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Abstract. Let R = K[x1, ..., xn] be the polynomial ring in n variables over a field K and let I be a matroidal
ideal of degree d in R. Our main focus is determining when matroidal ideals are sequentially Cohen-
Macaulay. In particular, all sequentially Cohen-Macaulay matroidal ideals of degree 2 are classified.
Furthermore, we give a classification of sequentially Cohen-Macaulay matroidal ideals of degree d ≥ 3 in
some special cases.

Introduction

Our goal is to classify the sequentially Cohen-Macaulay matroidal ideals. While for the Cohen-Macaulay
property of matroidal ideals, a complete classification was given by Herzog and Hibi [10], the classification
of the sequentially Cohen-Macaulay matroidal ideals seems to be much harder. In the present paper partial
answers to this problem are given. Herzog and Hibi [9] were the first to give a systematic treatment of
polymatroidal ideals and they studied some combinatoric and algebraic properties related to it. They
defined the polymatroidal ideal, a monomial ideal having the exchange property. A square-free polyma-
troidal ideal is called a matroidal ideal. Herzog and Takayama [13] proved that all polymatroidal ideals
have linear quotients which implies that they have linear resolutions. Herzog and Hibi [10] proved that a
polymatroidal ideal I is Cohen-Macaulay (i.e. CM) if and only if I is a principal ideal, a Veronese ideal, or a
square-free Veronese ideal.

Let R = K[x1, . . . , xn] be the polynomial ring in n indeterminate over a field K and I ⊂ R be a homogeneous
ideal. For a positive integer i, let (Ii) be the ideal generated by all forms in I of degree i. We say that I
is componentwise linear if for each positive integer i, (Ii) has a linear resolution. Componentwise linear
ideals were first introduced by Herzog and Hibi [8] to generalize Eagon and Reiner’s result that the Stanley-
Reisner ideal I∆ of simplicial complex ∆ has a linear resolution if and only if the Alexander dual ∆∨ is C.M
[5]. In particular, Herzog and Hibi [8] and Herzog, Reiner, and Welker [12] showed that the Stanley-Reisner
ideal I∆ is componentwise linear if and only if ∆∨ is sequentially Cohen-Macaulay(i.e. SCM).

It is of interest to understand the SCM matroidal ideals, and this paper may be considered as a first
attempt to characterize such ideals for matroidal ideals in low degree or in a small number of variables.
The remainder of this paper is organized as follows. Section 1 and 2 recall some definitions and results of
componentwise linear ideals, simplicial complexes, and polymatroidal ideals. Section 3 classifies all SCM
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matroidal ideals of degree 2. Section 4 studies SCM matroidal ideals of degree d ≥ 3 over polynomial rings
of small dimensional.

For any unexplained notion or terminology, we refer the reader to [11] and [21]. Several explicit examples
were performed with help of the computer algebra systems Macaulay2 [7].

1. Preliminaries

In this section, we recall some definitions and results used throughout the paper. As in the introduction,
let K be a field and R = K[x1, ..., xn] be the polynomial ring in n variables over K with each deg xi = 1. Let
I ⊂ R be a monomial ideal and G(I) be its unique minimal set of monomial generators of I.

We say that a monomial ideal I with G(I) = {u1, ...,ur} has linear quotients if there is an ordering deg(u1) ≤
deg(u2) ≤ ... ≤ deg(ur) such that for each 2 ≤ i ≤ r the colon ideal (u1, ...,ui−1) : ui is generated by a subset
{x1, ..., xn} It is known that if a monomial ideal I generated in single degree has linear quotients, then I has a
linear resolution (see [3, Lemma 4.1]). In particular, a monomial ideal I generated in degree d has a linear
resolution if and only if the Castelnuovo-Mumford regularity of I is reg(I) = d (see [20, Lemma 49]).

Lemma 1.1. [4, Corollary 20.19] If 0 −→ A −→ B −→ C −→ 0 is a short exact sequence of graded finitely generated
R-modules, then

(a) reg A ≤ max(reg B, reg C + 1).

(b) reg B ≤ max(reg A, reg C),

(c) reg C ≤ max(reg A − 1, reg B).

(d) If A has a finite length, set s(A) = max{s : As , 0}, then reg(A) = s(A) and the equality holds in (b).

