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Abstract. Let R = K[xy, ..., x,] be the polynomial ring in # variables over a field K and let I be a matroidal
ideal of degree d in R. Our main focus is determining when matroidal ideals are sequentially Cohen-
Macaulay. In particular, all sequentially Cohen-Macaulay matroidal ideals of degree 2 are classified.
Furthermore, we give a classification of sequentially Cohen-Macaulay matroidal ideals of degree d > 3 in
some special cases.

Introduction

Our goalis to classify the sequentially Cohen-Macaulay matroidal ideals. While for the Cohen-Macaulay
property of matroidal ideals, a complete classification was given by Herzog and Hibi [10], the classification
of the sequentially Cohen-Macaulay matroidal ideals seems to be much harder. In the present paper partial
answers to this problem are given. Herzog and Hibi [9] were the first to give a systematic treatment of
polymatroidal ideals and they studied some combinatoric and algebraic properties related to it. They
defined the polymatroidal ideal, a monomial ideal having the exchange property. A square-free polyma-
troidal ideal is called a matroidal ideal. Herzog and Takayama [13] proved that all polymatroidal ideals
have linear quotients which implies that they have linear resolutions. Herzog and Hibi [10] proved that a
polymatroidal ideal I is Cohen-Macaulay (i.e. CM) if and only if [ is a principal ideal, a Veronese ideal, or a
square-free Veronese ideal.

LetR = K[xy, ..., x,] be the polynomial ring in n indeterminate over a field Kand I ¢ R be ahomogeneous
ideal. For a positive integer i, let (I;) be the ideal generated by all forms in I of degree i. We say that I
is componentwise linear if for each positive integer 7, (I;) has a linear resolution. Componentwise linear
ideals were first introduced by Herzog and Hibi [8] to generalize Eagon and Reiner’s result that the Stanley-
Reisner ideal I, of simplicial complex A has a linear resolution if and only if the Alexander dual AY is C.M
[5]. In particular, Herzog and Hibi [8] and Herzog, Reiner, and Welker [12] showed that the Stanley-Reisner
ideal I, is componentwise linear if and only if A" is sequentially Cohen-Macaulay(i.e. SCM).

It is of interest to understand the SCM matroidal ideals, and this paper may be considered as a first
attempt to characterize such ideals for matroidal ideals in low degree or in a small number of variables.
The remainder of this paper is organized as follows. Section 1 and 2 recall some definitions and results of
componentwise linear ideals, simplicial complexes, and polymatroidal ideals. Section 3 classifies all SCM
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matroidal ideals of degree 2. Section 4 studies SCM matroidal ideals of degree d > 3 over polynomial rings
of small dimensional.

For any unexplained notion or terminology, we refer the reader to [11] and [21]. Several explicit examples
were performed with help of the computer algebra systems Macaulay?2 [7].

1. Preliminaries

In this section, we recall some definitions and results used throughout the paper. As in the introduction,
let K be a field and R = K][x;, ..., x,] be the polynomial ring in n variables over K with each degx; = 1. Let
I € R be a monomial ideal and G(I) be its unique minimal set of monomial generators of I.

We say that a monomial ideal I with G(I) = {uy, ..., u,} has linear quotients if there is an ordering deg(u;) <
deg(uy) < ... < deg(u,) such that for each 2 < i < r the colon ideal (11, ..., 4;—1) : #; is generated by a subset
{x1, ..., xx} It is known that if a monomial ideal I generated in single degree has linear quotients, then I has a
linear resolution (see [3, Lemma 4.1]). In particular, a monomial ideal I generated in degree d has a linear
resolution if and only if the Castelnuovo-Mumford regularity of I is reg(I) = d (see [20, Lemma 49]).

Lemma 1.1. [4, Corollary 20.19] If 0 — A — B — C — 0is a short exact sequence of graded finitely generated
R-modules, then

(a) reg A < max(regB,regC + 1).

(b) regB < max(reg A, regC),

(c) regC < max(regA —1,regB).

(d) If A has a finite length, set s(A) = max({s : As # 0}, then reg(A) = s(A) and the equality holds in (b).

One of the important classes of monomial ideals with linear quotients is the class of polymatroid ideals.
Let I C R be a monomial ideal generated in one degree. We say that I is polymatroidal if the following
“exchange condition” is satisfied: For any two monomials u = x]'x7* ..., and v = x’l71 xgz Xl belong to
G(I) such that deg, (v) < deg, (u), there exists an index j with deng(u) < degxf (v) such that x;(u/x;) € G(I).

The polymatroidal ideal [ is called matroidal if I is generated by square-free monomials. Note that if [ is a
matroidal ideal of degree d, then depth(R/I) = d — 1 (see [2]).

Theorem 1.2. [10, theorem 4.2] A polymatroidal ideal I is CM if and only if I is a principal ideal, a Veronese ideal,
or a square-free Veronese ideal.

2. review on componentwise linear ideals

For a homogeneous ideal I, we write (I;) to denote the ideal generated by the degree i elements of I.
Note that (I;) is different from I;, the vector space of all degree i elements of I. Herzog and Hibi introduced
the following definition in [8].

Definition 2.1. A monomial ideal I is componentwise linear if (I;) has a linear resolution for all i.

A number of familiar classes of ideals are componentwise linear. For example, all ideals with linear
resolutions, all stable ideals, all square-free strongly stable ideals are componentwise linear (see [11]).

Proposition 2.2. [6, Proposition 2.6] If Iis a homogeneous ideal with linear quotients, then I is componentwise linear.

