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Abstract. In this paper, we develop the idea of constructing iterative methods based on block splittings
(BBS) to solve absolute value equations. The class of BBS methods incorporates the well–known Picard
iterative method as a special case. Convergence properties of mentioned schemes are proved under some
sufficient conditions. Numerical experiments are examined to compare the performance of the iterative
schemes of BBS-type with some of existing approaches in the literature such as generalized Newton and
Picard(-HSS) iterative methods.

1. Introduction

The generic absolute value equation (AVE) is defined as follows:

Ax − |x| = b, (1)

where A ∈ Rn×n and the right-hand side b ∈ Rn are known and x = (x1, x2, . . . , xn)T
∈ Rn is the unknown

vector to be determined. Here, |x| is a vector in Rn whose i-th component is the absolute value of xi
for i = 1, 2, . . . ,n. The absolute value equations of the form (1) may appear in linear programming,
convex quadratic programing, bimatrix games and other areas of optimization, scientific computing and
engineering, the readers are advised to see [1, 8, 9, 13, 14, 16, 20, 21] and the references therein for further
details.

For W ∈ Cn×n, the notation ‖W‖ denotes the spectral norm defined by

‖W‖ = max{‖Wx‖ : x ∈ Cn, ‖x‖ = 1}

where ‖x‖2 = xHx.
We comment here that the condition ‖A−1

‖ < 1 ensures the existence of a unique solution for the AVE
(1) by the following proposition; see [10] for the proof.

Proposition 1.1. Assume that A ∈ Rn×n is invertible. If ‖A−1
‖ < 1, then the AVE (1) has a unique solution for any

b ∈ Rn.
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Before stating the main contribution of this paper, we give a brief overview on the literature in the context
of applying iterative techniques for solving (1); for more details see [3, 5, 8, 9, 11, 12, 14–17, 19, 21, 23] and the
references therein. For instance, Mangasarian [11] discussed that the AVE (1) is equivalent to minimization
of a piecewise linear concave function on a polyhedral set and proposed a finite successive linearizion
algorithm. In [12], Mangasarian exploited the nonsmooth Newton method for solving AVEs. The proposed
method is given by,

x(k+1) = (A −D(x(k)))−1b, k = 0, 1, 2, . . . ,n, (2)

where D(x) = diag(sgn(x)) for x ∈ Rn. Two sufficient conditions were established for the linear convergence
of the above iterative scheme, for more details, we recall these results as follows.

Proposition 1.2. Let ‖(A−D)−1
‖ < 1

3 for any diagonal matrix D with diagonal elements of ±1 or 0, the generalized
Newton iteration (2) converges linearly from any starting point to a solution x∗ for any solvable AVE (1).

Proposition 1.3. Let ‖A−1
‖ < 1

4 and ‖D(x(k))‖ , 0. Then, the AVE (1) has a unique solution and the generalized
Newton iteration (2) is well defined and converges linearly to the unique solution of AVE from any starting point.

Basically, at each step of (2), one need to solve a linear system of equations with coefficient matrix A −
D(x(k)) which depends on the index k; consequently, the iterative method (2) is computationally expensive.
The Picard iteration for solving the AVE is given by

x(k+1) = A−1(|x(k)
| + b), k = 0, 1, 2, . . . ,n, (3)

see [15, 17] for further details. As seen, a linear system of equations with a constant coefficient matrix should
be solved at each iteration of (3). This fact that the coefficient matrix in all of iterations remains fixed, can be
seen as an advantage of the Picard iteration over the generalized Newton method (2). When the coefficient
matrix A is ill-conditioned, it is more advisable to use an iterative scheme instead of a direct solver as
the act of A−1. Bai and Yang [3] proposed the Picard-HSS iteration method to solve a class of nonlinear
systems. The Picard-HSS iteration method consists of using Hermitian and skew-Hermitian splitting (HSS)
method [2] at each step of the Picard iteration for solving the linear system with the coefficient matrix A.
The Picard-HSS iteration method was revisited for solving AVEs in [19] and the following iterative scheme
was proposed.

The Picard-HSS iteration method: (Residual-Updating Variant) Let A ∈ Rn×n be a positive definite matrix.
Consider the Hermitian and skew-Hermitian splitting A = H + S with H = 1

2 (A + AT) and S = 1
2 (A − AT).

Given an initial guess x(0)
∈ Rn and a sequence {lk}∞k=0 of positive integers, compute x(k+1) by the following

iterative scheme for k = 0, 1, 2, . . . , until the convergence:

• Set s(k,0) = 0 and b(k) = |x(k)
| + b − Ax(k);

• For l = 0, 1, 2, . . . , lk − 1, find s(k,l+1) by solving the following linear systems of equations:

(αI + H)s(k,l+ 1
2 ) = (αI − S)s(k,l) + b(k),

(αI + S)s(k,l+1) = (αI −H)s(k,l+ 1
2 ) + b(k), (4)

where α is a given positive constant.

• Set x(k+1) = x(k) + s(k,lk).

Here we comment that the convergence of the Picard-HSS iteration is proved under some sufficient
conditions such as the positive definiteness of A in (1), ν = ‖A−1

‖ < 1 and l = lim
k→∞

inf lk ≥ N, where N is a

natural number satisfying

‖T(α)s
‖ <

1 − ν
1 + ν

; ∀s ≥ N
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in which

T(α) = (αI + S)−1(αI + H)−1(αI −H)(αI − S).

However, from the reported numerical experiments in [19], it is seen that the method is applicable for the
case that one or all of these conditions are not satisfied.

Recently, Ke [9] proposed the following iterative scheme to solve the AVE (1). For k = 0, 1, 2, . . ., the
method produces sequence of approximation {[x(k); y(k)]}∞k=0 by the following iterative scheme in which τ is
a prescribed positive constant,{

x(k+1) = A−1(y(k) + b),
y(k+1) = (1 − τ)y(k) + τ

∣∣∣x(k+1)
∣∣∣; (5)

here the initial guess x(0) is given and y(0) = |x(0)
|.

It is worth to recall the succeeding lemma from [4] which is useful to analyze the convergence of iteration
(5). We also use the lemma for deriving some of our main results.