One of the important classes of monomial ideals with linear quotients is the class of polymatroid ideals.
Let I ⊂ R be a monomial ideal generated in one degree. We say that I is polymatroidal if the following

”exchange condition” is satisfied: For any two monomials u = xa1
1 xa2

2 . . . x
an
n and v = xb1

1 xb2
2 . . . x

bn
n belong to

G(I) such that degxi
(v) < degxi

(u), there exists an index j with degx j
(u) < degx j

(v) such that x j(u/xi) ∈ G(I).
The polymatroidal ideal I is called matroidal if I is generated by square-free monomials. Note that if I is a
matroidal ideal of degree d, then depth(R/I) = d − 1 (see [2]).

Theorem 1.2. [10, theorem 4.2] A polymatroidal ideal I is CM if and only if I is a principal ideal, a Veronese ideal,
or a square-free Veronese ideal.

2. review on componentwise linear ideals

For a homogeneous ideal I, we write (Ii) to denote the ideal generated by the degree i elements of I.
Note that (Ii) is different from Ii, the vector space of all degree i elements of I. Herzog and Hibi introduced
the following definition in [8].

Definition 2.1. A monomial ideal I is componentwise linear if (Ii) has a linear resolution for all i.

A number of familiar classes of ideals are componentwise linear. For example, all ideals with linear
resolutions, all stable ideals, all square-free strongly stable ideals are componentwise linear (see [11]).

Proposition 2.2. [6, Proposition 2.6] If Iis a homogeneous ideal with linear quotients, then I is componentwise linear.

If I is generated by square-free monomials, then we denote by I[i] the ideal generated by the square-free
monomials of degree i of I.

Theorem 2.3. [8, Proposition 1.5] Let I be a monomial ideal generated by square-free monomials. Then I is compo-
nentwise linear if and only if I[i] has a linear resolution for all i.
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The notion of componentwise linearity is intimately related to the concept of sequential Cohen-
Macaulayness.

Definition 2.4. [18] A graded R-module M is called sequentially Cohen-Macaulay (SCM) if there exists a finite
filtration of graded R-modules 0 = M0 ⊂ M1 ⊂ ... ⊂ Mr = M such that each Mi/Mi−1 is Cohen-Macaulay, and the
Krull dimensions of the quotients are increasing:

dim(M1/M0) < dim(M2/M1) < ... < dim(Mr/Mr−1).

The theorem connecting sequentially Cohen-Macaulayness to componentwise linearity is based on the
idea of Alexander duality. We recall the definition of Alexander duality for square-free monomial ideals
and then state the fundamental result of Herzog and Hibi [8] and Herzog, Reiner, and Welker [12].

Let ∆ be a simplicial complex on the vertex set V = {x1, x2, ..., xn}, i.e., ∆ is a collection of subsets V such
that (1) {xi} ∈ ∆ for each i = 1, 2, ...,n and (2) if F ∈ ∆ and G ⊆ F, then G ∈ ∆. Let ∆∨ denote the dual simplicial
complex of ∆, that is to say, ∆∨ = {V \ F | F < ∆}.

If I is a square-free monomial ideal, then the square-free Alexander dual of I = (x1,1...x1,n1 , ..., xt,1...xt,nt ) is
the ideal I∨ = (x1,1, ..., x1,n1 ) ∩ ... ∩ (xt,1, ..., xt,nt ).

We quote the following results which are proved in [5], [8], [19] and [15].

Theorem 2.5. Let I be a square-free monomial ideal of R. Then the following conditions hold:

(a) R/I is CM if and only if the Alexander dual I∨ has a linear resolution.

(b) R/I is SCM if and only if the Alexander dual I∨ is componentwise linear.

(c) proj dim(R/I) = reg(I∨).

(d) If y1, ..., yr is an R-sequence with deg(yi) = di and I = (y1, ..., yr), then reg(I) = d1 + ... + dr − r + 1.

In the following if G(I) = {u1, ...,ut}, then we set supp(I) = ∪t
i=1 supp(ui), where supp(u) = {xi : u =

xa1
1 ...x

an
n , ai , 0}. Also we set gcd(I) = gcd(u1, ...,um) and deg(I) = max{deg(u1), ...,deg(um)}.

Throughout this paper we assume that all matroidal ideals are full supported, that is, supp(I) = {x1, ..., xn}.

Corollary 2.6. [6, Corollary 6.6] Let ∆ be a simplicial complex on n vertices, and let I∆ be it’s Stanley-Reisner ideal,
minimally generated by square-free monomials m1, ...,ms. If s ≤ 3, so that ∆ has at most three minimal nonfaces, or
if Supp(mi) ∪ Supp(m j) = {x1, ..., xn} for all i , j, then ∆ is SCM.