If I is generated by square-free monomials, then we denote by Ij; the ideal generated by the square-free
monomials of degree i of I.

Theorem 2.3. [8, Proposition 1.5] Let 1 be a monomial ideal generated by square-free monomials. Then 1 is compo-
nentwise linear if and only if I;;) has a linear resolution for all i.
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The notion of componentwise linearity is intimately related to the concept of sequential Cohen-
Macaulayness.

Definition 2.4. [18] A graded R-module M is called sequentially Cohen-Macaulay (SCM) if there exists a finite
filtration of graded R-modules 0 = My C My C ... € M, = M such that each M;/M;_; is Cohen-Macaulay, and the
Krull dimensions of the quotients are increasing:

d1m(M1 /Mo) < dlm(Mz/Ml) <..< dirn(Mr/M,_l).

The theorem connecting sequentially Cohen-Macaulayness to componentwise linearity is based on the
idea of Alexander duality. We recall the definition of Alexander duality for square-free monomial ideals
and then state the fundamental result of Herzog and Hibi [8] and Herzog, Reiner, and Welker [12].

Let A be a simplicial complex on the vertex set V = {x1, x2, ..., x4}, i.e., A is a collection of subsets V such
that (1) {x;} € Aforeachi=1,2,..,nand (2)if F € Aand G C F, then G € A. Let A" denote the dual simplicial
complex of A, thatis tosay, AY = {V\F|F ¢ A}.

If I is a square-free monomial ideal, then the square-free Alexander dual of I = (x11...X1,5;, ., X¢ 1..-Xt.n,) 1S
the ideal IV = (X1, .o, X1,0y) N oo N (X1, ooy Xt .r,)-

We quote the following results which are proved in [5], [8], [19] and [15].

Theorem 2.5. Let I be a square-free monomial ideal of R. Then the following conditions hold:
(a) R/Iis CM if and only if the Alexander dual I' has a linear resolution.
(b) R/Iis SCM if and only if the Alexander dual I' is componentwise linear.
(c) projdim(R/I) = reg(I").
(d) If y1,..., y, is an R-sequence with deg(y;) = d;and I = (y1, ..., yr), thenreg(l) =di + ... + d, —r + 1.

In the following if G(I) = {uy, ..., u;}, then we set supp(I) = U!_, supp(u;), where supp(u) = {x; : u =
X, a; # 0} Also we set ged(I) = ged(uy, ..., uy,) and deg(l) = max{deg(u), ..., deg(im)}.
Throughout this paper we assume that all matroidal ideals are full supported, thatis, supp(I) = {x1, ..., x,}.

m

X

Corollary 2.6. [6, Corollary 6.6] Let A be a simplicial complex on n vertices, and let I be it’s Stanley-Reisner ideal,
minimally generated by square-free monomials my, ..., ms. If s < 3, so that A has at most three minimal nonfaces, or
if Supp(m;) U Supp(m;) = {x1,..., X} for all i # j, then Ais SCM.

Definition 2.7. Let I be a monomial ideal of R. Then the big height of 1, denoted by bight(I), is max{height(p)|p €
Ass(R/I)}.

Note that, if ] is a matroidal ideal of degree d, then by Auslander-Buchasbum formula bight(I) < n—d+1.

Proposition 2.8. [21, Corollary 6.4.20]. Let I be a monomial ideal of R such that R/1is SCM. Then proj dim(R/I) =
bight(I).

The following examples say that the converse of Proposition 2.8 is not true even if I is matroidal with
ged(l) = 1.

Example 2.9. Let n = 5 and I = (x1x2, X1X3, X1X4, X1X5, X2X3, X2X4, X3X5, X4X5) be an ideal of R. Then I is a matroidal
ideal of R with projdim(R/I) = bight(I) but I is not SCM.

Proof. It is clear that I is a matroidal ideal and
Ass(R/I) = {(x1, X3, x4), (X1, X2, X5), (X2, X3, X4, X5)}.

Thus I[V?’] = (x1X3X4, X1X2X5) and so reg(I[VBI) = 4. Hence IV is not componentwise linear resolution. Therefore

I'is not SCM but proj dim(R/I) = 4 = bight(I). O
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3. SCM matroidal ideals of degree 2

In this section, we classify all SCM matroid ideals of degree 2.

Lemma 3.1. Let n = 3 and I be a matroidal ideal in R generated in degree d. Then I is a SCM ideal.

Proof. Let n = 3, then every matroidal ideal in R generated by at most three square-free monomials and so
by Corollary 2.6 we have the result. [J

Lemma 3.2. Let I bea monomial ideal of R such that I = (w1, ..., ug) and deg(u;) < deg(uy) = dforalli. Ifreg(l) =d,
then reg(l;) = iforalli>d.

Proof. Consider the following exact sequence for i > d,

I R R
—_— — — — — — — 0.
(1) (1) I
l(i) < 00,50 by Lemma 1.1 (d) re (i) =i—1land
@y = )

R

reg( (Ii)) = max{reg(?), 1reg(i

}=max{d-1,i—-1}=i-1.
(Ii))
R
(i)
Proposition 3.3. Let I be monomial ideal which is componentwise linear in R. Then | = (x,41, 1) is componentwise
linear in R’ = K[x1, ..., X, Xns1].

