. Let (H, α) be a monoidal Hom-Hopf algebra. A left-left (H, α)-Hom-Yetter-Drinfeld module is
an object (M, β) ∈ H̃(Mk), such that (M, β) is both a left (H, α)-Hom-module and a left (H, α)-Hom-comodule
with the following compatibility condition:

ρ(h ·m) = (h11α
−1(m(−1)))S(h2) ⊗ α(h12) ·m0, (5)

for all h ∈ H and m ∈M.
By Proposition 4.2 in Ref. [16], Eq. (5) is equivalent to the following equation:

h1m(−1) ⊗ h2 ·m0 = (h1 · β
−1(m))(−1)h2 ⊗ β((h1 · β

−1(m))0).

Definition 2.9. Let (H, α) be a monoidal Hom-Hopf algebra. A Hom-Yetter-Drinfeld category H
HHYD is a

braided monoidal category whose objects are left-left (H, α)-Hom-Yetter-Drinfeld modules, morphisms are
both left (H, α)-linear and (H, α)-colinear maps, and its braiding C−,− is given by

CM,N(m ⊗ n) = m(−1) · ν
−1(n) ⊗ µ(m(0)),

for all m ∈ (M, µ) ∈ H
HHYD and n ∈ (N, ν) ∈ H

HHYD.

Definition 2.10. Let (A, β) be an object in H
HHYD, the braiding C is called symmetric on A if the following

condition holds:

a(−1) · β
−1(b) ⊗ β(a0) = β(b0) ⊗ S−1(b(−1)) · β−1(a);

A is called H-commutative if

(a(−1) · β
−1(b))β(a0) = ab,

A is called H-cocommutative if

a1(−1) · β
−1(a2) ⊗ β(a10) = a1 ⊗ a2,

for all a, b ∈ A.
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3. Braided Hom-Lie algebras

In this section, we first introduce the concept of braided Hom-Lie algebras and show that each monoidal
Hom-algebra in H

HHYD gives rise to a braided Hom-Lie algebras. Also we study the braided Lie structures
of monoidal Hom-algebras in H

HHYD as a generalization of results in [3], [28] and [30].

From now on, we always assume that (H, α) is a monoidal Hom-Hopf algebra and H
HHYD the Hom-

Yetter-Drinfeld category over (H, α).

Definition 3.1. A monoidal Hom-Lie algebra in H
HHYD, called a braided Hom-Lie algebra, is a pair (L, β),

where L is an object in H
HHYD, β : L→ L is a homomorphism in H

HHYD and [·, ·] : L⊗L→ L is a morphism
in H

HHYD satisfying
(i) Braided Hom-skew-symmetry:

[l, l′] = −[l(−1) · β
−1(l′), β(l0)], l, l′ ∈ L.

(ii) Braided Hom-Jacobi identity:

{l ⊗ l′ ⊗ l′′} + {(C ⊗ 1)(1 ⊗ C)(l ⊗ l′ ⊗ l′′)} + {(1 ⊗ C)(C ⊗ 1)(l ⊗ l′ ⊗ l′′)} = 0,

for all l, l′, l′′ ∈ L, where {l ⊗ l′ ⊗ l′′} denotes [β(l), [l′, l′′]] and C the braiding for L.

Proposition 3.2. Let (A, β) be a monoidal Hom-algebra in H
HHYD. Assume that the braiding C is symmetric

on A. Then the triple (A, [·, ·], β) is a braided Hom-Lie algebra, where the bracket product is defined

[·, ·] : A ⊗ A→ A by [a, b] = ab − (a(−1) · β
−1(b))β(a0),

for all a, b ∈ A.
Proof. Denote A− = (A, [·, ·], β). It is clear that the bracket product is a morphism in H

HHYD, so it remains
to verify that the conditions (i) and (ii) of Definition 3.1 hold.

For the braided Hom-skew-symmetry, we have [a(−1) ·β−1(b), β(a0)] = (a(−1) ·β−1(b))β(a0)−((a(−1) ·β−1(b))(−1) ·

β(β−1(a0)))β((a(−1) · β−1(b))0) = (a(−1) · β−1(b))β(a0) − ab = −[a, b], as desired. The last equality holds since the
braiding C is symmetric on A.

Similarly, one may check the braided Hom-Jacobi identity by the Hom-associativity of A routinely. And
this finishes the proof. �

Example 3.3. Let (H, α) be a commutative involutive monoidal Hom-Hopf algebra. By Example 4.3 in
[18], (H, α) is a Hom-Yetter-Drinfeld module with left (H, α)-action h · 1 = (h1α−1(1))S(α(h2)) and left (H, α)-
coaction by the Hom-comultiplication ∆, note it by H1 = (H1, adjoint,∆, α). By Corollary 5.4 in [29], the
braiding C is symmetric on H1, then H−1 is a braided Hom-Lie algebra.

Example 3.4. Let (H, α) be a cocommutative involutive monoidal Hom-Hopf algebra. By Example 2.7 in
[29], (H, α) is a Hom-Yetter-Drinfeld module with left (H, α)-action by the Hom-multiplication m and left
(H, α)-coaction ρ(h) = h11α−1(S(h2)) ⊗ α(h12), and note it by H2 = (H2,m, coadjoint, α). By Corollary 5.4 in
[29], the braiding C is symmetric on H2, then H−2 is a braided Hom-Lie algebra.

Example 3.5. Let H = k{1H, h} be a monoidal Hom-Hopf algebra with an automorphism α : H→ H, α(1H) =
1H, α(h) = −h, where the Hom-algebra structure is defined by

1H1H = 1H, 1Hh = h1H = −h, h2 = 0,

the Hom-coalgebra structure is defined by

∆(1H) = 1H ⊗ 1H,∆(h) = (−h) ⊗ 1H + 1H ⊗ (−h), ε(1H) = 1, ε(h) = 0,

and the antipode is defined by S : H→ H,S(1H) = 1H,S(h) = −h.
Recall from ([6]), A = k{1A, x, 1, 1x} is a Sweedler 4 dimensional monoidal Hopf algebra constructed from

Sweedler 4-dimension Hopf algebra by Yau twist, where the twist map is defined by

β(1A) = 1A, β(1) = 1, β(x) = −x, β(1x) = −1x,
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the Hom-algebra structure m is defined by

m(1A ⊗ 1A) = 1A,m(1A ⊗ 1) = 1,m(1A ⊗ x) = −x,m(1A ⊗ 1x) = −1x,
m(1 ⊗ 1A) = 1,m(1 ⊗ 1) = 1,m(1 ⊗ x) = −1x,m(1 ⊗ 1x) = −x,
m(x ⊗ 1A) = −x,m(x ⊗ 1) = 1x,m(x ⊗ x) = 0,m(x ⊗ 1x) = 0,
m(1x ⊗ 1A) = −1x,m(1x ⊗ 1) = x,m(1x ⊗ x) = 0,m(1x ⊗ 1x) = 0,

the Hom-coalgebra structures ε and ∆ are defined by

ε(1A) = 1, ε(1) = ε(x) = ε(1x) = 0,∆(1A) = 1A ⊗ 1A,∆(1) = 1 ⊗ 1,

∆(x) = (−x) ⊗ 1A + 1 ⊗ (−x),∆(1x) = (−1x) ⊗ 1 + 1 ⊗ (−1x)

and the antipode is defined by S : A→ A,S(1A) = 1A,S(1) = 1,S(x) = −1x,S(1x) = x.
Now we define a left (H, α)-Hom-module structure on A:

h · 1A = h · 1 = h · x = h · 1x = 0,
1H · 1A = 1A, 1H · 1 = 1, 1H · x = −x, 1H · 1x = −1x.

One may check directly that A is a (H, α)-Hom-module algebra. Similarly, we can define a left (H, α)-Hom-
comodule structure on A:

ρ(1A) = 1H ⊗ 1A, ρ(1) = 1H ⊗ 1, ρ(x) = 1H ⊗ (−x), ρ(1x) = 1H ⊗ (−1x).

Then A is a (H, α)-Hom-comodule algebra and A is an object in H
HHYD.

Define the braiding C on A by the usual flip map. Clearly, C is symmetric on A. By Proposition 3.2,
there is a braided Hom-Lie algebra A− with the bracket product [·, ·] satisfying the following non-vanishing
relation

[x, 1] = −[1, x] = 21x, [1x, 1] = −[1, 1x] = 2x.

Lemma 3.6. Let (A, β) be a monoidal Hom-algebra in H
HHYD with monoidal Hom-subalgebras X and Y

which are H-commutative such that A = X + Y. Then the following equality holds:

α−1(u(−1)) ⊗ α−1(y(−1)) ⊗ (u0y0)X
(−1) ⊗ (u0y0)X

0 + α−1(u(−1)) ⊗ α−1(y(−1)) ⊗ (u0y0)Y
(−1) ⊗ (u0y0)Y

0

= u(−1)1 ⊗ y(−1)1 ⊗ u(−1)2y(−1)2 ⊗ β
−1((u0y0)X) + u(−1)1 ⊗ y(−1)1 ⊗ u(−1)2y(−1)2 ⊗ β

−1((u0y0)Y), (6)

for all u ∈ X and y ∈ Y, where u0y0 = (u0y0)X + (u0y0)Y
∈ X + Y.