Lemma 1.4. For any vectors x, y ∈ Rn, the following statements hold

• ‖|x| − |y|‖ ≤ ‖x − y‖;

• if 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖;

• if x ≤ y and P is a nonnegative matrix then Px ≤ Py.

The following theorem provides sufficient conditions under which the above iterative method converges
to the unique solution of (1); see [9] for the proof.

Theorem 1.5. Let A ∈ Rn×n be a nonsingular matrix. Denote

ν = ‖A−1
‖ and Ek =

[
e(k, x)
e(k, y)

]
,

with e(k, x) = x∗ − x(k) and e(k, y) = y∗ − y(k) where x(k) is the k-th approximate solution obtained by (5), x∗ is the
unique solution of AVE (1) and y∗ = |x∗|. If

0 < ν <

√
2

2
and

1 −
√

1 − ν2

1 − ν
< τ <

1 +
√

1 − ν2

1 + ν
,

then ‖Ek+1‖ < ‖Ek‖ for k = 0, 1, 2, . . . , which ensures that iteration (5) is convergent.

Experimental results in [9] illustrate the feasibility of iterative scheme (5) which is induced by a block
splitting. For future work, there is also a potential to develop alternative iterative methods when A is
not well-conditioned, i.e., one may use few steps of an iterative method instead of implementing a direct
solver for the act of A−1 at each step. Here, we are inspired to consider another possible block splitting and
construct an alternative iterative method assuming that A in (1) is not ill-conditioned. Basically, it is aimed
to develop a method whose convergence can be established for larger area without any further restriction
on ν = ‖A−1

‖ except ν < 1.
The remainder of this paper is organized as follows: In Section 2, we present a new iterative method

for solving (1) and analyze its convergence properties in details. Furthermore, we briefly discuss on
suitable choice for the parameter of proposed method. In Section 3, some numerical results are disclosed
to illustrate the feasibility and applicability of the proposed method and to compare its performance with
some of existing methods in the literature. Concluding remarks can be found in Section 4.
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2. Iterative methods based on block splitting

This section deals with developing a new iterative method for solving (1). We first start by reviewing
some basic concepts and relevant works in the literature. Then, we propose a new iterative method which
relies on a fixed parameter and analyze its convergence properties in details. Brief discussions are included
on estimating the optimal parameter of the new method in a separate part.

Evidently, iterative method (5) reduces to the Picard iteration for τ = 1 and y(0) = |x(0)
| whereas the

experimentally obtained optimum values for τ are not necessarily equal to one, see [9, Table 1]. Generally,
a BBS-type iterative scheme is extracted from a splitting of (preconditioned) block matrix. In fact, setting
y = |x|, one may rewrite Ax − |x| = b as follows:{

Ax − y = b
− |x| + y = 0 ,

or equivalently,

Az =

[
A −I
−D(x) I

] [
x
y

]
=

[
b
0

]
:= b (6)

with D(x) := diag(sgn(x)) for x ∈ Rn.
The iterative scheme (5) can be seen as a method for solving PτAz = Pτb by using the following block

splitting:

PτA =

[
A 0

−τD(x) I

]
−

[
0 I
0 (1 − τ)I

]
,

with

Pτ =

[
I 0
0 τI

]
.

In [7], the SOR-like method is extended for solving (1). More precisely, the following iterative scheme
is developed x(k+1) = (1 − ω)x(k) + ωA−1

(
y(k) + b

)
y(k+1) = (1 − ω)y(k) + ω

∣∣∣x(k+1)
∣∣∣ (7)

which can be regarded as an iterative scheme corresponding to the following SOR-like block splitting:

A =
1
ω

[
A 0

−ωD(x) I

]
−

1
ω

[
(1 − ω)A ωI

0 (1 − ω)I

]
.

The established convergence results for the above method rely on the spectrum of D(x(k+1))A−1. In fact, it is
proved that if the eigenvalues of D(x(k+1))A−1 are real then iterative scheme (7) is convergent for 0 < ω ≤ 1.
In the case that all eigenvalues of D(x(k+1))A−1 are positive then the method is convergent for 0 < ω < 2.
In practice, it is not easy to check the validity of required assumptions on spectrum of D(x(k+1))A−1 due to
the fact that D(x(k+1))A−1 may change at each iteration. For the choice of optimum parameter, the following
theorem is established.

Theorem 2.1. [7, Theorem 3.2] Let A ∈ Rn×n, ‖A−1
‖ < 1 and ρ = ρ(D(x(k+1))A−1). Suppose that all eigenvalues of

D(x(k+1))A−1 are positive. Then the optimal parameter ωo is given by

ωo =
2

1 +
√

1 − ρ
. (8)

Our goal is to examine an alternative BBS-type iterative method using a different block splitting forA.
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2.1. Proposed method and its convergence analysis
In this part, we construct a new iterative method for solving (1). To this end, we first need to split the

coefficient matrixA in (6). For a prescribed positive constant τ, let us consider the following block splitting
forA:

A =

[
A 0

−τD(x) I

]
−

[
0 I

(1 − τ)D(x) 0

]
.

Using the above decomposition, we rewrite the AVE as a fixed point problem, i.e.,[
A 0

−τD(x) I

] [
x
y

]
=

[
0 I

(1 − τ)D(x) 0

] [
x
y

]
+

[
b
0

]
. (9)

Considering the preceding equation, we are motived to examine the following iterative scheme x(k+1) = A−1
(
y(k) + b

)
y(k+1) = (1 − τ)

∣∣∣x(k)
∣∣∣ + τ

∣∣∣x(k+1)
∣∣∣ (10)

for k = 0, 1, 2, . . ., where the initial guess x(0) is given and y(0) =
∣∣∣x(0)

∣∣∣. In the sequel, we establish three
propositions which are useful for analyzing the convergence of iteration (10).

Proposition 2.2. Let 0 < ν < 1. If 0 < τ < 1+
√

2−ν4

ν2+1 then (1 − τ)2 + ν2(1 + τ2) < 2.

Proof. Let f (τ) = 2 − (1 − τ)2
− ν2(1 + τ2). By some algebraic computations, we observe that

f (τ) = −(1 + ν2)τ2 + 2τ − ν2 + 1.