Definition 2.7. Let I be a monomial ideal of R. Then the big height of I, denoted by bi1ht(I), is max{height(p)|p ∈
Ass(R/I)}.

Note that, if I is a matroidal ideal of degree d, then by Auslander-Buchasbum formula bi1ht(I) ≤ n−d+1.

Proposition 2.8. [21, Corollary 6.4.20]. Let I be a monomial ideal of R such that R/I is SCM. Then proj dim(R/I) =
bi1ht(I).

The following examples say that the converse of Proposition 2.8 is not true even if I is matroidal with
gcd(I) = 1.

Example 2.9. Let n = 5 and I = (x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x3x5, x4x5) be an ideal of R. Then I is a matroidal
ideal of R with proj dim(R/I) = bi1ht(I) but I is not SCM.

Proof. It is clear that I is a matroidal ideal and

Ass(R/I) = {(x1, x3, x4), (x1, x2, x5), (x2, x3, x4, x5)}.

Thus I∨[3] = (x1x3x4, x1x2x5) and so reg(I∨[3]) = 4. Hence I∨ is not componentwise linear resolution. Therefore
I is not SCM but proj dim(R/I) = 4 = bi1ht(I).
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3. SCM matroidal ideals of degree 2

In this section, we classify all SCM matroid ideals of degree 2.

Lemma 3.1. Let n = 3 and I be a matroidal ideal in R generated in degree d. Then I is a SCM ideal.

Proof. Let n = 3, then every matroidal ideal in R generated by at most three square-free monomials and so
by Corollary 2.6 we have the result.

Lemma 3.2. Let I be a monomial ideal of R such that I = (u1, ...,ud) and deg(ui) ≤ deg(ud) = d for all i. If reg(I) = d,
then reg(Ii) = i for all i > d.

Proof. Consider the following exact sequence for i > d,

0 −→
I

(Ii)
−→

R
(Ii)
−→

R
I
−→ 0.

l(
I

(Ii)
) < ∞, so by Lemma 1.1 (d) reg(

I
(Ii)

) = i − 1 and

reg(
R

(Ii)
) = max{reg(

R
I

), reg(
I

(Ii)
)} = max{d − 1, i − 1} = i − 1.

On the other hand reg(Ii) = reg(
R

(Ii)
) + 1, that is, reg(Ii) = i for all i > d.

Proposition 3.3. Let I be monomial ideal which is componentwise linear in R. Then J = (xn+1, I) is componentwise
linear in R′ = K[x1, ..., xn, xn+1].

Proof. Suppose that I = (u1, ...,um), where deg(ui) = di and di−1 ≤ di for i = 2, ...,m. We induct on m, the
number of minimal generators of I. If m = 1, then I = (xn+1,u1). Set J′ = xn+1R′. Note that (J j) = (J′j) for all
j < d1 and so (J j) has a linear resolution for all j < d1. By theorem 2.5, reg(J) = d1. Thus (Jd1 ) has a linear
resolution and also (J j) has a linear resolution for all j > d1, by using Lemma 3.2.

Now, let m > 1 and assume that the ideal L = (xn+1,u1, ...,um−1) is componentwise linear. Set J = (L,um) =
(I, xn+1). Note that (J j) = (L j) for all j < dm and so (J j) has a linear resolution for all j < dm. Hence by using
[14, Lemma 3.2] we have reg(J) = reg(I) = dm. Therefore (Jdm ) has a linear resolution. Again, by using
Lemma 3.2, we have (J j) has a linear resolution for all j > dm. This completes the proof.

Corollary 3.4. Let I be a SCM matroidal ideal in R and let J = xn+1I be a monomial ideal in R′ = K[x1, ..., xn, xn+1].
Then J is a SCM matroidal ideal in R′ = k[x1, ..., xn, xn+1].

Proof. The Alexander dual of J is J∨ = (xn+1, I∨) and by our hypothesis on I, I∨ is componentwise linear
resolution. Thus by Proposition 3.3, J∨ is componentwise linear resolution. Thus J is a SCM matroidal ideal
of R′.