Proof. Since ∆(m(−1)) ⊗ β−1(m0) = α−1(m(−1)) ⊗ (m0(−1) ⊗ m00), by applying it to u and y respectively, we
can get Eq. (6). �

Lemma 3.7. Let (A, β) be a monoidal Hom-algebra in H
HHYD with monoidal Hom-subalgebras X and Y

which are H-commutative such that A = X + Y. Assume that the braiding C is symmetric on A, then the
following equality holds:

ε(y(−1))(α(u(−1)) · β−1(w))β((u0y0)X) − ε(y(−1))(α(u(−1)) · β−1(z))β((u0y0)Y)

= ε(u(−1))β((u0y0)X)(S−1(α(y(−1))) · β−1(w)) − ε(u(−1))β((u0y0)Y)(S−1(α(y(−1))) · β−1(z)), (7)

for all u ∈ X and y ∈ Y, where u0y0 = (u0y0)X + (u0y0)Y
∈ X + Y.
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Proof. For Eq. (7), we show it by the following computation:

ε(y(−1))(α(u(−1)) · β−1(w))β((u0y0)X) − ε(y(−1))(α(u(−1)) · β−1(z))β((u0y0)Y)

= ε(y(−1))((α(u(−1)) · β−1(w))(−1) · (u0y0)X)β((α(u(−1)) · β−1(w))0) −

ε(y(−1))((α(u(−1)) · β−1(z))(−1) · (u0y0)Y)β((α(u(−1)) · β−1(z))0)

= ε(y(−1))β(β((u0y0)X)0)(S−1(β((u0y0)X)(−1)) · β−1(α(u(−1)) · β−1(w))) −

ε(y(−1))β(β((u0y0)Y)0)(S−1(β((u0y0)Y)(−1)) · β−1(α(u(−1)) · β−1(z)))

= ε(y(−1))β2((u0y0)X
0 )(S−1(α((u0y0)X

(−1))) · β
−1(α(u(−1)) · β−1(w))) −

ε(y(−1))β2((u0y0)Y
0 )(S−1(α((u0y0)Y

(−1))) · β
−1(α(u(−1)) · β−1(z))

(6)
= ε(α(y(−1)1))β((u0y0)X)(S−1(α(u(−1)2y(−1)2)) · β−1(α2(u(−1)1) · β−1(w))) −

ε(α(y(−1)1))β((u0y0)Y)(S−1(α(u(−1)2y(−1)2)) · β−1(α2(u(−1)1) · β−1(z))) −

= ε(u(−1))(β((u0y0)X)(S−1(α(y(−1))) · β−1(w)) − β((u0y0)Y)(S−1(α(y(−1))) · β−1(z))).

The last equality holds since

ε(α(y(−1)1))S−1(α(u(−1)2y(−1)2)) · β−1(α2(u(−1)1) · β−1(w))

= ε(α(y(−1)1))S−1(α(u(−1)2y(−1)2)) · (α(u(−1)1) · β−2(w))

= ε(y(−1)1)((S−1(y(−1)2)S−1(u(−1)2))α(u(−1)1)) · β−1(w)

= ε(y(−1)1)(α(S−1(y(−1)2))(S−1(u(−1)2)u(−1)1)) · β−1(w)

= (S−1(y(−1))(ε(u(−1))1H)) · β−1(w)

= ε(u(−1))S−1(α(y(−1))) · β−1(w).

And this completes the proof. �

Theorem 3.8. Let (A, β) be a monoidal Hom-algebra in H
HHYD with monoidal Hom-subalgebras X and

Y which are H-commutative such that A = X + Y. Assume that the braiding C is symmetric on A, then
[A,A][A,A] = 0.

Proof. It is sufficient to prove [u, x][v, y] = 0 holds for all u, v ∈ X and x, y ∈ Y. For any a, b, c, d ∈ A, we
first note that (ab)(cd) = (aβ−1(bc))β(d) which can be verified easily from the Hom-associativity of A. By the
definition of the bracket product, we have

[u, x][v, y] = (ux − (u(−1) · β
−1(x))β(u0))(vy − (v(−1) · β

−1(y))β(v0))

= (ux)(vy) + ((u(−1) · β
−1(x))β(u0))((v(−1) · β

−1(y))β(v0)) −

(ux)((v(−1) · β
−1(y))β(v0)) − ((u(−1) · β

−1(x))β(u0))(vy).

Next we will compute the four expressions above respectively. For this purpose, let xv = w + z, where
w ∈ X, z ∈ Y.

(1) (ux)(vy) = ((u(−1) · β−2(w))β(u0))β(y) + (uβ−1(z(−1) · y))β(z0). In fact,

(ux)(vy) = (uβ−1(xv))β(y) = (uβ−1(w))β(y) + β(u)(β−1(z)y)
= ((u(−1) · β

−2(w))β(u0))β(y) + β(u)((α−1(z(−1)) · β−1(y))β(β−1(z0)))

= ((u(−1) · β
−2(w))β(u0))β(y) + β(u)((α−1(z(−1)) · β−1(y))z0)

= ((u(−1) · β
−2(w))β(u0))β(y) + (uβ−1(z(−1) · y))β(z0).

(2) ((u(−1) ·β−1(x))β(u0))(vy) = ((u(−1) ·β−2(w))β(u0))β(y)+ε(y(−1))(α(u(−1))·β−1(z))β((u0y0)X)+ε(y(−1))(α(u(−1))·
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β−1(z))β((u0y0)Y). In fact,

((u(−1) · β
−1(x))β(u0))(vy)

= ((u(−1) · β
−1(x))β−1(β(u0)v))β(y)

= ((u(−1) · β
−1(x))(u0β

−1(v)))β(y)

= ((u(−1) · β
−1(x))((u0(−1) · β

−2(v))β(u00)))β(y)

= ((α(u(−1)1) · β−1(x))((u(−1)2 · β
−2(v))u0))β(y)

= (((u(−1)1 · β
−2(x))(u(−1)2 · β

−2(v)))β(u0))β(y)
= ((u(−1) · β

−2(xv))β(u0))β(y)
= ((u(−1) · β

−2(w))β(u0))β(y) + ((u(−1) · β
−2(z))β(u0))β(y)

= ((u(−1) · β
−2(w))β(u0))β(y) + (α(u(−1)) · β−1(z))(β(u0)β(y0))ε(y(−1))

= ((u(−1) · β
−2(w))β(u0))β(y) + (α(u(−1)) · β−1(z))β(u0y0)ε(y(−1))

= ((u(−1) · β
−2(w))β(u0))β(y) + ε(y(−1))(α(u(−1)) · β−1(z))β((u0y0)X)

+ε(y(−1))(α(u(−1)) · β−1(z))β((u0y0)Y).

(3) (ux)((v(−1) · β−1(y))β(v0)) = (uβ−1(z(−1) · y))β(z0) + ε(u(−1))β((u0y0)X)(S−1(α(y(−1))) · β−1(w))
+ ε(u(−1))β((u0y0)Y)(S−1(α(y(−1))) · β−1(w)). In fact,

(ux)((v(−1) · β
−1(y))β(v0))

= (uβ−1(x(v(−1) · β
−1(y))))β2(v0)

= (uβ−1((x(−1) · β
−1(v(−1) · β

−1(y)))β(x0)))β2(v0)

= (uβ−1((x(−1) · (α−1(v(−1)) · β−2(y)))β(x0)))β2(v0)

= (uβ−1((α−1(x(−1)v(−1)) · β−1(y))β(x0))β2(v0)
= β(u)(((α−2(x(−1)v(−1)) · β−2(y))x0)β(v0))

= β(u)((α−1(x(−1)v(−1)) · β−1(y))(x0v0))

= (uβ−1((x(−1)v(−1)) · y))β(x0v0)

= (uβ−1((xv)(−1) · y))β((xv)0)

= (uβ−1(w(−1) · y))β(w0) + (uβ−1(z(−1) · y))β(z0)

= (uβ(y0))(S−1(α(y(−1))) · β−1(w)) + (uβ−1(z(−1) · y))β(z0)

= ε(u(−1))β(u0y0)(S−1(α(y(−1))) · β−1(w)) + (uβ−1(z(−1) · y))β(z0)

= ε(u(−1))β((u0y0)X)(S−1(α(y(−1))) · β−1(w)) + (uβ−1(z(−1) · y))β(z0) +

ε(u(−1))β((u0y0)Y)(S−1(α(y(−1))) · β−1(w)).

(4) ((u(−1) · β−1(x))β(u0))((v(−1) · β−1(y))β(v0)) = ε(y(−1))(α(u(−1)) · β−1(w))β((u0y0)X)
+ ε(y(−1))(α(u(−1)) · β−1(w))β((u0y0)X) + ε(u(−1))β((u0y0)Y)(S−1(α(y(−1))) · β−1(w)) +
ε(u(−1))β((u0y0)Y)(S−1(α(y(−1))) · β−1(z)).