The roots of the above quadratic equations are given by

τ1 =
1 +
√

2 − ν4

ν2 + 1
and τ2 =

1 −
√

2 − ν4

ν2 + 1
.

Notice that τ2 ≤ 0 and it is immediate to see that f (τ) > 0 for 0 < τ < τ1 which completes the proof.

Proposition 2.3. Let ν be a positive constant. Then

(1 − τ)2 + ν2(τ2 + 1) ≥ 2ν |1 − τ| .

where τ is a prescribed real parameter.

Proof. The assertion clearly holds for τ = 1. In the rest of proof, we may assume that τ , 1 without loss
of generality. Let h(τ) = (1 − τ)2 + ν2(τ2 + 1) − 2ν |1 − τ|. Obviously, one may see that h(τ) reduces to the
quadratic equations

h1(τ) = τ2(ν2 + 1) + τ(2ν − 2) + (ν − 1)2,

and
h2(τ) = τ2(ν2 + 1) − τ(2ν + 2) + (ν + 1)2,

for τ < 1 and τ > 1, respectively. The sign of discriminates corresponding to h1(τ) and h2(τ) are negative for
all ν > 0. This ensures that the values of h1(τ) and h1(τ) are positive for all ν > 0.

Remark 2.4. We comment that Proposition 2.3 shows that if ν > 0 then(
(1 − τ)2 + ν2(1 + τ2)

)2
− 4ν2(1 − τ)2 > 0.
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Proposition 2.5. Let 0 < ν < 1. If

0 < τ < min

1 +
√

2 − ν4

ν2 + 1
, 2(1 − ν2)

 ,
then, √(

(1 − τ)2 + ν2(1 + τ2)
)2
− 4ν2(1 − τ)2 < 2 − (1 − τ)2

− ν2(1 + τ2).

Proof. For the notational simplicity, we set ξ = (1−τ)2+ν2(1+τ2). Evidently the function 1(τ) = τ(τ−2(1−ν2))
is negative for 0 < τ < 2(1 − ν2). It can be seen that

1(τ) = τ2 + τ(2ν2
− 2) = −ν2(1 − τ)2

− 1 + (1 − τ)2 + ν2(1 + τ2).

Consequently, 1(τ) < 0 implies that −ν2(1 − τ)2 < 1 − ξ which is equivalent to say that

ξ2
− 4ν2(1 − τ)2 < ξ2 + 4 − 4ξ.

Therefore, we conclude
ξ2
− 4ν2(1 − τ)2 < (2 − ξ)2.

Notice that 2 − ξ > 0 by Proposition 2.2. The results follows after taking square root from the both sides of
the above inequality.

Now we present the following theorem which establishes the convergence of proposed iterative method
under some sufficient conditions. For proving the theorem, we applied the same strategy used in the proof
of Theorem 1.5. Nevertheless, we do not need to set further restriction on ν.

Theorem 2.6. Let A be a nonsingular matrix such that ν = ‖A−1
‖ < 1. The iterative scheme (10) converges to the

unique solution of (1) for any initial guess x(0), if

0 < τ < min

1 +
√

2 − ν4

ν2 + 1
, 2(1 − ν2)

 . (11)

Proof. Let x∗ be the exact solution of (1) and y∗ = |x∗|. Suppose that the vector [x(k); y(k)] stands for the k-th
approximate solution obtained by iterative method (10). For simplicity, we define

e(k, x) = x∗ − x(k) and e(k, y) = y∗ − y(k),

recalling that y∗ = |x∗|. Note that x∗ = A−1y∗ + A−1b, therefore from (10), it is not difficult to verify that

e(k + 1, x) = A−1e(k, y).

Straightforward computations show that

e(k + 1, y) = τ(|x∗| − |x(k+1)
|) + (1 − τ)(|x∗| − |x(k)

|). (12)

As a result, we obtain

‖e(k + 1, x)‖ ≤ ‖A−1
‖‖e(k, y)‖ = ν‖e(k, y)‖. (13)

Using Lemma 1.4, the above inequality and (12), we derive

‖e(k + 1, y)‖ ≤ τ‖e(k + 1, x)‖ + |1 − τ|‖e(k, x)‖
≤ τν‖e(k, y)‖ + |1 − τ|‖e(k, x)‖. (14)



N. N. Shams et al. / Filomat 34:12 (2020), 4171–4188 4177

Defining Ek := [‖e(k, x)‖; ‖e(k, y)‖], from (13) and (14), we get

Ek+1 ≤WEk (15)

where

W =

[
0 ν

|1 − τ| τν

]
.

Notice that Lemma 1.4 implies that

‖Ek+1‖ ≤ ‖W‖‖Ek‖. (16)

In the rest of the proof, we show that if τ satisfies in (11) then ‖W‖ < 1 which concludes the convergence
of iteration (10). To this end, we show that the eigenvalues of the symmetric positive semidefinite matrix
W

T
W belong to interval [0, 1). Evidently,

W
T
W =

[
(1 − τ)2 τν|1 − τ|
τν|1 − τ| (1 + τ2)ν2

]
.

Let λ be an arbitrary eigenvalue of WT
W; as a result, we have det(WT

W − λI) = 0. Therefore, it is
immediate to see that λ satisfies in the following quadratic equation

λ2
− γλ + η = 0, (17)

with γ = (1 − τ)2 + ν2 + τ2ν2 and η = ν2(1 − τ)2. The roots of (17) are given by

λ1 =
γ +

√
γ2 − 4η
2

and λ2 =
γ −

√
γ2 − 4η
2

.

Now, from Proposition 2.5, we have√(
(1 − τ)2 + ν2(1 + τ2)

)2
− 4ν2(1 − τ)2 < 2 − (1 − τ)2

− ν2(1 + τ2),

which is equivalent to say that λ1 < 1 and therefore the result follows immediately.

Notice that in Theorem 1.5 the convergence of iterative scheme (5) is proved assuming that 0 < ν <
√

2
2 .