On the other hand reg(l;) = reg(—) + 1, thatis, reg(l;) =i foralli > d. O

Proof. Suppose that I = (uy, ..., 1), where deg(u;) = d; and d;_y < d; for i = 2,...,m. We induct on m, the
number of minimal generators of I. If m = 1, then I = (x;41,u1). Set ]" = x,,41R’. Note that (J;) = (];) for all
J < dp and so (J;) has a linear resolution for all j < d;. By theorem 2.5, reg(]) = d1. Thus (J4) has a linear
resolution and also (J;) has a linear resolution for all j > di, by using Lemma 3.2.

Now, let m > 1 and assume that the ideal L = (x,41, 141, ..., Up—1) is componentwise linear. Set | = (L, u,,) =
(I, xn+1). Note that (J;) = (L)) for all j < d,,, and so (J;) has a linear resolution for all j < d,,. Hence by using
[14, Lemma 3.2] we have reg(]) = reg(l) = d,,. Therefore (J;,) has a linear resolution. Again, by using
Lemma 3.2, we have (J;) has a linear resolution for all j > d,,. This completes the proof. [

Corollary 3.4. Let I be a SCM matroidal ideal in R and let | = x,411 be a monomial ideal in R" = K[x1, ..., Xy, Xn41]-
Then | is a SCM matroidal ideal in R’ = k[x1, ..., Xn, Xn+1]-

Proof. The Alexander dual of ] is JY = (x,4+1,1") and by our hypothesis on I, IV is componentwise linear
resolution. Thus by Proposition 3.3, ] is componentwise linear resolution. Thus J is a SCM matroidal ideal
of R”. O

One of the most distinguished polymatroidal ideals is the ideal of Veronese type. Consider the fixed
positive integers d and 1 < a4; < ... < a, < d. The ideal of Veronese type of R indexed by d and (a1, ..., a,) is
the ideal I(4y,,.,4,) Which is generated by those monomials u = x]...x;; of R of degree d with i; < a; for each
1<j<n

Remark 3.5. Let I be a SCM matroidal ideal in R and let | = x,41...x,I be a monomial ideal in R’ =
K[x1, ..., Xn, Xp41, ..., Xm]. Then, by induction on m, | is a SCM matroidal ideal in R’ = K[x1, ..., X, Xp41, - Xpu]-
Hence for a SCM matroidal ideal |, we can assume that ged(J) = 1. By using [16, Lemma 2.16] all fully
supported matroid ideals of degree n — 1(n > 2) are Veronese type ideals and then by theorem 1.2, all
matroidal ideals generated in degrees d = 1,1 — 1,1 are SCM.
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Definition 3.6. Let I be a square-free Veronese ideal of degree d. We say that | is an almost square-free Veronese ideal
of degree d when | # 0, G(J) € G(I) and

| G(J) =] G(I) | =1. Note that every square-free Veronese ideal is an almost quare-free Veronese ideal. Also, if | is an
almost square-free Veronese ideal of degree n, then | is a square-free Veronese ideal.

Lemma 3.7. Let | be an almost square-free Veronese ideal of degree d < n. Then ] is a SCM matroidal ideal of R.

Proof. Suppose that y, ..., y, is an arbitrary permutation of the variables of R such that {y1, ..., yu} = {x1, ..., X}
and let I be a square-free Veronese ideal of degree d. We may assume that I = | + (yy—d+1Yn—d+2---Yn). Then
we have | = (y1, ..., ¥u—a) N I and so | is a matroidal ideal. Therefore [V = (y1...yn—q,1V). Set ]’ = (Y1...Yn-a)-
Then, foralli <n—d, ] = ]fl.] and so it is componentwise linear. For alli > n —d + 1, J¥; is a square-free
Veronese ideal and so |V is a componentwise linear ideal. Hence ] is a SCM matroidal ideal, as required. [

From now on, we will let y;, ..., y, be an arbitrary permutation variables of R such that {xi, ..., x,} =

{]/1/ ceer yn}

Theorem 3.8. Let | be a matroidal ideal of R with deg(]) = 2 and ged(]) = 1. Then | is SCM if and only if there
exists a permutation of variables such that the following hold:

(a) ] =y1p+], where p is a monomial prime ideal with y; & p, height(p) = n—1and ]’ isa SCM matroidal ideal
with Supp(J') = {y2, ..., yu} and ged(J’) = 1, or

(b) ] = y19+yo2q, where p and q are monomial prime ideals with yy & p and y1, y» ¢ qsuch that height(p) =n-1,
height(q) =n - 2.

Proof. (<=). Consider the case (19). We have | = p N (y1,]J’), then J¥ = (p¥,11]"Y) and p¥ € (u) for all
u € JV. Since [V = y1]"V |y for all i < n -2, and J"Y[;_y; is componentwise linear, it follows that J¥; is
componentwise linear for all i < n — 2. now consider the exact sequence

0— R/(y1)" : p)(=n +1) =25 R/y1 ] — R/, 1)) — 0.

From (y1]"" : p¥) = (1), we have reg(R/(y1]"* : p)) = 0. Since deg(p”) = n -1, we have reg(R/(p*, 11]"")) 2
n —2. Since 1]V is componentwise linear and deg(u) < n — 2 for all u € J’¥, by [11, Corollary 8.2.14] we
have reg(R/y1]"") < n - 2. By using Lemma 1.1,

reg(R/(pY, 11]")) < max{reg(R/(y1]"" : p¥)(—n + 1)) — 1, reg(R/11]"")}
= max{n — 2, reg(R/y1]"V)}.

It therefore follows reg(R/(p", y1J’¥)) = n — 2. Thus J¥|,_;; has a linear resolution and so | is a SCM ideal.