Here we first give two useful equalities:

(u(−1)2y(−1)2) · (S−1(y(−1)1) · β−2(v)) = ε(y(−1))α(u(−1)2) · β−1(v), (8)

(S−1(y(−1)2)S−1(u(−1)2)) · (u(−1)1 · β
−2(v)) = ε(u(−1))S−1(α(y(−1)2)) · β−1(v). (9)

In fact,

(u(−1)2y(−1)2) · (S−1(y(−1)1) · β−2(v))

= ((α−1(u(−1)2)α−1(y(−1)2))S−1(y(−1)1)) · β−1(v)

= (u(−1)2(α−1(y(−1)2)α−1(S−1(y(−1)1)))) · β−1(v)

= (u(−1)2ε(y(−1))1H) · β−1(v) = ε(y(−1))α(u(−1)2) · β−1(v).
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So Eq. (8) holds and similarly for Eq. (9). Therefore,

((u(−1) · β
−1(x))β(u0))((v(−1) · β

−1(y))β(v0))

= ((u(−1) · β
−1(x))β(u0))(β(y0)(S−1(y(−1)) · β−1(v)))

= ((u(−1) · β
−1(x))(u0y0))β(S−1(y(−1)) · β−1(v))

= ((u(−1) · β
−1(x))(u0y0))(S−1(α(y(−1))) · v)

= β(u(−1) · β
−1(x))((u0y0)(S−1(y(−1)) · β−1(v)))

= β(u(−1) · β
−1(x))((u0y0)X(S−1(y(−1)) · β−1(v))) +

β(u(−1) · β
−1(x))((u0y0)Y(S−1(y(−1)) · β−1(v)))

= β(u(−1) · β
−1(x))(((u0y0)X

(−1) · β
−1(S−1(y(−1)) · β−1(v)))β((u0y0)X

0 )) +

((u(−1) · β
−1(x))(u0y0)Y)β(S−1(y(−1)) · β−1(v))

= ((u(−1) · β
−1(x))((u0y0)X

(−1) · β
−1(S−1(y(−1)) · β−1(v))))β2((u0y0)X

0 ) +

(((u(−1) · β
−1(x))(−1) · β

−1((u0y0)Y))β((u(−1) · β
−1(x))0))β(S−1(y(−1)) · β−1(v))

= ((u(−1) · β
−1(x))((u0y0)X

(−1) · β
−1(S−1(y(−1)) · β−1(v))))β2((u0y0)X

0 ) +

(β((u0y0)Y
0 )(S−1((u0y0)Y

(−1)) · β
−1(u(−1) · β

−1(x))))β(S−1(y(−1)) · β−1(v))

= ((α(u(−1)1) · β−1(x))((u(−1)2y(−1)2) · β−1(S−1(α(y(−1)1)) · β−1(v))))β((u0y0)X) +

((u0y0)Y(S−1(u(−1)2y(−1)2) · β−1(α(u(−1)1) · β−1(x))))β(S−1(α(y(−1)1)) · β−1(v))

= ((α(u(−1)1) · β−1(x))((u(−1)2y(−1)2) · (S−1(y(−1)1) · β−2(v))))β((u0y0)X) +

((u0y0)Y((S−1(u(−1)2)S−1(y(−1)2)) · (u(−1)1 · β
−2(x))))β(S−1(α(y(−1)1)) · β−1(v))

(8),(9)
= ε(y(−1))((α(u(−1)1) · β−1(x))(α(u(−1)2)β−1(v)))β((u0y0)X) +

ε(u(−1))((u0y0)Y(S−1(α(y(−1)2)) · β−1(x)))β(S−1(α(y(−1)1)) · β−1(v))

= ε(y(−1))(α(u(−1)) · β−1(xv))β((u0y0)X) + ε(u(−1))β((u0y0)Y)(S−1(α(y(−1))) · β−1(xv))

= ε(y(−1))(α(u(−1)) · β−1(w))β((u0y0)X) + ε(y(−1))(α(u(−1)) · β−1(w))β((u0y0)X) +

ε(u(−1))β((u0y0)Y)(S−1(α(y(−1))) · β−1(w)) + ε(u(−1))β((u0y0)Y)(S−1(α(y(−1))) · β−1(z)).

Hence we have

[u, x][v, y] = −ε(y(−1))(α(u(−1)) · β−1(z))β((u0y0)Y)

−ε(u(−1))β((u0y0)X)(S−1(α(y(−1))) · β−1(w))

+ε(y(−1))(α(u(−1)) · β−1(w))β((u0y0)X)

+ε(u(−1))β((u0y0)Y)(S−1(α(y(−1))) · β−1(z))
= 0,

as desired. And this completes the proof. �

Next we will give an interesting corollary, for this we first consider some H-analogous of classical
concepts of ring theory and Lie theory as follows.

Let (A, β) be a monoidal Hom-algebra in H
HHYD. An H-Hom-ideal U of A is not only H-stable (i.e.

h · a ∈ U for all h ∈ H and a ∈ U) but also H-costable (i.e. ρ(a) ∈ H ⊗U for all a ∈ U) such that β(U) ⊆ U and
(AU)A = A(UA) ⊆ U.

Let (L, β) be a braided Hom-Lie algebra. An H-Hom-Lie ideal U of L is not only H-stable but also H-costable
such that β(U) ⊆ U and [U,L] ⊆ U.

Define the center of L to be Z(L) = {l ∈ L|[l,L] = 0}. It is easy to see that Z(L) is not only H-stable but also
H-costable.
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L is called H-prime if the product of any two non-zero H-Hom-ideals of L is non-zero. It is called
H-semiprime if it has no non-zero nilpotent H-Hom-ideals, and is called H-simple if it has no nontrivial
H-Hom-ideals.

Corollary 3.9. Under the hypotheses of the theorem above, [A,A] is nilpotent. If A is also H-semiprime,
then A is H-commutative.

Proof. Straightforward from Theorem 3.8. �

4. Central invariants of braided Hom-Lie algebras

In this section, we study the central invariant of braided Hom-Lie algebras as a generalization of [27],
we always assume that (H, α) is a monoidal Hom-Hopf algebra.

Definition 4.1. If (A, β) is a monoidal Hom-algebra in H
HHYD, the monoidal Hom-subalgebra of H-

invariants is the set:
A0 = {a ∈ A|h · a = ε(h)a, for all h ∈ H}.

Recall from Proposition 3.2, a monoidal Hom-algebra (L, β) in H
HHYD gives rise to a braided Hom-Lie

algebra (L, [·, ·], β) in H
HHYD.

In what follows, we always assume that the bracket product in braided Hom-Lie algebra (L, [·, ·], β) is
defined as Proposition 3.2, that is

[, ] : A ⊗ A→ A by [a, b] = ab − (a(−1) · β
−1(b))β(a0), a, b ∈ A.

Lemma 4.2. Let (L, β) be a monoidal Hom-algebra in H
HHYD and (L, [·, ·], β) the derived braided Hom-Lie

algebra. Then
(1) [β(a), bc] = [a, b]β(c) + (α(a(−1)) · b)[β(a0), c],
(2) [ab, β(c)] = β(a)[b, c] + [a, b(−1) · β−1(c)]β2(b0), for all a, b, c ∈ L.

Proof. (1) For all a, b, c ∈ L, it is clear that [a, b]β(c) = (ab)β(c) − ((a(−1) · β−1(b))β(a0))β(c). Similarly,

(α(a(−1)) · b)[β(a0), c]

= (α(a(−1)) · b)(β(a0)c) − (α(a(−1)) · b)((α(a0(−1)) · β−1(c))β2(a00))

= β(a(−1) · β
−1(b))(β(a0)c) − β(a(−1) · β

−1(b))((α(a0(−1)) · β−1(c))β2(a00))

= ((a(−1) · β
−1(b))β(a0))β(c) − ((a(−1) · β

−1(b))(α(a0(−1)) · β−1(c)))β3(a00))

= ((a(−1) · β
−1(b))β(a0))β(c) − ((α(a(−1)1) · β−1(b))(α(a(−1)2) · β−1(c)))β2(a0))

= ((a(−1) · β
−1(b))β(a0))β(c) − (α(a(−1)) · β−1(bc))β2(a0)).

Therefore,

[a, b]β(c) + (α(a(−1)) · b)[β(a0), c]

= (ab)β(c) − (α(a(−1)) · β−1(bc))β2(a0))

= β(a)(bc) − ((α(a(−1)) · β−1(bc))β2(a0)

= β(a)(bc) − ((β(a))(−1) · β
−1(bc))β((β(a))0)

= [β(a), bc].