One of the most distinguished polymatroidal ideals is the ideal of Veronese type. Consider the fixed
positive integers d and 1 ≤ a1 ≤ ... ≤ an ≤ d. The ideal of Veronese type of R indexed by d and (a1, ..., an) is
the ideal I(d;a1,...,an) which is generated by those monomials u = xi1

1 ...x
in
n of R of degree d with i j ≤ a j for each

1 ≤ j ≤ n.

Remark 3.5. Let I be a SCM matroidal ideal in R and let J = xn+1...xmI be a monomial ideal in R′ =
K[x1, ..., xn, xn+1, ..., xm]. Then, by induction on m, J is a SCM matroidal ideal in R′ = K[x1, ..., xn, xn+1, ..., xm].
Hence for a SCM matroidal ideal J, we can assume that gcd(J) = 1. By using [16, Lemma 2.16] all fully
supported matroid ideals of degree n − 1(n ≥ 2) are Veronese type ideals and then by theorem 1.2, all
matroidal ideals generated in degrees d = 1,n − 1,n are SCM.
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Definition 3.6. Let I be a square-free Veronese ideal of degree d. We say that J is an almost square-free Veronese ideal
of degree d when J , 0, G(J) ⊆ G(I) and
| G(J) |≥| G(I) | −1. Note that every square-free Veronese ideal is an almost quare-free Veronese ideal. Also, if J is an
almost square-free Veronese ideal of degree n, then J is a square-free Veronese ideal.

Lemma 3.7. Let J be an almost square-free Veronese ideal of degree d < n. Then J is a SCM matroidal ideal of R.

Proof. Suppose that y1, ..., yn is an arbitrary permutation of the variables of R such that {y1, ..., yn} = {x1, ..., xn}

and let I be a square-free Veronese ideal of degree d. We may assume that I = J + (yn−d+1yn−d+2...yn). Then
we have J = (y1, ..., yn−d) ∩ I and so J is a matroidal ideal. Therefore J∨ = (y1...yn−d, I∨). Set J′ = (y1...yn−d).
Then, for all i ≤ n − d, J∨[i] = J′[i] and so it is componentwise linear. For all i ≥ n − d + 1, J∨[i] is a square-free
Veronese ideal and so J∨ is a componentwise linear ideal. Hence J is a SCM matroidal ideal, as required.

From now on, we will let y1, ..., yn be an arbitrary permutation variables of R such that {x1, ..., xn} =
{y1, ..., yn}.

Theorem 3.8. Let J be a matroidal ideal of R with deg(J) = 2 and gcd(J) = 1. Then J is SCM if and only if there
exists a permutation of variables such that the following hold:

(a) J = y1p+ J′, where p is a monomial prime ideal with y1 < p, height(p) = n− 1 and J′ is a SCM matroidal ideal
with Supp(J′) = {y2, ..., yn} and gcd(J′) = 1, or

(b) J = y1p+ y2q, where p and q are monomial prime ideals with y1 < p and y1, y2 < q such that height(p) = n−1,
height(q) = n − 2.

Proof. (⇐=). Consider the case (a). We have J = p ∩ (y1, J′), then J∨ = (p∨, y1 J′∨) and p∨ ∈ (u) for all
u ∈ J′∨. Since J∨[i] = y1 J′∨[i−1] for all i ≤ n − 2, and J′∨[i−1] is componentwise linear, it follows that J∨[i] is
componentwise linear for all i ≤ n − 2. now consider the exact sequence

0 −→ R/(y1 J′∨ : p∨)(−n + 1)
y2 y3...yn
−−−−−−→ R/y1 J′∨ −→ R/(p∨, y1 J′∨) −→ 0.

From (y1 J′∨ : p∨) = (y1), we have reg(R/(y1 J′∨ : p∨)) = 0. Since deg(p∨) = n− 1, we have reg(R/(p∨, y1 J′∨)) ≥
n − 2. Since y1 J′∨ is componentwise linear and deg(u) ≤ n − 2 for all u ∈ J′∨, by [11, Corollary 8.2.14] we
have reg(R/y1 J′∨) ≤ n − 2. By using Lemma 1.1,

reg(R/(p∨, y1 J′∨)) ≤ max{reg(R/(y1 J′∨ : p∨)(−n + 1)) − 1, reg(R/y1 J′∨)}
= max{n − 2, reg(R/y1 J′∨)}.