Let us consider the case (). | = (y1,¥2) N (y1,9) N pand so JY = (y1y2, 10", pY). It is clear that [V is a
monomial ideal with linear quotients. Thus, by Proposition 2.2, ]V is componentwise linear and so ] is a
SCM ideal.

(=). Let | be a SCM ideal. Then there exists p € Ass(R/]) such that height(p) = projdim(R/]) = n —1.
Since ] = NI, (] : y;) and deg(]) = 2, we can consider p = (J : y1) and p = (y2, ..., ¥»). Hence | = y1p+]’, where
J’ is a matroidal ideal of degree 2 in K[y», ..., y»]. We claim that Supp(J’) = {2, ..., y»}. Let y; & Supp(J’),
where [ > 2. Thus y1y;, yjyx € ], where j, k > 2. Since | is a matroidal ideal, it follows y;yx or y;y; € J. Hence
yiyk or yiy; € ]’ and this is a contradiction. Therefore Supp(J’) = {v2, ..., yu}. ] = p N (J',y1), it follows that
JY' =", y1]""). Foralli < n—2,wehave J"[; = y1J""[;_y and so J"Y|;_;, has a linear resolution for all i < n—2.
Since JY(,-1) = y1J"V [n—zy + (") and reg(J",,_1}) = n — 1, it follows that reg(J"¥|,_) < n — 2. Therefore J"[,_,,
has a linear resolution and so ]’V is componentwise linear. That is J is a SCM matroidal ideal of degree
2. If ged(J’) = 1, then | satisfy in the case (a). If gcd(J’) # 1, then we have the case (b). This completes the
proof. O
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4. SCM matroidal ideals over polynomial rings of small dimensional

We start this section by the following fundamental lemma.

Lemma 4.1. Let n > 5 and | be a matroidal ideal of degree d in R and ged(]) = 1. If | is SCM, then

J =y1yo..Ya1p + Yivo..Ya2 1 + V1Yo Ya-3Ya-1]2 + ...+
YiYs--Yi-1Ja-2 + Yoy3..Ya-1Ja-1 + Ja,

where v = (Y4, ..., Yn) is a monomial prime ideal, J; is a SCM matroidal ideal of degree 2 with Supp(];) =
Wi Yas1, s Yu fori=1,..,d = Land J; € "1,

Proof. JisaSCM matroidalideal, then thereis a primeideal p € Ass(R/]) such thatheight(p) = projdim(R/]).
Since depth(R/]) = d — 1, it follows that height(p) = n — d + 1. For every square-free monomial ideal in R,
we have | = NI (] : y;). It follows that p = (] : y1y2...ys-1) and we can write | = y;...ys-19 + J', where ] is a
square-free monomial ideal of degree d. It is clear that J” has a presentation

] = vivo..Ya2)1 + V1Yo Ya-sYa-1]2 + ... + ViV3..Ya-1Ja—2 + YoU3...Ya-1]a-1 + Ja

and J; € N"!J;. Note that ged(J) = 1 and

(J - 1y2---Ya-i-1Ya—is1---Ya-1) = Ya-iP + Ji,

we have height(J) > 2and so J; # 0 fori =1, ...,d — 1. It is known that the localization of every SCM ideal is
SCM and so

(J = ny2--Ya-i-1Ya-is1--Ya-1) = Ya-iP + Ji
is a SCM matroidal ideal of degree 2 for i = 1,...,d — 1. By using the proof of theorem 3.8, J; is a SCM
matroidal ideal with Supp(J;) = {y4, Ya+1, -, yu} fori=1,..,d-1. O
It is known that the localization of each SCM matroidal ideal is a SCM matroidal ideal. The following
example shows that the converse is not true.

Example 4.2. Let n = 4 and | = (x1X3, X1X4, X2X3,X2X4). Then | is a matroidal ideal and (] : x;) is SCM matroidal
fori=1,2,3,4; but ] is not SCM.

Proof. 1t is clear that | is matroidal and (] : x;) is SCM matroidal for i = 1,2,3,4. Since J¥ = (x1x2, X3Xy), it
follows that reg(J¥) = 3. Therefore ] is not SCM. [J

From now on, as Lemma 4.1, for a SCM matroidal ideal | of degree d and ged(J) = 1in R withn > 5, we
can write

J = 1 Ya1P + ive.. Va2 J1 + YiVa...Ya-3Ya-1J2 + .. + Yoy3..Ya-1Ja-1 + Ja,

where p = (Y4, ..., ¥») is @ monomial prime ideal, J; is a SCM matroidal ideal of degree 2 with Supp(J;) =
Wa, Yas1, . yny fori=1,..,d=1and J; C ﬂ?z‘ll]l-.

Note that if for instance gcd(J1) = y4, then we have

J = 1 Ya1P + yiYo.. . Ya2Yaq + YiYo..Ya3Yi-1]J2 + ... + V1Y3..Va—2Ja—2 + Yoy3...Ya-1]a-1 + Ja,

where q = (Y41, s Yn)-

Bandari and Herzog in [1, Proposition 2.7] proved that if n = 3 and | is a matroidal ideal with ged(]) = 1,
then | is a square-free Veronese ideal and so by theorem 1.2, it is CM (see also [17, Proposition 1.5]). In the
following proposition we prove this result in the case n = 4 for SCM ideals.

Proposition 4.3. Let n = 4 and | be a matroidal ideal of R of degree d and gcd(]) = 1. Then ] is a SCM ideal if and
only if | is

(a) a square-free Veronese ideal, or
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(b) an almost square-free Veronese ideal.