Also, we comment that when ν becomes very close to 1 then the following value in the statement of Theorem
2.6,

min

1 +
√

2 − ν4

ν2 + 1
, 2(1 − ν2)

 ,
is strictly less than one. Note that the above value gives an upper bound for the convergence interval of
iterative method (10). Therefore, we use another strategy to derive wider convergence intervals for τ in
iterations (5) and (10). To this end, we first recall the following lemma.

Lemma 2.7. [22] Consider the quadratic equation x2
− bx + c = 0, where b and c are real numbers. Both roots of the

equation are less than one in modulus if and only if |c| < 1 and |b| < 1 + c.

From the following theorem, one may conclude that it is not advisable to choose τ outside interval (0, 1+ν
2ν ).

Theorem 2.8. Let A be a nonsingular matrix such that ν = ‖A−1
‖ < 1. The iterative scheme (10) converges to the

unique solution of (1) for any initial guess x(0), if

0 < τ <
1 + ν

2ν
. (18)
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Proof. Let us follow the same notations used in the proof of Theorem 2.6. From (15), it is observed that

Ek+1 ≤WEk.

In view of Lemma 1.4, this implies that

E` ≤W
`
E0, ` > 0.

It is well-known that lim
`→∞
W

` = 0 iff ρ(W) < 1; hence, it can be deduced that lim
`→∞
E` = 0, if ρ(W) < 1.

Now let λ be an arbitrary nonzero eigenvalue ofW with the corresponding eigenvector [z1; z2]. Conse-
quently, we have[

0 ν
|1 − τ| τν

] [
z1
z2

]
= λ

[
z1
z2

]
,

which is equivalent to say that

νz2 = λz1, (19)
|1 − τ| z1 + τνz2 = λz2. (20)

Notice that for λ , 0, the vector z1 is nonzero. Otherwise, z2 = 0 by (19) which is a contraction with
the assumption that [z1; z2] is an eigenvector. As a result, without loss of generality, we may assume that
‖z1‖ = 1. By multiplying both sides of (20) on νzH

1 and substituting νz2 from (19) into (20), it is deduced that
λ satisfies the following quadratic equation

λ2
− τνλ − |1 − τ|ν = 0.

Evidently, the assumption (18) concludes

0 < τ <
1 + ν
ν

.

Now it is not difficult to observe that |1 − τ|ν < 1 and τν < 1 − |1 − τ|ν which ensure that the roots of above
equation are strictly lower than 1 in modulus by Lemma 2.7.

The following remark reveals that iterative scheme (5) converges under weaker conditions than those
assumed in [9, Theorem 2.1].

Remark 2.9. Let Ek be defined as in Theorem 1.5. In [9, Theorem 1.2], it is seen that

E` ≤ W̃E0, ` = 0, 1, 2, . . . ,

where,

W̃ =

[
0 ν
0 τν + |1 − τ|

]
,

Note that ρ(W̃) = τ(ν − 1) + 1 for 0 < τ ≤ 1 and ρ(W̃) = τ(ν + 1) − 1 for 1 ≤ τ. Therefore, similar to the proof of
Theorem 2.8, it can be verified that the iterative scheme (5) converges for

0 < τ <
2

1 + ν
.

Clearly the above convergence interval is larger then the one provided in Theorem 1.5. Here, we comment that
2

1+ν ≤
1+ν
2ν which shows that the convergence interval for iterative method (5) is smaller than (10).
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2.2. On the optimal choice of the parameter
In the previous part, it has been proved that the iterative scheme (10) converges to the unique solution

of (1) under certain conditions. Finding the optimum value of the parameter for the presented BBS-type
iterative method is not easy in general cases. We comment that finding an expression for the optimum
value of the parameter in either Picard-HSS method or iterative method (5) is still an open problem. In what
follows, we give an approximation for the optimum value of the parameter in proposed method which
works well numerically.

Considering Eq. (9), the iteration matrix is different at each step of the proposed method. Having the
k-th approximation computed, we face to the following eigenvalue problem for determining the spectrum
of new iteration matrix

λ

[
A 0

−τD(x(k+1)) I

] [
z1
z2

]
=

[
0 I

(1 − τ)D(x(k)) 0

] [
z1
z2

]
.

When the iterative method (10) is convergent, there exists an integer number k such that D(x(`)) = D(x(k)) for
` ≥ k. Indeed, after few steps, the iteration matrix remains fixed, if the method is convergent. This helps us
to derive an explicit formula for τwhich provides a good approximation for optimum value. In the sequel,
we consider the following eigenvalue problem:

λ

[
A 0
−τD I

] [
z1
z2

]
=

[
0 I

(1 − τ)D 0

] [
z1
z2

]
and briefly discuss on the choice of parameter τ which minimizes |λ|. Notice that D is a diagonal matrix
and D = D−1. Without loss of generality, we may assume that zH

2 z2 = 1. It is not difficult to verify that λ
satisfies the following relation

λ2AD−1z2 = ((1 − τ) + λτ)z2. (21)

Multiplying both sides of the above relation by zH
2 from left, we derive

(zH
2 AD−1z2)λ2 = (1 − τ) + λτ. (22)

For notational simplicity, we set ζ = zH
2 AD−1z2. The above relation is equivalent to

ζλ2
− λτ + (τ − 1) = 0. (23)

The roots of above quadratic equations satisfy

λ =
τ ±

√
τ2 − 4ζ(τ − 1)

2ζ
, (24)

assuming that ζ , 0. For constant value of τ, in view of (22), it is not difficult to verify that |λ| increases as
the value of |ζ| gets smaller. We assume that τ , 1 which implies that λ , 0. Now, from Eq. (21), it can be
seen that AD−1z2 is a multiple of z2, i.e., AD−1z2 = kz2 where k is a nonzero scalar. Therefore, since zH

2 z2 = 1,
we can conclude that

|zH
2 AD−1z2| = ‖AD−1z2‖.