It therefore follows reg(R/(p∨, y1 J′∨)) = n − 2. Thus J∨[n−1] has a linear resolution and so J is a SCM ideal.
Let us consider the case (b). J = (y1, y2) ∩ (y1, q) ∩ p and so J∨ = (y1y2, y1q

∨, p∨). It is clear that J∨ is a
monomial ideal with linear quotients. Thus, by Proposition 2.2, J∨ is componentwise linear and so J is a
SCM ideal.

(=⇒). Let J be a SCM ideal. Then there exists p ∈ Ass(R/J) such that height(p) = proj dim(R/J) = n − 1.
Since J = ∩n

i=1(J : yi) and deg(J) = 2, we can consider p = (J : y1) and p = (y2, ..., yn). Hence J = y1p+ J′, where
J′ is a matroidal ideal of degree 2 in K[y2, ..., yn]. We claim that Supp(J′) = {y2, ..., yn}. Let yl < Supp(J′),
where l ≥ 2. Thus y1yl, y jyk ∈ J, where j, k ≥ 2. Since J is a matroidal ideal, it follows ylyk or yly j ∈ J. Hence
ylyk or yly j ∈ J′ and this is a contradiction. Therefore Supp(J′) = {y2, ..., yn}. J = p ∩ (J′, y1), it follows that
J∨ = (p∨, y1 J′∨). For all i ≤ n−2, we have J∨[i] = y1 J′∨[i−1] and so J′∨[i−1] has a linear resolution for all i ≤ n−2.
Since J∨[n−1] = y1 J′∨[n−2] + (p∨) and reg(J∨[n−1]) = n − 1, it follows that reg(J′∨[n−2]) ≤ n − 2. Therefore J′∨[n−2]
has a linear resolution and so J′∨ is componentwise linear. That is J′ is a SCM matroidal ideal of degree
2. If gcd(J′) = 1, then J satisfy in the case (a). If gcd(J′) , 1, then we have the case (b). This completes the
proof.
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4. SCM matroidal ideals over polynomial rings of small dimensional

We start this section by the following fundamental lemma.

Lemma 4.1. Let n ≥ 5 and J be a matroidal ideal of degree d in R and gcd(J) = 1. If J is SCM, then

J =y1y2...yd−1p + y1y2...yd−2 J1 + y1y2...yd−3yd−1 J2 + ...+

y1y3...yd−1 Jd−2 + y2y3...yd−1 Jd−1 + Jd,

where p = (yd, ..., yn) is a monomial prime ideal, Ji is a SCM matroidal ideal of degree 2 with Supp(Ji) =
{yd, yd+1, ..., yn} for i = 1, ..., d − 1 and Jd ⊆ ∩

d−1
i=1 Ji.

Proof. J is a SCM matroidal ideal, then there is a prime ideal p ∈ Ass(R/J) such that height(p) = proj dim(R/J).
Since depth(R/J) = d − 1, it follows that height(p) = n − d + 1. For every square-free monomial ideal in R,
we have J = ∩n

i=1(J : yi). It follows that p = (J : y1y2...yd−1) and we can write J = y1...yd−1p + J′, where J′ is a
square-free monomial ideal of degree d. It is clear that J′ has a presentation

J′ = y1y2...yd−2 J1 + y1y2...yd−3yd−1 J2 + ... + y1y3...yd−1 Jd−2 + y2y3...yd−1 Jd−1 + Jd

and Jd ⊆ ∩
d−1
i=1 Ji. Note that gcd(J) = 1 and

(J : y1y2...yd−i−1yd−i+1...yd−1) = yd−ip + Ji,

we have height(J) ≥ 2 and so Ji , 0 for i = 1, ..., d− 1. It is known that the localization of every SCM ideal is
SCM and so

(J : y1y2...yd−i−1yd−i+1...yd−1) = yd−ip + Ji

is a SCM matroidal ideal of degree 2 for i = 1, ..., d − 1. By using the proof of theorem 3.8, Ji is a SCM
matroidal ideal with Supp(Ji) = {yd, yd+1, ..., yn} for i = 1, ..., d − 1.

It is known that the localization of each SCM matroidal ideal is a SCM matroidal ideal. The following
example shows that the converse is not true.

Example 4.2. Let n = 4 and J = (x1x3, x1x4, x2x3, x2x4). Then J is a matroidal ideal and (J : xi) is SCM matroidal
for i = 1, 2, 3, 4; but J is not SCM.

Proof. It is clear that J is matroidal and (J : xi) is SCM matroidal for i = 1, 2, 3, 4. Since J∨ = (x1x2, x3x4), it
follows that reg(J∨) = 3. Therefore J is not SCM.