Proof. (&) is clear by theorem 1.2 and Lemma 3.7.

(=). If d =1, 3,4, then by theorem 1.2 and [16, Lemma 2.16] | is a square-free Veronese ideal. If d = 2,
then by theorem 3.8, | = y1p + |, where p is a monomial prime ideal with y; ¢ p, height(p) =3 and /' isa
SCM matroidal ideal with Supp(J’) = {y2, y3, va}. If gcd(J’) = 1, then |’ is a square-free Veronese ideal and
sois J. If gcd(]’) # 1, then |’ is an almost square-free Veronese ideal. [J

Proposition 4.4. Let n = 4 and | be a matroidal ideal of R of degree d. Then | is a SCM ideal if and only if
projdim(R/]) = bight(]).

Proof. (=). It follows by Proposition 2.8.

(). Ifd = 1,3,4, then by Remark 3.5 | is SCM. Let d = 2. By our hypothesis, there exists p € Ass(R/])
such that p = (J : y1). Thus | = y1p + J', where |’ is matroidal ideal of degree 2 in K[y, y3, y4]. Hence J’
is a square-free Veronese ideal or an almost square-free Veronese ideal. Therefore by Proposition 4.3, | is
SCM. O

Lemma 4.5. Let n > 5 and | be a matroidal ideal of degree 3 in R such that | = y1y29 + y1y3q + Yo2y3q, where p and
q are monomial prime ideals with y1, y» € v and y1, Y2, y3 € q such that height(p) = n — 2, height(q) = n — 3. Then
Jis SCM.

Proof. Since | = p N (y1Y2, y1y39, Y2y39), it follows that | = p N (y1,y2) N (Y1, y3) N (Y2, ¥3) N (Y1, 9) N (2, 9).
Therefore [V = (y1y2, Y1y3, Y2y3, y19”, ¥2a0", p¥). It is clear that J¥ is a monomial ideal with linear quotients
and so by Proposition 2.2, J¥ is componentwise linear. Thus ] is SCM. [J

Lemma 4.6. Let n > 5 and | be a matroidal ideal of degree 3 such that

J = y1y2P + y1y3ar + Yoyaa + J1,

where v, q1 and qp are monomial prime ideals with y1,y2 € v, Y1,Y2,y3 € 01 and yi, Yo, ya € a2 such that
height(p) = n — 2, height(q;) = n — 3 = height(qy) and |, is a matroidal ideal in R’ = Klys, ..., y,]. Then
G(1) = ysyayi | i =5,6,...,n}. In particular, ] is not SCM.

Proof. We consider two cases:

Case (a) [; =0, then we have vy1y3ys5, Y23y € | but y2y3y5 or y3ysys are not elements of J. Thus J is not a
matroidal ideal and this is a contradiction.

Case (b) J; #0.

1) Forn =5, J; = (y3y4ys) and

T = (1, y4) 0 (2, y3) N (Y1, y2, J1) O (Y2, y3, 1) 0 (Y1, a2) 0O (Y2, 91) N .
Therefore reg( I[VZ]) = 3 and so | is not SCM.

2) Suppose that n > 6. Then (] : y3) = (y1y2, Yaya, y1a1,(J1 : y3))- I yiy; € (J 1 y3) for5 <i # j < n,
then yoy; € (] : y3) for i > 5, since yo2y4 € (J : y3). But this is a contradiction. Therefore y3y;y; ¢ |
forall 5 <i # j < n. Consider (] : y4), we have yyy;y; € Jforall 5 < i # j < n. Also, if
yiy;y: € ] for different numbers i, j,t with 5 <, j,t < n, then since y1y3y; € |, we have y3yy; € |
or ysyy; € | and this is a contradiction. Thus G(J1) € {ysyayi | i = 5,6,...,n}. On the other
hand, since y>y4y; and y1y3y; are elements in | for i > 5 we have ysy4y; € | for i > 5. Hence
G(1) = {ysvyayi | i = 5,6, ..., n}. Therefore

J = (y1,y4) 0 (Y2, ¥3) N (Y1, y2, J1) N (Y1, a2) N (Y2, 91) N P
and so [V = (y1Ya, Y2y3, y1y2Jy , v14y, y2a{, »¥). Thus reg(][VZ]) =3 and so | is not SCM.
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O

Lemma 4.7. Let n > 6 and | be a matroidal ideal of degree 3 such that | = y1y2p + y1y3q + y2J1, where p and q are
monomial prime ideals with y1,y2 & D, Y1, Y2, Y3 € q such that height(p) = n — 2, height(q) = n -3 and [, isa
matroidal ideal in R" = K[ys, ..., y,] with gcd(J1) = 1. Then [ is not SCM matroidal.