For notational simplicity, we set |ζm| := min
‖z‖=1
‖AD−1z‖. It is immediate to see that1)

|ζm| =
1

‖DA−1‖
=

1
‖A−1‖

,

1)Here we used the fact that for any nonsingular matrix A, we have ‖A−1
‖ = 1

min
‖x‖=1

‖Ax‖ .
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where the last equality follows from the fact that D is an orthogonal matrix. Notice that

|ζm| ≤ min
‖z2‖=1

{ ∥∥∥AD−1z2

∥∥∥ | AD−1z2 = kz2 for some k , 0
}

= min
‖z2‖=1

{
|ζ|

∣∣∣ ζ = zH
2 AD−1z2 and AD−1z2 = kz2 for some k , 0

}
:= ζ̃.

In order to approximate the optimal value of the parameter τ, we work with the lower bound for the
minimum of |ζ|. Setting ζ = |ζm| , basically, quadratic equation (23) reduces to

λ2
− ντλ + ν(τ − 1) = 0 (25)

where ν = ‖A−1
‖. We comment that one could derive the following results with respect to ζ̃ instead of |ζm|.

In this case, the value of ν is replaced by ν̃ = 1
ζ̃
. Although this could provide a better approximation for the

optimum parameter in theoretical point of view, it is not easy to numerically approximate the value of ν̃.
Using Lemma 2.7, one can verify that, if

0 < τ <
1 + ν
ν

, (26)

then the roots of (25) are strictly lower than one in modulus. The roots of (25) are given by

λ =
ντ ±

√
ν2τ2 − 4ν(τ − 1)

2
, (27)

To approximate the optimal value of τ which minimizes |λ|, we set

ν2τ2
− 4ν(τ − 1) = 0. (28)

The roots of above quadratic equation are given by

τ =
2 ± 2

√
1 − ν

ν
.

Note that τ = 2+2
√

1−ν
ν > 2 when ν < 1 and the iterative method (10) is not convergent for τ > 2. The optimal

value of τ can be approximated by the other root of (28), i.e.,

τ∗ :=
2 − 2

√
1 − ν

ν
=

2

1 +
√

1 − ν
. (29)

Our numerical experiments reveal that τ∗ can provide a good approximation for experimentally found
optimum value of τ.

The following remark justifies that the parameter τ∗ given by (29) lies in interval (26).

Remark 2.10. Evidently, for −2 < η < 1, we have

η2 + η − 2 < 0.

Let ν < 1. By substituting η =
√

1 − ν in the above inequality, we get

2 −
√

1 − ν − (1 − ν) > 0.

Multiplying the both side of above inequality by
√

1 − ν, by some straightforward algebraic computations, it is seen
that

2

1 +
√

1 − ν
< 1 + ν.

It is immediate to see that 1 + ν < 1+ν
ν for ν < 1. Therefore, for the parameter τ∗ given by (29), we have 0 < τ∗ < 1+ν

ν .
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We finish this part by a remark to comment on asymptotic convergence rate of iterative method (10);
see [18, Chapter 4] for more details about the concept of asymptotic convergence rate.

Remark 2.11. In view of Eqs. (27) and (29), the asymptotic convergence rate of iterative method (10) can be estimated
by

R∞ := −Ln (
ν

1 +
√

1 − ν
).

In Figure 1, we depict the values of R∞ with respect to ν for more clarification. In fact, one expect the faster convergence
speed for smaller values of ν. We recall that ν refers to the spectral norm of A−1 dealing with (1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

ν

R
∞

Figure 1: Estimated asymptotic convergence rate of iterative method (10) versus ν ∈ (0, 1).

3. Numerical experiments

In this section, we report some numerical results to compare the performance of proposed method with
iterative schemes (2), (3), (4), (5) and (7). All computations were carried out on a computer with an Intel
Core i7-4770K CPU @ 3.50GHz processor and 24GB RAM using MATLAB R2018b.

In all of the following experiments, the initial guess is taken to be zero vector and the iterations are
stopped either

δk =
‖b + |x(k)

| − Ax(k)
‖

‖b‖
≤ 10−8, (30)

or once the number of 1000 iterations is reached, here ‖.‖ stands for the well–known Euclidean norm and x(k)

refers to kth approximate solution. Notation “†” in tables means that the corresponding iterative method
was stopped after 1000 iterations while the computed approximate solution was not satisfied in (30).

We comment that the condition ν = ‖A−1
‖ < 1 is a sufficient condition in the convergence analyses of

mentioned iterative schemes. Therefore, we also report the performance of iterations for the case ν ≥ 1 in
Examples 3.1 and 3.2.
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In the implementation of the Picard-HSS iteration (4), the inner iterations were terminated once ‖b(k)
−

As(k,l)
‖ ≤ 10−2

‖b(k)
‖ or lk = 10 for k = 0, 1, 2, . . ., which is similar to the stopping criterion exploited in [19] for

inner loops. In [19] only the number of outer iterations was reported, here, we disclose the sum of inner
and outer iterations steps for more details.

Similar to [9, 19], the optimal value of parameters in iterations (4) and (5) were found experimentally
for which the examined iterative schemes have their best convergence speed. For the proposed method,
we report the results for τ∗ (cf. (29)) when ν < 1. In Examples 3.1 and 3.2, results for the experimentally
found optimum value of τ are also reported to demonstrate that τ∗ can provide a good approximation for
the optimum value of τ when ν < 1.

The experimentally obtained optimal value of parameter τ for iterative methods (5) and (10) are respec-
tively reported under τ(1)

exp and τ(2)
exp.

For the act of A−1 in the implementation of BBS-type iterative schemes, in Examples 3.1, 3.2 and 3.3, we
used the LU factorization. For the generalized Newton iteration (2), we disclose the results for two different
variants of implementation:

• Version 1: We used Matlab backslash “\” in all iterations for applying the inverse of A − D(x(k))
(k = 0, 1, 2, . . .);

• Version 2: At each iterate, we computed the LU factorization of A−D(x(k)) and employed its inverse
accordingly.

Our observations demonstrate the first version outperforms the second one significantly for the case that
matrix A is sparse.