(2) For all a, b, c ∈ L, on the one hand, we have

β(a)[b, c] = β(a)(bc) − β(a)((b(−1) · β
−1(c))β(b0))

= (ab)β(c) − (a(b(−1) · β
−1(c)))β2(b0).
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On the other hand, we get

[a, b(−1) · β
−1(c)]β2(b0)

= (a(b(−1) · β
−1(c)))β2(b0) − ((a(−1) · β

−1(b(−1) · β
−1(c)))β(a0))β2(b0)

= (a(b(−1) · β
−1(c)))β2(b0) − ((a(−1) · (α−1(b(−1)) · β−2(c)))β(a0))β2(b0)

= (a(b(−1) · β
−1(c)))β2(b0) − (((α−1(a(−1))α−1(b(−1))) · β−1(c))β(a0))β2(b0)

= (a(b(−1) · β
−1(c)))β2(b0) − (a(−1)b(−1) · c)β(a0b0).

It follows that

β(a)[b, c] + [a, b(−1) · β
−1(c)]β2(b0)

= β(a)(bc) − (a(−1)b(−1) · c)β(a0b0)
= (ab)β(c) − (a(−1)b(−1) · c)β(a0b0)
= [ab, β(c)].

The proof is completed. �

Define adx(l) = [x, l] for all x, l ∈ L, By Lemma 4.2(1) we have

adβ(x)(lm) = adx(l)α(m) + (α−1(x(−1)) · β(l))adx0 (m), x, l,m ∈ L.

Lemma 4.3. Let (L, β) be a monoidal Hom-algebra in H
HHYD and x a β-invariant element in L0. Then for

any y, z ∈ L, the following equalities hold:
(1) CL,L(x ⊗ y) = y ⊗ x, CL,L(y ⊗ x) = x ⊗ y;
(2) adx(y) = xy − yx;
(3) adx(yz) = adx(y)β(z) + β(y)adx(z);
(4) ad2

x(yz) = ad2
x(y)β2(z) + 2β(adx(y)adx(z)) + β2(y)ad2

x(z).

Proof. (1) Since x ∈ L0, we have

CL,L(y ⊗ x) = y(−1) · β
−1(x) ⊗ β(y0) = y(−1) · x ⊗ β(y0)

= ε(y(−1))x ⊗ β(y0) = x ⊗ y,

CL,L(x ⊗ y) = x(−1) · β
−1(y) ⊗ β(x0) = β(y0) ⊗ S−1(y(−1)) · β−1(x)

= β(y0) ⊗ S−1(y(−1)) · x = β(y0) ⊗ ε(S−1(y(−1)))x = y ⊗ x.

(2) Straightforward from (1).
(3) Straightforward from Lemma 4.2 (1).
(4) By (2) and (3), we have

ad2
x(yz) = adx(adx(y)β(z) + β(y)adx(z))

= adx(adx(y)β(z)) + adx(β(y)adx(z))
= ad2

x(y)β2(z) + β(adx(y))adxβ(z) +

adxβ(y)β(adx(z)) + β2(y)ad2
x(z)

= ad2
x(y)β2(z) + β(adx(y))adβ(x)β(z) +

adβ(x)β(y)β(adx(z)) + β2(y)ad2
x(z)

= ad2
x(y)β2(z) + 2β(adx(y)adx(z)) + β2(y)ad2

x(z).

The proof is finished. �

Lemma 4.4. Let (L, [·, ·], β) be the derived braided Hom-Lie algebra. Assume that L is H-simple, then Z(L)0
is a field.
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Proof. Note that Z(L)0 = Z(L) ∩ L0 = Z(L)0, where Z(L) is the usual center of L. Taking 0 , x ∈ Z(L)0, we
have that Lx = I , 0 is an H-Hom-ideal, thus I = L since L is H-simple. That is to say that for some y ∈ L,
we obtain xy = yx = 1. Since

β2(h · y) = β(h · y)1 = β(h · y)(xy)
= β(α(h1) · y)(ε(α(h2))xy)
= β(α(h1) · y)((α(h2) · x)y)
= ((α(h1) · y)(α(h2) · x))β(y)
= (α(h) · (xy))β(y) = (α(h) · 1)β(y)
= (ε(α(h))1)β(y) = ε(h)β2(y)
= β2(ε(h)y)

We can get h · y = ε(h)y since β is bijective, that is, y ∈ L0.
We need to show y ∈ Z(L). For any z ∈ L, by Lemma 4.3(1), [z, x] = zx − xz = 0. Then we have

β2(yz − zy) = β2(yz) − β2(zy)
= β(yz)β(1) − β(yx)β(zy)
= β2(y)(β(z)1) − β2(y)(β(x)(zy))
= β2(y)(β(z)(xy)) − β2(y)(β(x)(zy))
= β2(y)((zx)β(y)) − β2(y)((xz)β(y))
= β2(y)((zx − xz)β(y))
= 0.

Since β is bijective, it follows that yz = zy, i.e. [y, z] = yz−zy = 0 by Lemma 4.3 (2). This shows that y ∈ Z(L),
as desired. �

Lemma 4.5. Let (L, [·, ·], β) be the derived braided Hom-Lie algebra and x a β-invariant element in L0, l,m ∈ L.
Then

(1) ad2
x(xl) = xad2

x(l);
(2) If ad2

x(L) = 0 and char(k) , 2, then adx(l)(Ladx(m)) = 0.

Proof. (1) It is straightforward from Lemma 4.3 (4).
(2) For all l,m ∈ L, we have

0 = ad2
x(lm) = ad2

x(l)β2(m) + 2β(adx(l)adx(m)) + β2(l)ad2
x(m)

= 2adx(β(l))adx(β(m)).

So adx(l)adx(m) = 0 since char(k) , 2. For any z ∈ L, by Lemma 4.3 (3), zadx(m) = adx(β−1(z)m)−adx(β−1(z))β(m).
Therefore,

adx(l)(zadx(m)) = adx(l)adx(β−1(z)m) − adx(l)(adx(β−1(z))β(m))
= 0 − β(adx(β−1(l)))(adx(β−1(l))β(m))
= −(adx(β−1(l))adx(β−1(l)))m
= 0.

By the arbitrary of z, adx(l)(Ladx(m)) = 0. And this finishes the proof. �

Lemma 4.6. Let (L, [, ], β) be the derived braided Hom-Lie algebra and I an H-Hom-Lie ideal of [L,L].
Assume that L is H-simple and char(k) , 2. If x is a β-invariant element in I0 satisfying (i) adx(I) = 0, (ii)
ad2

x([L,L]) = 0. Then x ∈ Z(L).

Proof. For any m ∈ L, l ∈ [L,L] and y ∈ I. By Lemma 4.2 (1),

0 = ad2
x([β(l),my]) = ad2

x([l,m]β(y)) + ad2
x((α(l(−1)) ·m)[β(l0), y]).
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First, we have

ad2
x([l,m]β(y))

= ad2
x([l,m])β3(y) + 2β(adx([l,m])adx(β(y))) + β2([l,m])ad2

x(β(y))
(i)
= ad2

x([l,m])β3(y)
(ii)
= 0.

So ad2
x((α(l(−1))·m)[β(l0), y]). On the other hand, since l ∈ [L,L] and [, ] is H-colinear, it follows that β(l0) ∈ [L,L],

adx([l0, y])
(i)
= 0 and ad2

x([l0, y])
(ii)
= 0. Therefore,

ad2
x(α(l(−1)) ·m)[β(l0), y])

= ad2
x(α(l(−1)) ·m)β2([β(l0), y]) + 2β(adx(α(l(−1)) ·m)adx([β(l0), y]))

+β2(α(l(−1)) ·m)ad2
x([β(l0), y])

= ad2
x(α(l(−1)) ·m)β2([β(l0), y]).

Thus we obtain ad2
x(α(l(−1)) ·m)β2([β(l0), y]) = 0. We completes the proof by the following two cases:

Case (1): If [I, [L,L]] = 0, then we have ad2
x(L) = 0. By Lemma 4.5 (2), adx(l)(Ladx(m)) = 0. Since L is

H-simple, we get adx(l) = 0. So x ∈ Z(L) since l is an arbitrary element in L.
Case (2): If [I, [L,L]] , 0, let U = [I, [L,L]]. It is easy to see that U is an H-Hom-Lie ideal of [L,L].

Since ad2
x(α(l(−1)) · m)β2([β(l0), y]) = 0, we have ad2

x(L)U = 0. Let Q = {y ∈ L|yU = 0}, then Q is an H-stable
H-costable left Hom-ideal of L, we claim Q = 0. If not, then L = QL since L is H-simple. By Proposition 3.2,
we have

QL ⊆ [Q,L] + LQ ⊆ [Q,L] + Q ⊆ L.
Thus L = Q + [Q,L]. Let y ∈ Q, l ∈ [L,L] and u ∈ U. Since Q is an H-Hom-ideal, β2(y0) ∈ Q. Then

[y, l]u = (yl)u − ((y(−1) · β
−1(l))β(y0))u

= (yl)u − β−1(y(−1) · β
−1(l))(β(y0)β−1(u))

= (yl)u − β−1(y(−1) · β
−1(l))β−1(β2(y0)u)

= (yl)u = β(y)(lβ−1(u))
= β(y)[l, β−1(u)] + β(y)((l(−1) · β

−2(u))β(l0))

= β(y)[l, β−1(u)] + (y(l(−1) · β
−2(u)))l0

= β(y)[l, β−1(u)].