Proof. By contrary, we assume that | is SCM matroidal. Then (J : y») = y1p + J1 is SCM matroidal and so by
theorem 3.8 [; is SCM matroidal of degree 2. From gecd(J1) = 1, we have J; = y;q1 + J, where g7 and |, are
a monomial prime ideal of height n — 3 and a matroidal ideal respectively in R’ = K[ys, ..., Vi1, Yis1, -, Yul-
There are two main cases to consider.

a) i = 3, then (J : y;) = (y1y2, v1ys, y2y3,y2(J2 : y;)) when j # 1,2,3. Since y; € (Jo : y;) for t # 1,2,3,j,
we have y,y; and y1y; are elements of (J : y;) but y1y; or y3y: are not elements of (J : y;). Thisis a
contradiction.

b) i # 3, then (J : i) = (y1y2, y1y3, y2a1). Thus yoy¢ and y1y3 for t # 3 are elements of (J : y;) but y1y; or ysy;
are not elements of (J : ;) and this is a contradiction. Thus | is not SCM matroidal.
|

Lemma 4.8. Let n > 6 and | be a matroidal ideal of degree 3 such that | = yiyap + yiysa + y2J1 + o or | =
ViyaP + 1ys3q + Yay3q + |2, where p and g are monomial prime ideals with y1,y, € D, Y1,Y2, Y3 € q such that
height(p) = n — 2, height(q) = n — 3 and |, is a nonzero matroidal ideal in R" = K[ys, ..., y»] with ged(J1) = 1.
Then G(J2) € {yayiy;j | 4 < i # j < n}and if o # O, then Supp(J2) = {y3,Y4, ..., Yu}. In particular, if | =
Y1Y2P + Y1Y3q + Yoy3q + Jo, then J, = 0.

Proof. Let us consider | = y1y2p + y1y3q9 + y2J1 + Jo. Then we have (J : y;) = (y1y2, vays, v2U1 = v, (J2 = )
for some t > 4. If y;y;y: € | for some different numbers 4 < i,j,t < n, then y;y; € (J : y;). Since
y1ys € (J : yy), it follows that y1y; € (J : y;) for some i > 4 and this is a contradiction. It therefore follows
that G(J2) € {ysyiyj | 4 < i # j < n}. Also, (J : y3) = (V1v2, 10, v201 = ¥3),(J2 = ¥3)). I yiyj € (J : y3)
for some 4 < i # j < n, then y;y; € (J : y3) for all t with 4 < i # t < n since y1y: € (J : y3). Hence
Supp()2) = {y3, Ya, ..., yu}. The proof for the case | = y1y2p + y1y3q + y2y3q + J» is similar to the above
argument. In particular, if y3y;y; € J> for some 4 < i # j < n then from y11oy; € [ forsome4d <i#t# j<n
we have y;y;y; € . This is a contradiction. Thus [ =0. [

Proposition 4.9. Let n = 5 and | be a matroidal ideal of degree 3 such that gcd(J) = 1. Then | is a SCM ideal if

and only if | = y1yo» + y1J1 + y2J2 + J3, where ]y and ], are SCM ideals with Supp(J1) = Supp(J2) = {y3, Y4, 5},
J3 C J1 N ], and satisfying in the one of the following cases:

(a) ged(J1) =1, ged(J2) =1, or
(b) ged(J1) = ys = ged(J2) and J5 = 0.

Proof. (). Consider (). Then J; and J, are square-free Veronese ideal and G(J3) C {y3yays). If J5 = 0, then
J is an almost square-free Veronese ideal and so by using Lemma 3.7, ] is a SCM matroidal ideal. If J3 # 0,
then J is a square-free Veronese ideal and so | is a SCM matroidal ideal.

If we have the case (), then by Lemma 4.5 the result follows.

(=). Let ] be a SCM, then by Lemma 4.1, | has the presentation | = y1y2p + y1J1 + y2J2 + J3, where J;
and |, are SCM matroidal ideals with Supp(J1) = Supp(J2) = {y3, ¥4, ys} and J3 € J1 N ]».

1) If ged(J1) = y3 and ged(J2) = y4, then by Lemma 4.6 | is not a SCM matroidal ideal and we don’t have
this case.

2) If ged(J1) = ged(J2) = ys, then J3 = 0. Let contrary, then G(J3) = {yayays} and y1y2ys, Ysyays € J but y1yays
Or 1245 are not elements of J. This is a contradiction.

3) If gcd(J1) = y3, ged(J2) = 1 and J3 = 0, then y1y3ys, Y2yays € | but y1y4Ys or y3ysys are not elements of J.
Therefore | is not matroidal and we don’t have this case.
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4) If ged(J1) = y3, ged(J2) = 1 and G(J3) = {y3yays}, then by change of variables (a) follows with J3 = 0.
|

Proposition 4.10. Let n = 6 and let | be a matroidal ideal of degree 4 such that ged(]) = 1. Then [ is a SCM ideal if
and only if | = y1y2y3p + y1y2J1 + yaysja + yaysJs + Ja such that |1, |», |3 are SCM matroidal ideals and satisfying
in one of the following conditions:

(a) fori=1,2,3, gcd(J;) = 1and | G(J4) |= 3,
(b) fori=1,2,3,gcd(J;) = 1and | G(J4) |= 2,
(c) fori=1,2,3,gcd(J;) =1and J4 =0, or
(d) fori=1,2,3, gcd(];) = yaand J4 = 0.

Proof. (). If we have (a), then ] is a square-free Veronese ideal and so by theorem 1.2, ] is SCM. Consider
case (b), then | is an almost square-free Veronese ideal and so by Lemma 3.7, | is SCM. If we consider (d),
then by using the same proof of Lemma 4.5 ] has linear quotients and so J is SCM. Let (c), then we have

J = p0 (1, y2) N (Y1, y3) 0 (Y2, ¥3) N (y1, J3) N (Y2, J2) N (Y3, J1) and so J¥ = (y1y2, Y1y, Y2ys, vil3, valy  ysl) Y).
That is, ]V has linear quotients. Thus J is SCM.