Example 3.1. [19] Consider the two-dimensional convection diffusion equation

−(uxx + uyy) + q(ux + uy) + pu = f (x, y) (x, y) ∈ Ω,

u(x, y) = 0 u(x, y) ∈ ∂Ω,

where Ω = (0, 1) × (0, 1), ∂Ω denotes boundary of Ω, q is a nonnegative constant and p is a real number. By
using the five-point finite difference scheme to the diffusive terms and the central difference scheme to the
convective terms with the equidistant step size h = 1/(m + 1), we reach to the system of linear equations
Bx = d, where B is matrix of order n = m2 of the form

B = Tx ⊗ Im + Im ⊗ Ty + pIn,

where Tx = tridiag{−1 − r, 4,−1 + r} and Ty = tridiag{−1 − r, 0,−1 + r}, the constant r = (qh)/2 is called
the mesh Reynolds number. Here we set q = 0 and report the results for solving (1) corresponding to the
following two cases:

• Case I. Let p = 0 and A = B + 5 ∗ (BL − BT
L ) where BL is the strictly lower triangular part of B.

• Case II. Let p = 1, 4 and A = B. In this case, for p = 4, the problem reduces to the test example in [9,
Example 3.1].

The right-hand side of (1) is constructed such that x∗ = (1, 2, . . . ,n)T satisfies Ax∗ − |x∗| = b.
All of the mentioned iterative schemes are convergent for Case I whereas ν ≥ 1. The reported results in

Table 1 show that BBS-type iterations are superior to other examined iterative methods.
In Tables 2 and 3, we receptively report the results for p = 1 and p = 4 where ν < 1. It should be pointed

out that for p = 1 the value of ν becomes very close to one. When p = 4, all of examined iterative schemes
are convergent and iterative scheme (5) outperforms other approaches. As seen, for both τ∗ and τ(2)

exp, the
iterative method (10) has a very close convergence speed to (5) for p = 4. Note that the iterations (3), (4)
and (5) do not converge with respect to stopping criterion (30) when p = 1. For further details, we plot the
convergence histories of iterations in Figure 2.
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m = 50 (ν = 3.0026) m = 70 (ν = 4.1842) m = 100 (ν = 5.9701)
Iterative scheme (IS) (α, τ(1)

exp, τ
(2)
exp) = (4.72, 1.13, 1.1) (α, τ(1)

exp, τ
(2)
exp) = (5.26, 1.25, 1.1) (α, τ(1)

exp, τ
(2)
exp) = (4.51, 1.25, 1.1)

Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

IS (2) [12] (Version 1) 7(0.0532) 7.960e-16 9(0.1335) 8.588e-16 13(0.4216) 9.668e-16
IS (2) [12] (Version 2) 7(0.1105) 3.859e-15 9(0.4798) 4.991e-15 13(2.4785) 5.801e-15
IS (3) [17] 23(0.0314) 9.995e-09 29(0.1223) 4.480e-09 37(0.4637) 4.895e-09
IS (4) [19] 144(0.2237) 2.725e-09 198(0.2600) 4.367e-09 284(3.5866) 4.888e-09
IS (5) [9] 17(0.0246) 7.299e-09 21(0.0904) 7.955e-09 26(0.3299) 8.582e-09
Proposed method (with τ(2)

exp) 20(0.0283) 4.269e-09 24(0.1013) 5.440e-09 30(0.3776) 7.650e-09

Table 1: Numerical results for Example 3.1 in the case that (q, p) = (0, 0).

m = 50 (ν = 0.9925) m = 70 (ν = 0.9961) m = 100 (ν = 0.9981)
Iterative scheme (IS) (α, τ(1)

exp, τ
(2)
exp) = (1, 2.11, 1.85) (α, τ(1)

exp, τ
(2)
exp) = (1, 2.11, 1.89) (α, τ(1)

exp, τ
(2)
exp) = (1, 2.1, 1.923)

Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

IS (2) [12] (Version 1) 6(0.0205) 2.143e-15 7(0.0592) 2.102e-15 7(0.1336) 2.477e-15
IS (2) [12] (Version 2) 6(0.0879) 4.150e-15 7(0.3483) 5.959e-15 7(1.2561) 8.174e-15
IS (3) [17] † † †

IS (4) [19] † † †

IS (5) [9] 895(0.2417) 9.931e-09 † †

Proposed method (with τ(2)
exp) 174(0.0474) 8.960e-09 237(0.2199) 9.733e-09 320(1.0915) 9.826e-09

Proposed method (with τ∗) 187(0.0535) 9.999e-09 259(0.2434) 9.611e-09 342(1.1655) 9.972e-09

Table 2: Numerical results for Example 3.1 in the case that (q, p) = (0, 1).
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Figure 2: Example 3.1 Case II with p = 1: (a) m = 50, (b) m = 70, (c) m = 100.

In Example 3.2, we consider the case that A is full. To this end, we work with random matrices. The
case, in which A is a random matrix, has been already examined in the literature, see [21] for instance.
Algorithms were applied for several runs. Here the results corresponding to two runs are reported. We
comment that the Picard iteration fails to converge and the Picard-HSS iteration does not work well which
is expected as the matrix is not positive definite, hence we do not report the results for these iterative
methods in Tables 4 and 5.

Example 3.2. In this example, we work with a randomly generated AVE problem in the following two
cases where Ax∗ − |x∗| = b for x∗ = (1, 2, . . . ,n)T,

• Case I. Let A =rand(n,n)’∗rand(n,n)+0.75∗rand(n,n).
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m = 50 (ν = 0.2495) m = 70 (ν = 0.2498) m = 100 (ν = 0.2499)
Iterative scheme (IS) (α, τ(1)

exp, τ
(2)
exp) = (4.03, 1.22, 1.11) (α, τ(1)

exp,
(2)
exp ) = (3.99, 1.26, 1.08) (α, τ(1)

exp, τ
(2)
exp) = (4, 1.26, 1.08)

Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

IS (2) [12] (Version 1) 3(0.0123) 6.109e-16 3(0.0319) 5.478e-16 3(0.0778) 5.525e-16
IS (2) [12] (Version 2) 3(0.0455) 6.494e-16 3(0.1558) 6.744e-16 3(0.5529) 6.907e-16
IS (3) [17] 14(0.0054) 3.173e-09 14(0.0147) 3.324e-09 14(0.0488) 3.441e-09
IS (4) [19] 24(0.0090) 3.220e-09 24(0.0138) 3.170e-09 23(0.0289) 3.375e-09
IS (5) [9] 8(0.0040) 6.400e-09 7(0.0089) 9.325e-09 7(0.0263) 8.439e-09
Proposed method (with τ(2)

exp) 10(0.0045) 6.508e-09 9(0.0107) 8.942e-09 9(0.0326) 7.837e-09
Proposed method (with τ∗) 11(0.0051) 2.135e-09 11(0.0161) 2.245e-09 11(0.0382) 2.350e-09

Table 3: Numerical results for Example 3.1 in the case that (q, p) = (0, 4).