Since β−1(u) ∈ U, β(y) ∈ Q, we obtain [l, β−1(u)] ∈ U, β(y)[l, β−1(u)] = 0, and thus [y, l]u. Which means
[Q, [L,L]] ⊆ Q and Q[L,L] ⊆ Q. Hence

L = QL = Q(Q + [Q,L]) ⊆ Q.

This implies LU = 0, which contradicts the assumption U , 0. Hence, Q = 0, and so ad2
x(L) = 0. Similarly

to case (1), one get x ∈ Z(L). �

Theorem 4.7. Let (L, [·, ·], β) be the derived braided Hom-Lie algebra. Assume that char(k) , 2 and L is
H-simple. If V is an H-Hom-Lie ideal of [L,L] such that any element in V0 is β-invariant and [V0,V] ⊆ Z(L)0.
Then V0 ⊆ Z(L)0.

Proof. For any x ∈ V0. We consider the following two cases:
(1) If adx(V) = 0, then x ∈ Z(L)0 by Lemma 4.6.
(2) If adx(V) , 0, then for any v ∈ V and l ∈ L, we have

[[x, [x, l]], v] = −[[x, [x, l]](−1) · β
−1(v), β([x, [x, l]]0)]

= −[β(v0),S−1(v(−1)) · β−1([x, [x, l]])]

= −[β(v0), β−1(S−1(α(v(−1))) · [x, [x, l]])]

= −[β(v0), β−1([x, [x,S−1(v(−1)) · l]])]

= −[β(v0), [x, [x,S−1(α−1(v(−1))) · β−1(l)]]].
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The fourth equality and the fifth equality hold since x ∈ V0 is β-invariant. By Lemma 4.3 (1), we get

(1 ⊗ C)(C ⊗ 1)(v0 ⊗ x ⊗ [x,S−1(α−1(v(−1))) · β−1(l)])

= (1 ⊗ C)(x ⊗ v0 ⊗ [x,S−1(α−1(v(−1))) · β−1(l)])

= x ⊗ v0(−1) · β
−1([x,S−1(α−1(v(−1))) · β−1(l)]) ⊗ β(v00)

= x ⊗ v0(−1) · [x,S−1(α−2(v(−1))) · β−2(l)] ⊗ β(v00)

= x ⊗ v(−1)2 · [x,S−1(α−1(v(−1)1)) · β−2(l)] ⊗ v0

= x ⊗ [v(−1)21 · x, v(−1)22 · (S−1(α−1(v(−1)1) · β−2(l))]) ⊗ v0

= x ⊗ [x, (α−1(v(−1)2)S−1(α−1(v(−1)1))) · β−2(l)] ⊗ v0

= x ⊗ [x, ε(v(−1))1 · β−2(l)] ⊗ v0

= x ⊗ [x, β−1(l)] ⊗ β−1(v).

Similarly, (1 ⊗ C)(C ⊗ 1)(v0 ⊗ x ⊗ [x,S−1(α−1(v(−1))) · β−1(l)]) = [x, β−1(l)] ⊗ β−1(v) ⊗ x. By braided Hom-Jacobi
identity, we have

[[x, [x, l]], v] = −[β(v0), [x, [x,S−1(α−1(v(−1))) · β−1(l)]]]

= [[β(x), l], [v, x]] + [β(x), [[x, β−1(l)], β−1(v)]]
= [[x, l], [v, x]] + [x, [[x, β−1(l)], β−1(v)]]
⊆ [[x,L], [V, x]] + [x, [[x,L], β−1(v)]]
⊆ 0 + [x, [[L,L],V]] ⊆ [x,V] ⊆ ZH(L)0.

We obtain [ad2
x(L),V] ⊆ Z(L)0. By Lemma 4.5 (1), we have ad2

x(xl) = β2(x)ad2
x(l).

(2.1) If ad2
x(l) , 0 for some l ∈ L, then (ad2

x(l))−1
∈ Z(L)0 by Lemma 4.4. In this case, it is easy to see that

x ∈ Z(L)0.
(2.2) Now we assume ad2

x(L)  Z(L)0. Let y ∈ L with ad2
x(y) < Z(L)0. Then we choose z ∈ V such that

0 , adz(x) = u ∈ Z(L)0. Thus there exist v1, v2, v3 ∈ Z(L)0 such that [z, ad2
x(y)] = v1, [β(z), ad2

x(xy)] = v2 and
[β2(z), ad2

x(x2y)] = v3. Now we have

v2 = [β(z), ad2
x(xy)] = [β(z), xad2

x(y)]
= [z, x]β(ad2

x(y)) + (α(z(−1)) · x)[β(z0), ad2
x(y)]

= [z, x]β(ad2
x(y)) + x[z, ad2

x(y)]
= uβ(ad2

x(y)) + xv1.

By Lemma 4.4, u is invertible. Thus ad2
x(y) = β−1(u−1v2 − u−1(xv1)). However, v1 ∈ Z(L), x ∈ V0, by Lemma

4.3 (1), we have xv1 = v1x, and so ad2
x(y) = β−1(u−1v2 − u−1(v1x)). Similarly, we have

v3 = [β2(z), ad2
x(x2y)] = [β(β(z)), xad2

x(xy)]
= [β(z), x]β(ad2

x(xy)) + (α((β(z))(−1)) · x)[β((β(z))0), ad2
x(xy)]

= [β(z), x]β(ad2
x(xy)) + (α2(z(−1)) · x)[β2(z0), ad2

x(xy)]
= [β(z), β(x)]β(ad2

x(xy)) + x[β(z), ad2
x(xy)]

= β(u)β(ad2
x(xy)) + xv2

= uβ(ad2
x(xy)) + xv2.

The last equality holds since u = adz(x) ∈ V0. Thus ad2
x(xy) = β−1(u−1v3 − u−1(v2x)). Using Lemma 4.5 (1), we
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have

ad2
x(xy) = xad2

x(y) = xβ−1(u−1v2 − u−1(v1x))
= β−1(β(x)(u−1v2) − β(x)(u−1(v1x)))
= β−1((xu−1)β(v2) − (xu−1)β(v1x))
= β−1((u−1x)β(v2) − (u−1x)β(v1x))
= β−1(β(u−1)(xv2) − β(u−1x)(β(v1)β(x)))
= β−1(β(u−1)(v2x) − ((u−1x)β(v1))β2(x))
= β−1((u−1v2)β(x) − (β(u−1)(xv1))β2(x))
= β−1((u−1v2)β(x) − u−1((xv1)β(x)))
= β−1(β(u−1)(v2x) − u−1((v1x)β(x)))
= β−1(u−1(v2x) − u−1(β(v1)x2)).

Hence, β(v1)x2
−2v2x+v3 = 0, that is, x2+θ1x+θ0 = 0, whereθ1 = −2v2/β(v1), θ0 = v3/β(v1), andθ1, θ0

∈ Z(L).
It is easy to see that θ0 = v3/β(v1) = (−β(v1)x2 + 2v2x)/β(v1) = −x2

− θ1x. By Lemma 4.2 (2) and Lemma 4.3
(1) we have

0 = [−θ0, β(z)] = [x2, β(z)] + [θ1x, β(z)]
= β([x2, z]) + β(θ1)[x, z] + [θ1, x(−1) · β

−1(z)]β2(x0)

= β([x2, z]) + β(θ1)[x, z].

By Lemma 4.3(1), one has β([x2, z]) = −β(θ1)[x, z] = β(θ1)u. Similarly,

β([x2, z]) = β(x[x, z] + [x, z]x) = 2β([x, z]x) = −2β(ux) = −2ux.

Since u ∈ ZH(L)0, β(θ1) = −2x, it follows that θ1 = −2β−1(x) = −2x. As char(k) , 2, we have x = −(1/2)θ1
∈

Z(L), as desired. �

5. Universal enveloping algebras of braided Hom-Lie
algebras

In this section, we will first present the structure of the universal enveloping algebra U(L) of a braided
Hom-Lie algebra L, then we show that U(L) is a cocommutative Hom-Hopf algebra.

Definition 5.1. Let (L, [·, ·], β) be a braided Hom-Lie algebra. A universal enveloping algebra of L is a
monoidal Hom-algebra

U(L) = (U(L),mU, βU)

together with a morphism ψ : L→ U(L)− of Hom-Lie algebras in H
HHYD such that the following universal

property holds: for any monoidal Hom-algebra A = (A,mA, βA) and any Hom-Lie algebra morphism
f : L → A− in H

HHYD, there exists a unique morphism 1 : U(L) → A of monoidal Hom-algebra in H
HHYD

such that 1 ◦ ψ = f .