From now on, as Lemma 4.1, for a SCM matroidal ideal J of degree d and gcd(J) = 1 in R with n ≥ 5, we
can write

J = y1...yd−1p + y1y2...yd−2 J1 + y1y2...yd−3yd−1 J2 + ... + y2y3...yd−1 Jd−1 + Jd,

where p = (yd, ..., yn) is a monomial prime ideal, Ji is a SCM matroidal ideal of degree 2 with Supp(Ji) =
{yd, yd+1, ..., yn} for i = 1, ..., d − 1 and Jd ⊆ ∩

d−1
i=1 Ji.

Note that if for instance gcd(J1) = yd, then we have

J = y1...yd−1p + y1y2...yd−2ydq + y1y2...yd−3yd−1 J2 + ... + y1y3...yd−2 Jd−2 + y2y3...yd−1 Jd−1 + Jd,

where q = (yd+1, ..., yn).
Bandari and Herzog in [1, Proposition 2.7] proved that if n = 3 and J is a matroidal ideal with gcd(J) = 1,

then J is a square-free Veronese ideal and so by theorem 1.2, it is CM (see also [17, Proposition 1.5]). In the
following proposition we prove this result in the case n = 4 for SCM ideals.

Proposition 4.3. Let n = 4 and J be a matroidal ideal of R of degree d and gcd(J) = 1. Then J is a SCM ideal if and
only if J is

(a) a square-free Veronese ideal, or
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(b) an almost square-free Veronese ideal.

Proof. (⇐=) is clear by theorem 1.2 and Lemma 3.7.
(=⇒). If d = 1, 3, 4, then by theorem 1.2 and [16, Lemma 2.16] J is a square-free Veronese ideal. If d = 2,

then by theorem 3.8, J = y1p + J′, where p is a monomial prime ideal with y1 < p, height(p) = 3 and J′ is a
SCM matroidal ideal with Supp(J′) = {y2, y3, y4}. If gcd(J′) = 1, then J′ is a square-free Veronese ideal and
so is J. If gcd(J′) , 1, then J′ is an almost square-free Veronese ideal.

Proposition 4.4. Let n = 4 and J be a matroidal ideal of R of degree d. Then J is a SCM ideal if and only if
proj dim(R/J) = bi1ht(J).

Proof. (=⇒). It follows by Proposition 2.8.
(⇐=). If d = 1, 3, 4, then by Remark 3.5 J is SCM. Let d = 2. By our hypothesis, there exists p ∈ Ass(R/J)

such that p = (J : y1). Thus J = y1p + J′, where J′ is matroidal ideal of degree 2 in K[y2, y3, y4]. Hence J′

is a square-free Veronese ideal or an almost square-free Veronese ideal. Therefore by Proposition 4.3, J is
SCM.

Lemma 4.5. Let n ≥ 5 and J be a matroidal ideal of degree 3 in R such that J = y1y2p+ y1y3q+ y2y3q, where p and
q are monomial prime ideals with y1, y2 < p and y1, y2, y3 < q such that height(p) = n− 2, height(q) = n− 3. Then
J is SCM.

Proof. Since J = p ∩ (y1y2, y1y3q, y2y3q), it follows that J = p ∩ (y1, y2) ∩ (y1, y3) ∩ (y2, y3) ∩ (y1, q) ∩ (y2, q).
Therefore J∨ = (y1y2, y1y3, y2y3, y1q

∨, y2q
∨, p∨). It is clear that J∨ is a monomial ideal with linear quotients

and so by Proposition 2.2, J∨ is componentwise linear. Thus J is SCM.

Lemma 4.6. Let n ≥ 5 and J be a matroidal ideal of degree 3 such that

J = y1y2p + y1y3q1 + y2y4q2 + J1,

where p, q1 and q2 are monomial prime ideals with y1, y2 < p, y1, y2, y3 < q1 and y1, y2, y4 < q2 such that
height(p) = n − 2, height(q1) = n − 3 = height(q2) and J1 is a matroidal ideal in R′ = K[y3, ..., yn]. Then
G(J1) = {y3y4yi | i = 5, 6, ...,n}. In particular, J is not SCM.

Proof. We consider two cases:

Case (a) J1 = 0, then we have y1y3y5, y2y3y4 ∈ J but y2y3y5 or y3y4y5 are not elements of J. Thus J is not a
matroidal ideal and this is a contradiction.