(:) Let]be a SCM ideal. Then by Lemma 41, ] = 1Y2Y3P + ylyzh + y1y3]2 + y2y3]3 + ]4 and ]1,]2, ]3
are SCM matroidal ideals. Let gcd(J1) = ya4. Since (J : y1) = yoysp + Yo Ji + y3Jo + (Ja : y1), ged(J : y1) = 1
and (] : y1) is a SCM matroidal ideal, by Proposition 4.9 it follows gcd(J2) = ys and (J4 : y1) = 0. Again
by using (J : y2) and (J : y3), we obtain gcd(J1) = ged(J3) = ged(J2) = y4 and J4 = 0. Also, if for some 7,
gcd(J;) = 1, then by Proposition 4.9 and by using (J : y1),(J : y2) and (J : y3) we have ged(J;) = 1fori=1,2,3.
If G(J4) = {y1y4Y5Ye}, then | is not a matroidal ideal since y1yaysys, Y2y3Yysys € J, but y2yaysys o Y3ysysYs
are not elements of J. Thus J; = 0 or | G(J4) |= 2 or | G(J4) |= 3 and this completes the proof. O

Proposition 4.11. Let n > 6 and let | be a matroidal ideal of degree n — 2 such that gcd(J) = 1. Then ] is a SCM
ideal if and only if

I =y1y2...Yn3P + Y1yo..Yn—aJ1 + ViVo..YVu-sYn-3J2 + ..+
Y1Y3-eYn-3Ju-a + Yoy3..Yyn-3Jn-3 + Jn—2
such that J; is SCM matroidal ideal for all i = 1, ..,n — 3 and satisfying in one of the following conditions:
(@) fori=1,..,n -3, gcd(J)) = Land | G(J.—2) I= ('5°),
(b) fori=1,..,n-3,ged(J;) = Land | G(Ju) I= ("33 - 1,
(c) fori=1,..,n—-3,gcd(J;) =1and J,_o =0, or
(d) fori=1,..n-3,gcd(J;) = yn—2 and J,—p = 0.

Proof. ().

If case (a) holds, then | is a square-free Veronese ideal and so by theorem 1.2, | is SCM. Let (b), then ] is
an almost square-free Veronese ideal and so by Lemma 3.7, | is SCM. If (d), then by using the same proof of
Lemma 4.5, ¥ has linear quotients and so | is SCM. Let (c), then we have

J=p N (Y1, y2) N oo 0 (Y1, Yu=3) N (Y2, Y3) N oo 0 (Y2, Yu-3)
m m (yl’l—4/ ]/n—3) m (]/1/];1—3) n n (]/n—3/ ]1)

and so
IV = (Y12, s Y1Yn=3, Y23 -wor Y2Yn=3 oo Yn-aYn=3, Y1 gy s Yn=3J1 0.

Since J; are square-free Veronese ideals, it follows that J¥ has linear quotients. That is, ] is SCM.
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(=). Let ] be a SCM ideal. Then by Lemma 4.1,

I =y1y2..Yn=3P + Y1yo..Yn-aJ1 + V1Y2..Yu-5Yn-3J2 + ..+
y1y3---yn—3]n—4 + y2y3---yn73]n—3 + Ju-2

and J; are SCM matroidal ideals for all i = 1, ...,n — 3. We use induction on n > 6. If n = 6, then the result
follows by Proposition 4.10. Let n > 6 and ged(J1) = yu—2.

(J: y1) = Y2y3.. Y3 + Yoo Yn-aJ1 + Y2 Yu-s5Yn-3J2 + . + Y3...Yn-3Ju-sa + (Ju—2 : Y1),

ged(] : y1) = 1 and (J : y1) is a SCM matroidal ideal, by induction hypothesis it follows gcd(J;) = vy, for
i=1,.,n—4and (J,— : y1) = 0. Againby using (] : y;) fori = 2, ...,n —3 and by using induction hypothesis,
ged(fi) = ypp fori=1,..n -3 and J,—» = 0. Also, if for some 7, gcd(J;) = 1, then again by using (J : y;) for
i =1,..,n—3and by using induction hypothesis we have gcd(J;) = 1fori =1,...,n=3. If | G(J,—2) I< (”;3) -1,
then there exists 1 < i < n —3 such that | G(I : y;) I< (";4) — 1 and this is a contradiction. Thus [, = 0 or
| G(Juz2) |I= (”;3) or | G(J—2) |= (";3) — 1 and this completes the proof. [J

Theorem 4.12. Let n = 6 and let | be a matroidal ideal of degree 3 such that gcd(]) = 1. Then | is a SCM ideal if
and only if | = y1y20 + y1J1 + y2J2 + J3 such that |1 and |, are SCM matroidal ideals and satisfying in one of the
following conditions:

(a) | G(J3) |= 4 and one of |1 or ] is an almost square-free Veronese ideal and the other is a square-free Veronese
ideal,

(b) | G(J3) |= 3, J1, ]2 are square-free Veronese ideals,

(c) Js = 0and ] = ], are square-free Veronese ideals or almost square-free Veronese ideals either J3 = 0 and

ged(J1) = y3 = ged(J2).

Proof. (). If we consider the (a) or (b), then ] is a square-free Veronese ideal or an almost square-free
Veronese ideal and so ] is SCM. Consider (c) and suppose that gcd(J1) = ged(J2) = y3. Then by using Lemma
4.5, | is SCM. Also, for (c) if J; = ], are square-free Veronese ideals or almost square-free Veronese ideals,
we have ]V = (y1y2, 1], y2J;, »”) and so ]¥ has linear quotients. Thus ] is SCM.