Definition 5.2. Let (M, βM) be an involutive (i.e., β2
M = id) Hom-Yetter-Drinfeld module. A free involutive

monoidal Hom-algebra on M is an involutive monoidal Hom-algebra (FM, ∗, βM) together with a morphism
j : M→ FM in H

HHYD, satisfying the following property: for any involutive monoidal Hom-algebra (A, βA)
together with a morphism f : M→ A in H

HHYD, there is a unique morphism f̄ : M→ FM in H
HHYD such

that f̄ ◦ j = f .

The well-known construction of the (non-unitary) free associative algebra on a module is the tensor
algebra equipped with the concatenation tensor product. Recently, Guo, Zhang and Zheng generalized this
method to Hom-associative algebras in [13], Armakan, Silvestrov and Farhangdoost generalized the work
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to color Hom-associative algebras in [2]. Next we hope to extend the above work to monoidal Hom-algebras
in H

HHYD.

Let (M, β) be an involutive Hom-Yetter-Drinfeld module and T(M) =
⊕

i≥0 M⊗i, where M⊗0 = k. Ob-
viously, T(M) is an object in H

HHYD. Define the linear map βT and the binary operation � on T(M) as
follows:

βT(x) = βT(x1 ⊗ x2 ⊗ · · · ⊗ xi) = β(x1) ⊗ β(x2) ⊗ · · · ⊗ β(xi),

x � y = (x1 ⊗ x2 ⊗ · · · ⊗ xi) � (y1 ⊗ y2 ⊗ · · · ⊗ y j) = β j−1
T (x) ⊗ y1 ⊗ βT(y2 ⊗ · · · ⊗ y j).

One may check directly that βT and � are morphisms in H
HHYD. Similar to the proof in [13], (T(M),�, βT)

is an involutive monoidal Hom-algebra in H
HHYD.

Theorem 5.3. Let (H, α) be an involutive monoidal Hom-Hopf algebra and (L, [·, ·], β) an involutive braided
Hom-Lie algebra. Let U(L) = T(L)/I, where I is the H-Hom-ideal of T(L) generated by

{x ⊗ y − (x−1 · β(y)) ⊗ β(x0) − [x, y]| x, y ∈ L}.

Let ψ be the composition of the natural inclusion i : L → T(L) with the canonical map π : T(L) → T(L)/I.
Then (U(L), ψ, βT) is an universal enveloping algebra of L.

Proof. We first show that I is an object in H
HHYD. For any x, y ∈ L and h ∈ H, it is clear that

ρ(h1 · x) = (h111α−1(x(−1)))S(h12) ⊗ α(h112) · x0 = (α−1(h11)α−1(x(−1)))Sα(h122) ⊗ α(h121) · x0. Then we have

h · (x ⊗ y − (x−1 · β(y)) ⊗ β(x0) − [x, y])
= h1 · x ⊗ h2 · y − h1 · (x−1 · β(y)) ⊗ h2 · β(x0) − [h1 · x, h2 · y]
= h1 · x ⊗ h2 · y − (α−1(h1)x−1) · y ⊗ h2 · β(x0) − [h1 · x, h2 · y]
= h1 · x ⊗ h2 · y − (h1 · x)−1 · β(h2 · y) ⊗ β((h1 · x)0) − [h1 · x, h2 · y] ∈ I.

The last equality holds since

(h1 · x)−1 · β(h2 · y) ⊗ β((h1 · x)0)
= ((α−1(h11)α−1(x(−1)))Sα(h122)) · (α(h2) · β(y)) ⊗ α2(h121) · β(x0)
= (((α−2(h11)α−2(x(−1)))S(h122))α(h2)) · y ⊗ α2(h121) · β(x0)

= ((α−1(h11)α−1(x(−1)))(S(h122)h2)) · y ⊗ α2(h121) · β(x0)

= ((α−2(h1)α−1(x(−1)))(S(h212)α(h22))) · y ⊗ α2(h211) · β(x0)

= ((α−2(h1)α−1(x(−1)))(S(h221)α2(h222))) · y ⊗ α(h21) · β(x0)

= ((α−2(h1)α−1(x(−1)))(ε(h22)1H)) · y ⊗ α(h21) · β(x0)

= (α−1(h1)x(−1)) · y ⊗ h2 · β(x0).

So I is H-stable. Now we prove that I is also H-costable, that is, ρ(x⊗ y− (x(−1) · β(y))⊗ β(x0)− [x, y]) ∈ H ⊗ I,
we note that ρ(x(−1) · β(y)) = (x(−1)11y(−1))S(x(−1)2) ⊗ α(x(−1)12) · β(y0) and compute

ρ(x−1 · β(y) ⊗ β(x0))
= (x−1 · β(y))(−1)α(x0(−1)) ⊗ (x−1 · β(y))0 ⊗ β(x00)
= ((x(−1)11y(−1))S(x(−1)2))α(x0(−1)) ⊗ α(x(−1)12) · β(y0) ⊗ β(x00)
= ((α(x(−1)111)y(−1))S(x(−1)12))α(x(−1)2) ⊗ α2(x(−1)112) · β(y0) ⊗ x0

= ((x(−1)11y(−1))S(x(−1)21))α2(x(−1)22) ⊗ α(x(−1)12) · β(y0) ⊗ β2(x0)
= (α(x(−1)11)α(y(−1)))(S(x(−1)21)α(x(−1)22)) ⊗ α(x(−1)12) · β(y0) ⊗ x0

= (α(x(−1)11)α(y(−1)))(ε(x(−1)2)1H) ⊗ α(x(−1)12) · β(y0) ⊗ x0

= (α2(x(−1)1)α(y(−1)))1H ⊗ α
2(x(−1)2) · β(y0) ⊗ x0

= α(x(−1)1)y(−1) ⊗ x(−1)2 · β(y0) ⊗ x0

= x(−1)y(−1) ⊗ x0(−1) · β(y0) ⊗ β(x00).
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Therefore, we have

ρ(x ⊗ y − (x(−1) · β(y)) ⊗ β(x0) − [x, y])
= x(−1)y(−1) ⊗ x0 ⊗ y0 − x(−1)y(−1) ⊗ x0(−1) · β(y0) ⊗ β(x00) − x(−1)y(−1) ⊗ [x0, y0]
= x(−1)y(−1) ⊗ (x0 ⊗ y0 − x0(−1) · β(y0) ⊗ β(x00) − [x0, y0]) ∈ H ⊗ I,

as desired, where ρ[x, y] = x(−1)y(−1) ⊗ [x0, y0] since [·, ·] is a morphism in H
HHYD.

Next, we show that ψ is a morphism of braided Hom-Lie algebras. It is easy to see that ψ is a morphism
in H

HHYD. Now we prove that ψ is compatible with the bracket product, we denote the multiplication in
U(L) by ∗ and calculate

ψ([x, y]) = π([x, y]) = π(x ⊗ y − (x(−1) · β(y)) ⊗ β(x0))
= π(x � y − (x(−1) · β(y)) � β(x0))
= π(x) ∗ π(y) − π(x(−1) · β(y)) ∗ π(β(x0))
= ψ(x) ∗ ψ(y) − ψ(x(−1) · β(y)) ∗ ψ(β(x0))
= ψ(x) ∗ ψ(y) − (x(−1) · ψ(β(y))) ∗ ψ(β(x0))
= ψ(x) ∗ ψ(y) − ((ψ(x))(−1) · β(ψ(y))) ∗ β((ψ(x))0)
= [ψ(x), ψ(y)].

Finally, we show that the following statement holds: for any involutive monoidal Hom-algebra of
(A,mA, βA) and any homomorphism f : L −→ A− of Hom-Lie algebras in H

HHYD, there exists a unique
morphism 1 : U(L) −→ A in H

HHYD such that the following diagram commutes:

L
ψ
−→ U(L)

f ↓ ↙ 1

A

To prove this statement, we first consider a unique homomorphism f ∗ of T(L) which maps T(L) into A by
extending the homomorphism f of L into A. For any x, y ∈ L, we have

f ∗(x ⊗ y − (x(−1) · β(y)) ⊗ β(x0))
= f ∗(x � y − (x(−1) · β(y)) � β(x0))
= f ∗(x) f ∗(y) − f ∗(x(−1) · β(y)) f ∗(β(x0))
= f (x) f (y) − f (x(−1) · β(y)) f (β(x0))
= f (x) f (y) − x(−1) · β( f (y))β( f (x0))
= [ f (x), f (y)] = f ([x, y]) = f ∗([x, y]).

This shows that I ⊂ ker f ∗, and we have a unique homomorphism 1 of U(L) = T(L)/I into A such that
1(x + I) = f (x) or 1ψ(x) = f (x). Hence f = 1ψ, since L generates T(L).

Furthermore, it is easy to see that αA ◦ 1 = 1 ◦ βT. We still need to check that 1 is a morphism in H
HHYD.