Case (b) J1 , 0.

1) For n = 5, J1 = (y3y4y5) and

J = (y1, y4) ∩ (y2, y3) ∩ (y1, y2, J1) ∩ (y2, y3, J1) ∩ (y1, q2) ∩ (y2, q1) ∩ p.

Therefore reg(J∨[2]) = 3 and so J is not SCM.

2) Suppose that n ≥ 6. Then (J : y3) = (y1y2, y2y4, y1q1, (J1 : y3)). If yiy j ∈ (J : y3) for 5 ≤ i , j ≤ n,
then y2yi ∈ (J : y3) for i ≥ 5, since y2y4 ∈ (J : y3). But this is a contradiction. Therefore y3yiy j < J
for all 5 ≤ i , j ≤ n. Consider (J : y4), we have y4yiy j < J for all 5 ≤ i , j ≤ n. Also, if
yiy jyt ∈ J for different numbers i, j, t with 5 ≤ i, j, t ≤ n, then since y1y3yi ∈ J, we have y3yiy j ∈ J
or y3yiyt ∈ J and this is a contradiction. Thus G(J1) ⊆ {y3y4yi | i = 5, 6, ...,n}. On the other
hand, since y2y4yi and y1y3yi are elements in J for i ≥ 5 we have y3y4yi ∈ J for i ≥ 5. Hence
G(J1) = {y3y4yi | i = 5, 6, ...,n}. Therefore

J = (y1, y4) ∩ (y2, y3) ∩ (y1, y2, J1) ∩ (y1, q2) ∩ (y2, q1) ∩ p

and so J∨ = (y1y4, y2y3, y1y2 J∨1 , y1q
∨

2 , y2q
∨

1 , p
∨). Thus reg(J∨[2]) = 3 and so J is not SCM.



M. Jafari et al. / Filomat 34:13 (2020), 4233–4244 4240

Lemma 4.7. Let n ≥ 6 and J be a matroidal ideal of degree 3 such that J = y1y2p + y1y3q + y2 J1, where p and q are
monomial prime ideals with y1, y2 < p, y1, y2, y3 < q such that height(p) = n − 2, height(q) = n − 3 and J1 is a
matroidal ideal in R′ = K[y3, ..., yn] with gcd(J1) = 1. Then J is not SCM matroidal.

Proof. By contrary, we assume that J is SCM matroidal. Then (J : y2) = y1p + J1 is SCM matroidal and so by
theorem 3.8 J1 is SCM matroidal of degree 2. From gcd(J1) = 1, we have J1 = yiq1 + J2, where q1 and J2 are
a monomial prime ideal of height n − 3 and a matroidal ideal respectively in R′ = K[y3, ..., yi−1, yi+1, ..., yn].
There are two main cases to consider.

a) i = 3, then (J : y j) = (y1y2, y1y3, y2y3, y2(J2 : y j)) when j , 1, 2, 3. Since yt ∈ (J2 : y j) for t , 1, 2, 3, j,
we have y2yt and y1y3 are elements of (J : y j) but y1yt or y3yt are not elements of (J : y j). This is a
contradiction.

b) i , 3, then (J : yi) = (y1y2, y1y3, y2q1). Thus y2yt and y1y3 for t , 3 are elements of (J : yi) but y1yt or y3yt
are not elements of (J : yi) and this is a contradiction. Thus J is not SCM matroidal.

Lemma 4.8. Let n ≥ 6 and J be a matroidal ideal of degree 3 such that J = y1y2p + y1y3q + y2 J1 + J2 or J =
y1y2p + y1y3q + y2y3q + J2, where p and q are monomial prime ideals with y1, y2 < p, y1, y2, y3 < q such that
height(p) = n − 2, height(q) = n − 3 and J1 is a nonzero matroidal ideal in R′ = K[y3, ..., yn] with gcd(J1) = 1.
Then G(J2) ⊆ {y3yiy j | 4 ≤ i , j ≤ n} and if J2 , 0, then Supp(J2) = {y3, y4, ..., yn}. In particular, if J =
y1y2p + y1y3q + y2y3q + J2, then J2 = 0.