• Case II. Let A =rand(n,n)’∗rand(n,n)−0.75∗rand(n,n).

We set n = 2500. The performance of mentioned iterative schemes are reported in Tables 4 and 5 for
Cases I and II of Example 3.2. As seen, iterations (5) and (10) surpass other approaches. As pointed out
earlier, the Picard iteration do not converge with respect to stopping criterion (30). For more details, we
display the convergence histories of iterative schemes (2), (5) and (10) in Figures 3 and 4.

First run (ν = 100.4757) Second run (ν = 85.6176)
(τ(1)

exp, τ
(2)
exp) = (0.64, 0.7) (τ(1)

exp, τ
(2)
exp) = (0.62, 0.74)

Iterative scheme (IS) Iter CPU Err Iter CPU Err

IS (2) [12] (Version 1) 9 1.6424 2.164e-09 4 0.7114 2.493e-09
IS (2) [12] (Version 2) 9 1.8408 2.164e-09 4 0.7863 2.493e-09
IS (5) [9] 23 0.8902 7.801e-09 8 0.3255 9.673e-09
Proposed method (with τ(2)

exp) 19 0.7184 8.913e-09 9 0.3487 8.0157e-09

Table 4: Numerical results for two runs of Case I in Example 3.2.

First run (ν = 74.5402) Second run (ν = 41.4888)
(τ(1)

exp, τ
(2)
exp) = (0.64, 0.65) (τ(1)

exp, τ
(2)
exp) = (0.54, 0.65)

Iterative scheme (IS) Iter CPU Err Iter CPU Err

IS (2) [12] (Version 1) 30 5.1694 8.949e-10 7 1.2119 1.051e-10
IS (2) [12] (Version 2) 30 5.5358 8.949e-10 7 1.3867 1.051e-10
IS (5) [9] 12 0.4650 9.359e-09 8 0.3087 9.278e-09
Proposed method (with τ(2)

exp) 11 0.4242 9.831e-09 7 0.2747 7.037e-09

Table 5: Numerical results for two runs of Case II in Example 3.2.

As numerically observed, the value of τ∗ can provide a good approximation of optimal parameter for
the proposed iterative method when ν < 1. Hence, we only report the performance of proposed method
with τ∗ for the following two examples.

The matrix A in Example 3.3 is a special case of B in Example 3.1. Indeed, in [7, 9] a reformulation of
the matrix B is used for which r = 0. Our goals for presenting this test problem are working with larger
dimensions than those examined in the first example and presenting comparison results between BBS-type
iterative methods.



N. N. Shams et al. / Filomat 34:12 (2020), 4171–4188 4185

1 2 3 4 5 6 7 8 9 10

10
−8

10
−7

10
−6

Number of iteration

δ
k

 

 

5 10 15 20 25

10
−8

10
−7

10
−6

10
−5

Number of iteration

δ
k

 

 

New proposed iteration Proposed method by Ke Generalized Newton iteration

Figure 3: Case I in Example 3.2 with n = 2500; (τ(1)
exp, τ

(2)
exp) = (0.62, 0.74) (Left) and (τ(1)

exp, τ
(2)
exp) = (0.64, 0.7) (Right).

1 2 3 4 5 6 7 8 9
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

Number of iteration

δ
k

 

 

New proposed iteration Proposed method by Ke Generalized Newton iteration

0 5 10 15 20 25 30

10
−8

10
−7

10
−6

10
−5

10
−4

Number of iteration

δ
k

 

 

Figure 4: Case II in Example 3.2 with n = 2500; (τ(1)
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Example 3.3. [7, 9] Let m be a specified positive integer and n = m2. Consider the AVE (1) with A =
M + µIn ∈ Rn×n where M = S ⊗ Im + Im ⊗ S ∈ Rn×n and S = tridiag {−1, 4,−1} ∈ Rm×m.

The numerical results for Example 3.3 are disclosed in Tables 6, 7 and 8. The results in Table 6 are
reported to illustrate the behavior of SOR-like method in comparison with iterative scheme (10). To this
end, we only work with the dimensions used in [7, Example 2] and the right-hand side b is constructed
such that x∗ = (−1, 1,−1, 1, . . . ,−1, 1)T satisfies in Eq. (1) for Table 6. Results in Tables 7 and 8 are associated
with the case Ax∗ − |x∗| = b for x∗ = (1, 2, . . . ,n)T.

In the reported numerical results, Guo et al. [7] approximated ρ in the expression for ωo (cf. (8)) by
ρ(A−1). Therefore, the values of ωo in [7, Table 2] are exactly equal to τ∗. In fact, ρ(A−1) = ‖A−1

‖ since the
matrix A is symmetric.

Although the iterative method (5) outperforms other examined methods in Example 3.3, the optimum
value of its parameter was found experimentally. For more details on the effect of parameters on the
convergence speed of iterations, we depict the performance of iterative methods (4) and (5) in terms of both
required CPU-time and number of iterations for the convergence in Figure 5.

The following example was originally used in [1]. Basically, if we set p = 0 then the test problem is
reduced to the one examined in [1, Subsection 6.1]. For the following example, the Matlab backslash “\”
was exploited in all iterations for applying the inverse of A.