(=). Let ] be a SCM ideal. Then by Lemma 4.1, ] = y1y29 + y1J1 + y2J> + J3 and J; and ], are SCM
matroidal ideals and [3 € J1 N [, with (J3) = {y3, v, Y5, ys}. Therefore | G(J3) |< 4. We have four cases:

Case (i) Suppose that| G(J3) |= 4 ,thenby Lemmas 4.6 and 4.8 we have gcd(J1) = 1 = ged(J2). By Proposition
4.3, we have the case (a) if we prove J; and J, aren’t almost square-free Veronese ideals in the same

time. Let contrary, if y1y3Ys, Y235 are not elements of |, then y112y3, yayays € J. But y1y3ys or yay3ys
are not elements of | and this is a contradiction.

If y1y3Ys5, Y2Yy3Ye are not elements of |, then
(J = y3) =(1y2, y1(Ya, Ye), Y2(Ya, Y5), Yays, YaYe, Y5Y6)
=ya(Y1, Y2, Y5, Y6) + (Y12, Y1 Y6, Y2Vs5, Y5Ye)-
By theorem 3.8, (12, y1Ve, Y25, YsYe) is not SCM and this is a contradiction.

If y1y3Ys, Y2yaYe are not elements of J, then (][V3]) = (1Y3Ys5, Y2Y4Ye) and so reg(][v3]) = 5. Thus | is not
SCM and this is a contradiction.

Case (ii) Let | G(J3) |= 3. We consider the following cases.

1) If ged(J1) = y3 and ged()2) = 1, then G(J3) = {y3yaYs, YsYale, Y3Ys5Ys), by Lemma 4.8. ged()2) =
1, so by Proposition 4.3, |, is a square-free Veronese ideal or an almost square-free Veronese

ideal. If Jo = (Y2y3Ya, Y2U3Ys, Y2Y3Ye, Y2YaYs, Y2Yals) is an almost square-free Veronese ideal,
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then ysysys, y1v2ys € ] but y1ysys or 12ysye either y4ysy6 are not elements of | and this is a
contradiction. So ], is a square-free Veronese ideal and by using a new presentation for | and
change of variables we get /; and ], are square-free Veronese ideals and J; = 0 and this is the
case (¢).

2) If ged(J1) = y3 and ged(J2) = y4, then by Lemma 4.6 we have | G(J3) |= 2 and this is a contradiction.

3) If gcd(J1) = y3 = ged(J2), then y11y2y4, Y3yays € | but y1y4ys or y2y4ys are not elements of | and this
is a contradiction.

4) Let gcd(J1) = 1 = ged(J2). Suppose that J; is a square-free Veronese ideal and |, is an almost
square-free Veronese ideal. We assume that > = (y2y3V4, Y2Y3Ys, Y2Y3Ye, Y2Y4Ys, YaYals). Since
| G(J3) |= 3, we can assume that one of the element y3ysy or ysysYes are not in J. If yaysye € J,
then v23Y5, Y1y5Ys € J but y2y5Y6 or y3ysYye are not elements of | and this is a contradiction. If
YysyaYe € J, then (] : ye) = (y1y2, y1(Y3, Ya, ¥5), Y2(Y3, Y4), Y3ys, Yays)- Therefore by using theorem
3.8 this is not SCM. Thus we do not have this case. Also, by the same argument of the Case
(), J; and ], are not almost square-free Veronese ideals in the same time. Therefore ;, |, are
square-free Veronese ideals and we have the case (b).

Case (iii) Let | G(J3) |= 2. Then by Lemmas 4.6, 4.8, we have gcd(J1) = y3, ged(J2) = 1 or ged(f1) =

1 = ged(J2). If ged(J1) = y3, ged(J2) = 1, then we can assume that G(J3) = {y3yays, YsYalys}. Since
gcd(J2) = 1, by Proposition 4.3 ], is square-free Veronese ideal or almost Veronese ideal. If J; is
square-free Veronese ideal, then y>y5ys, y3yays € | but y3ysys or y4ysYye are not elements of | and this
is a contradiction. Let |, be an almost square-free Veronese ideal and we assume that y5ys is the
only element which is not in [,. In this case by change of variables we have J; = 0 and J; = J, are
almost square-free Veronese ideals and and this is the case (c). If y4ys is the only element which is
not in J», then y3y4ys, Y2yays are elements of | but y2y4Yys or yaysYye are not elements of | and this is a
contradiction. Also, if Y4y is the only element which is not in J,, then again | is not matroidal and this
is a contradiction. Now we can assume that J3 = 0. If ged(J1) = y3, then by Lemmas 4.6, 4.8 we have
gcd(J2) = 1or ged(J)2) = ys. If ged(J2) = 1, then y1y3ys and y,y;y; are elements of | for some, j = 4,5, 6,
but y1y;y; or y3y,y; are not elements of | and this is a contradiction. Therefore gcd(J>) = y3 and this is
the case (c). Also, if gcd(J1) = 1 then ged(J>) = 1. If J; # |, are almost square-free Veronese ideals, then
again by using the above argument | is not matroidal and this is a contradiction. Therefore J; = J, are
square-free Veronese ideals or almost square-free Veronese ideals.

Case (iv) Let| G(J3) |= 1. Then by Lemmas 4.6, 4.8, we have gcd(J1) = 1 = gcd(J2). Therefore by Proposition

O

4.3 J; and J, are square-free Veronese ideals or almost Veronese ideals. By choosing one element from
J1 and the only element from 3, we have | G(J3) |> 2. This is a contradiction.
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