Since ρA f = (1⊗ f )ρL by our assumption, where ρA and ρL are the (H, α)-Hom-comodule structure of A and
L respectively, for any x, y ∈ U(L), we have

ρA1(x ∗ y) = ρA(1(x)1(y)) = ρA( f (x) f (y))
= ( f (x))(−1)( f (y))(−1) ⊗ ( f (x))0( f (x))0

= x(−1)y(−1) ⊗ f (x0) f (y0) = x(−1)y(−1) ⊗ 1(x0) f (y0)
= (1 ⊗ 1)(x(−1)y(−1) ⊗ (x0 ∗ y0)) = (1 ⊗ 1)ρU(x ∗ y),

It follows that 1 is indeed (H, α)-linear. Similarly, one may check that 1 is also (H, α)-colinear. And the proof
is completed. �



S. Wang et al. / Filomat 34:12 (2020), 3893–3915 3910

Now we will define a Hom-Hopf algebra structure on the universal enveloping algebra U(L), we first
present a useful Lemma.

Lemma 5.4. Let (H, α) be an involutive monoidal Hom-Hopf algebra and (L, [·, ·], β) an involutive braided
Hom-Lie algebra. Assume U(L) is the universal enveloping algebra of L. Then there exists a homomorphism
1 : U(L ⊕ L) −→ U(L) ⊗U(L) of monoidal Hom-algebras in H

HHYD.

Proof. Define f : L ⊕ L −→ U(L) ⊗U(L) by

(x, y) 7→ βT(x) ⊗ 1 + 1 ⊗ βT(y).

We first show that f is a morphism in H
HHYD. In fact, for any h ∈ H and x, y ∈ L, we have

h · f (x, y)) = h1 · βT(x) ⊗ h2 · 1 + h1 · 1 ⊗ h2 · βT(y)
= h1 · βT(x) ⊗ ε(h2)1 + ε(h1)1 ⊗ h2 · βT(y)
= α(h) · βT(x) ⊗ 1 + 1 ⊗ α(h) · βT(y)
= βT(h · x) ⊗ 1 + 1 ⊗ βT(h · y)

= βT(h · x) ⊗ 1 + 1 ⊗ βT(h · y)
= f (h · x, h · y) = f (h · (x, y)).

It follows that f is H-linear. Similarly, one may check that f is H-colinear.
Second, we prove that f is a Hom-Lie homomorphism. For any x, y, x′, y′ ∈ L, we have

[ f (x, y), f (x′, y′)]] = [βT(x) ⊗ 1 + 1 ⊗ βT(y), βT(x′) ⊗ 1 + 1 ⊗ βT(y′)]

= [βT(x) ⊗ 1, βT(x′) ⊗ 1] + [βT(x) ⊗ 1, 1 ⊗ βT(y′)] +

[1 ⊗ βT(y), βT(x′) ⊗ 1] + [1 ⊗ βT(y), 1 ⊗ βT(y′)].

Recall that multiplication in U(L) ⊗U(L) is

(x ⊗ y)(x′ ⊗ y′) = x(y(−1) · β
−1
T (x′)) ⊗ (βT(y0)y′).

Obviously, we have (x ⊗ 1)(1 ⊗ y) = βT(x) ⊗ βT(y) and (1 ⊗ x)(y ⊗ 1) = α(x(−1)) · y ⊗ x0. Therefore,

[βT(x) ⊗ 1, 1 ⊗ βT(y′)] = (βT(x) ⊗ 1)(1 ⊗ βT(y′)) − ((α(x(−1))1) · (1 ⊗ y′))(x0 ⊗ 1)

= x ⊗ y′ − (x(−1) · (1 ⊗ y′))(x0 ⊗ 1)

= x ⊗ y′ − (1 ⊗ α(x(−1)) · y′))(x0 ⊗ 1)

= x ⊗ y′ − ((α2(x(−1)11)y(−1))Sα(x(−1)2)) · x0 ⊗ x(−1)12 · y0

= x ⊗ y′ − x ⊗ y′ = 0,

where ((α2(x(−1)11)y(−1))Sα(x(−1)2)) · x0 ⊗ x(−1)12 · y0 = x ⊗ y′ since the braiding is symmetric on L. Similarly,
we have [1 ⊗ βT(y), 1 ⊗ βT(y′)] = 0. Also,

[βT(x) ⊗ 1, βT(x′) ⊗ 1] = (βT(x)(1 · x′)) ⊗ βT(1)1 − ((α(x(−1))1) · (x′ ⊗ 1))(x0 ⊗ 1)

= βT(x)βT(x′) ⊗ 1 − (α(x(−1)) · x′ ⊗ 1)(x0 ⊗ 1)

= βT(x)βT(x′) ⊗ 1 − (α(x(−1)) · x′)x0 ⊗ 1

= βT(x)βT(x′) ⊗ 1 − ((βT(x))(−1) · β
−1
T (βT(x′)))βT((βT(x))0) ⊗ 1

= [βT(x), βT(x′)] ⊗ 1.

Similarly, we have [1 ⊗ βT(y), 1 ⊗ βT(y′)] = 1 ⊗ [βT(y), βT(y′)]. Then we have

[ f (x, y), f (x′, y′)]] = [βT(x), βT(x′)] ⊗ 1 + 1 ⊗ [βT(y), βT(y′)]

= βT([x, x′]) ⊗ 1 + 1 ⊗ βT([y, y′])
= f ([(x, y), (x′, y′)]).
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So f is a Hom-Lie homomorphism. Now by the universal property of U(L⊕L), there exists a homomorphism
1 : U(L ⊕ L) −→ U(L) ⊗U(L) of monoidal Hom-algebras in H

HHYD.

Theorem 5.5. Let (H, α) be an involutive monoidal Hom-Hopf algebra and (L, [·, ·], β) an involutive
braided Hom-Lie algebra. Then U(L) in Theorem 5.3 is a monoidal Hom-Hopf algebra in H

HHYDwith

∆(l) = βT(l) ⊗ 1 + 1 ⊗ βT(l);

∆(1) = 1 ⊗ 1, ε(l) = 0, ε(1) = 1;

S(l) = −l, S(x̄ȳ) = (x(−1) · S(β−1
T (y)))S(βT(x0)).

for all l ∈ L and x, y ∈ U(L).

Proof. We first consider the diagonal mapping d : L −→ L⊕L defined by l 7→ (l, l). It is easy to check that
d is a Hom-Lie homomorphism in H

HHYD. Let f be the map described in Lemma 5.4. Then f ◦d is a Hom-Lie
homomorphism from L to U(L) ⊗ U(L), therefore there exists a homomorphism ∆ : U(L) → U(L) ⊗ U(L),
which is a homomorphism of monoidal Hom-algebras in H

HHYD satisfying the following condition

∆(l) = (( f ◦ d)(l)) = βT(l) ⊗ 1 + 1 ⊗ βT(l),

for all l̄ ∈ L̄. It is now straightforward to check that (β−1
T ⊗∆)∆ = (∆ ⊗ β−1

T )∆ and (η ⊗ βT)∆ = (βT ⊗ ε)∆ = β−1
T .

It is easy to see that S is a well-defined morphism in H
HHYD, since if we define S̃ on the free generators

of T(L) by S̃(l) = −l, S̃(1) = 1, and set S̃(x̄ȳ) = (x(−1) · S̃(β−1
T (y)))S̃(βT(x0)), then S̃ is a morphism in H

HHYD

which vanishes on I. Thus S is well defined.
To show that S is an antipode, we first note that

(m(id ⊗ S) ◦ ∆)(l) = m(id ⊗ S)(βT(l) ⊗ 1 + 1 ⊗ βT(l))

= m(βT(l) ⊗ 1 − 1 ⊗ βT(l)) = 0 = ε(l),

(m(S ⊗ id) ◦ ∆)(l) = m(S ⊗ id)(βT(l) ⊗ 1 + 1 ⊗ βT(l))

= m(−βT(l) ⊗ 1 + 1 ⊗ βT(l)) = 0 = ε(l),

for any generator l ∈ L. Similarly, one may check that (m(id⊗S)◦∆)(1) = (m(S⊗ id)◦∆)(1) = ε(1). Therefore,
we can derive that

(m(id ⊗ S) ◦ ∆)(x y) = m(id ⊗ S)(x1(x2(−1) · β
−1
T (y1)) ⊗ βT(x20)y2)

= m(x1(x2(−1) · β
−1
T (y1)) ⊗ S(βT(x20)y2))

= {x1(x2(−1) · β
−1
T (y1))}{(α(x20(−1)) · SβT(y2))S(x200)}

= {(x1(α(x2(−1)1) · βT(y1))}{(α(x2(−1)2) · SβT(y2))SβT(x20)}
= {x1βT(x2(−1)1 · y1)}βT((x2(−1)2 · S(y2))S(x20))
= βT(x1)(βT(x2(−1)1 · y1){x2(−1)2 · S(y2))S(x20)})
= βT(x1)({(x2(−1)1 · y1)(x2(−1)2 · S(y2))}SβT(x20))
= βT(x1){(x2(−1) · ε(y)1)SβT(x20)}
= ε(y)βT(x1)SβT(x2) = ε(y)ε(x).