Example 3.4. [1] Consider the ordinary differential equation

ẍ(t) − |x(t)| + px(t) = 0, x(0) = x0, ẋ(0) = γ,
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n = 64 (ν = 0.2358) n = 256 (ν = 0.2458) n = 1024 (ν = 0.2489) n = 4096 (ν = 0.2497)
Iterative scheme τ(1)

exp = 0.97 τ(1)
exp = 0.97 τ(1)

exp = 0.97 τ(1)
exp = 0.97

Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

IS (2) (Version 1) 2(0.0019) 2.729e-16 2(0.0025) 2.854e-16 2(0.0043) 3.076e-16 2(0.0186) 3.269e-16
IS (2) (Version 2) 2(0.0022) 2.218e-16 2(0.0030) 3.515e-16 2(0.0089) 3.256e-16 2(0.0808) 3.386e-16
IS (5) [9] 11(0.0018) 6.806e-09 11(0.0020) 8.216e-09 11(0.0028) 8.917e-09 11(0.0094) 9.267e-09
SOR-like (with ωo) 16(0.0021) 4.941e-09 16(0.0023) 8.512e-09 17(0.0035) 3.384e-09 17(0.0132) 3.649e-09
Proposed method (with τ∗) 13(0.0018) 3.020e-09 13(0.0020) 4.291e-09 13(0.0028) 4.901e-09 13(0.0103) 5.174e-09

Table 6: Numerical results for Example 3.3 with µ = 4.

n = 40000 (ν = 0.2500) n = 90000 (ν = 0.2500) n = 160000 (ν = 0.2500)
Iterative scheme (IS) (α, τ(1)

exp) = (3.99, 1.26) (α, τ(1)
exp) = (3.98, 1.26) (α, τ(1)

exp) = (3.98, 1.26)

Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

IS (2) [12] (Version 1) 3(0.8049) 5.743e-16 3(3.6506) 5.746e-16 3(11.087) 5.910e-16
IS (2) [12] (Version 2) 3(7.2022) 6.978e-16 3(43.903) 6.842e-16 3(170.85) 7.042e-16
IS (3) [17] 14(0.3722) 3.581e-09 14(1.1577) 3.628e-09 14(2.6237) 3.652e-09
IS (4) [19] 20(0.1092) 3.425e-09 19(0.2742) 3.355e-09 18(0.6322) 3.358e-09
IS (5) [9] 7(0.1941) 7.559e-09 7(0.5924) 7.314e-09 7(1.2844) 7.203e-09
Proposed method (with τ∗) 11(0.2890) 2.477e-09 11(0.9022) 2.525e-09 11(2.0301) 2.550e-09

Table 7: Numerical results for Example 3.3 with µ = 4.

n = 40000 (ν = 0.1250) n = 90000 (ν = 0.1250) n = 160000 (ν = 0.1250)
Iterative scheme (IS) (α, τ(1)

exp) = (7.97, 1.13) (α, τ(1)
exp) = (7.97, 1.13) (α, τ(1)

exp) = (7.93, 1.13)

Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

IS (2) [12] (Version 1) 3(0.8050) 4.543e-16 3(3.6786) 4.491e-16 3(11.118) 4.582e-16
IS (2) [12] (Version 2) 3(8.4123) 7.919e-16 3(56.025) 7.822e-16 3(223.94) 8.044e-16
IS (3) [17] 9(0.2480) 7.318e-09 9(0.7003) 7.362e-09 9(2.1313) 7.384e-09
IS (4) [19] 11(0.0634) 6.537e-09 9(0.1294) 6.435e-09 9(0.3412) 5.510e-09
IS (5) [9] 5(0.1421) 3.514e-09 5(0.3980) 3.069e-09 5(1.2014) 2.830e-09
Proposed method (with τ∗) 8(0.2078) 2.480e-09 8(0.6317) 2.503e-09 8(1.9364) 2.514e-09

Table 8: Numerical results for Example 3.3 with µ = 8.

on domain t ∈ [0, 4]. Using a finite difference scheme for discretizing the above equation lead to an AVE in
the form (1). Basically, one can apply the following second–order backward difference to approximate the
second derivative

xi−2 − 2xi−1 + xi

h2 − |xi| + pxi = 0,

where xi = ih, i = 1, 2, . . . ,n. Here, h denotes the step-size and x1, x2, . . . , xn are equispaced points. Neumann
boundary conditions were approximated applying a centered finite difference scheme

x−1 − x1

2h
= γ.

Similar to [1], the initial conditions are x0 = −1 and γ = 1.
The results in Table 9 show the effectiveness of BBS-type iterative methods. Notice that the proposed

method (with τ∗) is compatible with iterative method (5) while an experimentally obtained optimum
parameter is used for (5).
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Figure 5: Example 3.3 with µ = 8 and n = 40000 for iterative method (5) (left) and Picard-HSS (right); Outside figure: number of
iterations versus the parameter; Inside figure: CPU-time versus the parameter.

n = 40000 (ν = 0.4373) n = 90000 (ν = 0.4375) n = 160000 (ν = 0.4376)
Iterative scheme (IS) τ(1)

exp = 0.84 τ(1)
exp = 0.85 τ(1)

exp = 0.7

Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

IS (2) [12] 3(0.6792) 4.719e-15 2(3.2719) 4.803e-09 2(10.3661) 2.026e-09
IS (5) [9] 4(0.0056) 9.615e-09 3(0.0084) 9.425e-09 3(0.0164) 9.766e-09
Proposed method (with τ∗) 4(0.0051) 8.447e-09 3(0.0077) 9.354e-09 3(0.0164) 3.947e-09

Table 9: Numerical results for Example 3.4.

4. Conclusions

The absolute value equation Ax − |x| = b was reformulated byAz = b where

A =

[
A −I
−D(x) I

]
.

The performance of iterative methods, extracted from block splittings of A and its preconditioned form,
were studied. The methods rely on a fixed parameter τ and convergence intervals were derived for the
parameter. Numerical experiments were reported for some available test problems in the literature to show
the effectiveness of iterative schemes induced by block splittings in comparison to generalized Newton and
Picrd(-HSS) iterative methods.

Alternative possible block splittings can be mentioned forA and its preconditioned forms which result
new iterative schemes. Also inexact solvers can be implemented instead of direct ones for the act of A−1

in iterative methods (5) and (10) which consists of using different splittings of A and using few steps of
a stationary iterative method like the idea exploited for constructing the Picard-HSS iteration. Following
the idea used in [6], one can also try using principle of hierarchical identification and the HSS splitting to
replace an iterative scheme for approximating A−1 in iterative schemes extracted from block splittings.
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