Similarly, we can show that (m(S ⊗ id) ◦∆)(x y) = ε(y)ε(x). So S is an antipode on U(L), and this finishes the
proof. �

Corollary 5.6. Under the hypotheses of the Theorem 5.5, the universal enveloping algebra U(L) is
H-cocommutative.

Proof. For any x ∈ U(L), we have CU,U∆(x) = CU,U(βT(x) ⊗ 1 + 1 ⊗ βT(x)) = α(x(−1)) · β−1
T (1) ⊗ β2

T(x0) + 1 ·
β−1

T βT(x) ⊗ βT(1) = 1 ⊗ βT(x)) + βT(x) ⊗ 1 = ∆(x). It follows that CU,U∆ = ∆, as desired. �
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As an application of Theorem 5.5, we will define a Hom-Yetter-Drinfeld module structure on the End(V)
and construct a Radford’s Hom-biproduct. In order to define a good (H, α)-Hom-module operation on
End(V), it is necessary to assume that α = idH.

Lemma 5.7. Let H be a Hopf algebra with a bijective antipode and (V, ν) a finite-dimensional Hom-
Yetter-Drinfeld module in H

HHYD. Then (End(V), δ) is a Hom-Yetter-Drinfeld module under the following
structures

(h · f )(v) = h1 · f (S(h2) · v), δ( f )(v) = f (ν2(v)),
ρ( f )(v) = ( f (v0))(−1)S−1(v(−1)) ⊗ ( f (v0))0,

for any v ∈ V.

Proof. We first show that (End(V), δ) is a Hom-module. In fact, for any h, 1 ∈ H, f ∈ End(V) and v ∈ V,
we have

(h · (1 · f ))(v) = h1 · (1 · f )(S(h2) · v) = h1 · (11 · f (S(12) · (S(h2) · v)))
= h1 · (11 · f (S(12)S(h2) · ν(v))) = (h111) · f (S(12)S(h2) · ν2(v)),

((h1) · δ( f ))(v) = (h1)1 · δ( f )(S((h1)2)) · v) = (h111) · f (S(h212) · ν2(v)).

It follows that h · (1 · f ) = (h1) · δ( f ). Now we verify 1H · f = δ( f ) and δ(h · f ) = h · δ( f ) as follows

(1H · f )(v) = 1 · f (1 · v) = 1 · f (ν(v)) = f (ν2(v))
δ(h · f )(v) = (h · f )(ν2(v)) = h1 · f (S(h2) · ν2(v))

= h1 · δ( f )(S(h2) · v) = (h · δ( f ))(v).

So (End(V), δ) is a Hom-module, as desired. Similarly, one may check that (End(V), δ) is a Hom-comodule.
Now we show that for any f ∈ End(V) and h ∈ H, the following compatibility condition

h1 f(−1) ⊗ h2 · f0 = (h1 · δ
−1( f ))(−1)h2 ⊗ δ((h1 · δ

−1( f ))0),

holds. For this, we take h ∈ H, f ∈ End(V), v ∈ V. On the one hand, we have

(h1 · δ
−1( f ))(−1)h2 ⊗ δ((h1 · δ

−1( f ))0)(v)

= (h1 · δ
−1( f ))(−1)h2 ⊗ (h1 · δ

−1( f ))0(ν2(v))

= ((h1 · δ
−1( f ))(ν2(v00)))(−1)S−1(v(−1))h2 ⊗ ((h1 · δ

−1( f ))(ν2(v00)))0

= (h1 · f (S(h3) · v0))(−1)S−1(v(−1))h3 ⊗ (h1 · f (S(h3) · v0))0

= h1( f (S(h4) · v0))(−1)S(h3)S−1(v(−1))h5 ⊗ h3 · ( f (S(h4) · v0))0.

On the other hand, we have

h1 f(−1) ⊗ (h2 · f0)(v)
= h1 f(−1) ⊗ h2 · ( f0((S(h3)) · v))

= h1( f (S(h3)) · v)0)(−1)S−1(S(h3) · v)(−1) ⊗ h2 · ( f (((Sh3)) · v)0)0

= h1( f (S(h4) · v0))(−1)S−1(S(h5)v(−1)S2h3) ⊗ h2 · ( f (S(h4)) · v0))0

= h1( f (S(h4) · v0))(−1)S(h3)S−1(v(−1))h5 ⊗ h2 · ( f ((Sh4)) · v0)0.

So (End(V), δ) ∈H
H HYD. The proof is finished. �

Lemma 5.8. Let H be a Hopf algebra with a bijective antipode and (V, ν) a finite-dimensional involutive
Hom-Yetter-Drinfeld module in H

HHYD. Then (End(V), δ) is an algebra in H
HHYD.
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Proof. We first show that End(V) is a H-module algebra. Indeed, for any h ∈ H, f , 1 ∈ End(V) and v ∈ V,
we have

((h1 · f )(h2 · 1))(v) = (h1 · f )(h2 · 1(S(h3) · v))
= h1 · f (S(h2) · (h3 · 1(S(h4) · v)))
= h1 · f ((S(h2)h3) · 1(S(h4) · ν(v)))
= h1 · f ((ε(h2)1H) · 1(S(h3) · ν(v)))
= h1 · f (1(S(h2) · ν2(v)))
= (h1 · ( f1))(S(h2) · v).

It follows that h · ( f1) = (h1 · f )(h2 · 1). Also, we have

(h · id)(v) = h1 · id(S(h2) · v) = h1 · (S(h2) · v)
= (h1S(h2)) · ν(v) = ε(h)1H · ν(v) = ε(h)v.

So h · id = ε(h)id. Therefore, End(V) is a H-module algebra.
Next, we will show that End(V) is a H-comodule algebra. In fact, for any f , 1 ∈ End(V) and v ∈ V, we

have

( f1)(−1) ⊗ ( f1)0(v) = (( f1)(v0))(−1)S−1(v(−1)) ⊗ (( f1)(v0))0

= ( f1(v0))(−1)S−1(v(−1)) ⊗ ( f1(v0))0,

f(−1)1(−1) ⊗ f010(v) = f(−1)(1(v0))(−1)S−1(v(−1)) ⊗ f0((1(v0))0)

= ( f ((1(v0))00))(−1)S−1((1(v0))0(−1))(1(v0))(−1)S−1(v(−1)) ⊗ ( f ((1(v0))00))0

= ( f (ν−1(1(v0))0))(−1)S−1((1(v0))(−1)2)(1(v0))(−1)1S−1(v(−1)) ⊗ ( f (ν−1(1(v0))0))0

= ( f (ν−1(1(v0))0))(−1)ε(1(v0)(−1))S−1(v(−1)) ⊗ ( f (ν−1(1(v0))0))0

= ( f ((1(v0))0))(−1)S−1(v(−1)) ⊗ ( f ((1(v0))0))0

= ( f1(v0))(−1)S−1(v(−1)) ⊗ ( f1(v0))0.

It follows that ( f1)(−1) ⊗ ( f1)0 = f(−1)1(−1) ⊗ f010. Also, we have

ρ(id)(v) = v0(−1)S−1(v(−1)) ⊗ v00 = v(−1)2S−1(v(−1)1) ⊗ ν−1(v0)

= ε(v(−1))1H ⊗ ν
−1(v0) = 1H ⊗ v = 1H ⊗ id(v).

So ρ(id) = 1H ⊗ id, as desired. And this completes the proof. �

Lemma 5.9. Let H be a Hopf algebra with a bijective antipode and (V, ν) a finite-dimensional involutive
Hom-Yetter-Drinfeld module in H

HHYD. Assume that the braiding C is symmetric on V. Then (End(V), δ)
is a braided Hom-Lie algebra, where the bracket product is defined by

[ f , 1] = f1 − ( f(−1) · δ
−1(1))δ( f0),

for any f , 1 ∈ End(V).

Proof. Since the braiding C is symmetric on V, one may check that C is symmetric on End(V), too. By
Proposition 3.2, (End(V), δ) is a braided Hom-Lie algebra. �

Proposition 5.10. Let H be a Hopf algebra with a bijective antipode and (V, ν) a finite-dimensional
involutive Hom-Yetter-Drinfeld module. Assume that the braiding C is symmetric on V. Then the Radford’s
Hom-biproduct (U(End(V))×

]
H, δ⊗ id) is a monoidal Hom-Hopf algebra, where the multiplication is defined

by
( f × h)( f ′ × h′) = f (h1 · δ

−1( f )) × h2h′,
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the coproduct is defined by
∆( f × h) = ( f1 × f2(−1)h1) ⊗ (δ( f20) × h2),

the antipode is defined by
S( f × h) = (1 × S( f(−1)h))(S( f0) × 1),

for all f × h, f ′ × h′ ∈ U(End(V))×
]

H.

Proof. By Lemma 5.9 and Theorem 5.5, (U(End(V)), δ) is a monoidal Hom-Hopf algebra in H
HHYD. By

Proposition 4.6 in [18], (U(End(V))×
]

H, δ ⊗ id) is a monoidal Hom-Hopf algebra.
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