Proof. Let us consider J = y1y2p + y1y3q + y2 J1 + J2. Then we have (J : yt) = (y1y2, y1y3, y2(J1 : yt), (J2 : yt))
for some t ≥ 4. If yiy jyt ∈ J for some different numbers 4 ≤ i, j, t ≤ n, then yiy j ∈ (J : yt). Since
y1y3 ∈ (J : yt), it follows that y1yi ∈ (J : yt) for some i ≥ 4 and this is a contradiction. It therefore follows
that G(J2) ⊆ {y3yiy j | 4 ≤ i , j ≤ n}. Also, (J : y3) = (y1y2, y1q, y2(J1 : y3), (J2 : y3)). If yiy j ∈ (J : y3)
for some 4 ≤ i , j ≤ n, then yiyt ∈ (J : y3) for all t with 4 ≤ i , t ≤ n since y1yt ∈ (J : y3). Hence
Supp(J2) = {y3, y4, ..., yn}. The proof for the case J = y1y2p + y1y3q + y2y3q + J2 is similar to the above
argument. In particular, if y3yiy j ∈ J2 for some 4 ≤ i , j ≤ n then from y1y2yt ∈ J for some 4 ≤ i , t , j ≤ n
we have yiy jyt ∈ J. This is a contradiction. Thus J2 = 0.

Proposition 4.9. Let n = 5 and J be a matroidal ideal of degree 3 such that gcd(J) = 1. Then J is a SCM ideal if
and only if J = y1y2p + y1 J1 + y2 J2 + J3, where J1 and J2 are SCM ideals with Supp(J1) = Supp(J2) = {y3, y4, y5},
J3 ⊆ J1 ∩ J2 and satisfying in the one of the following cases:

(a) gcd(J1) = 1, gcd(J2) = 1, or

(b) gcd(J1) = y3 = gcd(J2) and J3 = 0.

Proof. (⇐=). Consider (a). Then J1 and J2 are square-free Veronese ideal and G(J3) ⊆ {y3y4y5}. If J3 = 0, then
J is an almost square-free Veronese ideal and so by using Lemma 3.7, J is a SCM matroidal ideal. If J3 , 0,
then J is a square-free Veronese ideal and so J is a SCM matroidal ideal.

If we have the case (b), then by Lemma 4.5 the result follows.
(=⇒). Let J be a SCM, then by Lemma 4.1, J has the presentation J = y1y2p + y1 J1 + y2 J2 + J3, where J1

and J2 are SCM matroidal ideals with Supp(J1) = Supp(J2) = {y3, y4, y5} and J3 ⊆ J1 ∩ J2.

1) If gcd(J1) = y3 and gcd(J2) = y4, then by Lemma 4.6 J is not a SCM matroidal ideal and we don’t have
this case.

2) If gcd(J1) = gcd(J2) = y3, then J3 = 0. Let contrary, then G(J3) = {y3y4y5} and y1y2y5, y3y4y5 ∈ J but y1y4y5
or y2y4y5 are not elements of J. This is a contradiction.

3) If gcd(J1) = y3, gcd(J2) = 1 and J3 = 0, then y1y3y5, y2y4y5 ∈ J but y1y4y5 or y3y4y5 are not elements of J.
Therefore J is not matroidal and we don’t have this case.
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4) If gcd(J1) = y3, gcd(J2) = 1 and G(J3) = {y3y4y5}, then by change of variables (a) follows with J3 = 0.

Proposition 4.10. Let n = 6 and let J be a matroidal ideal of degree 4 such that gcd(J) = 1. Then J is a SCM ideal if
and only if J = y1y2y3p + y1y2 J1 + y1y3 J2 + y2y3 J3 + J4 such that J1, J2, J3 are SCM matroidal ideals and satisfying
in one of the following conditions:

(a) for i = 1, 2, 3, gcd(Ji) = 1 and | G(J4) |= 3,

(b) for i = 1, 2, 3, gcd(Ji) = 1 and | G(J4) |= 2,

(c) for i = 1, 2, 3, gcd(Ji) = 1 and J4 = 0, or

(d) for i = 1, 2, 3, gcd(Ji) = y4 and J4 = 0.

Proof. (⇐=). If we have (a), then J is a square-free Veronese ideal and so by theorem 1.2, J is SCM. Consider
case (b), then J is an almost square-free Veronese ideal and so by Lemma 3.7, J is SCM. If we consider (d),
then by using the same proof of Lemma 4.5 J∨ has linear quotients and so J is SCM. Let (c), then we have
J = p∩ (y1, y2)∩ (y1, y3)∩ (y2, y3)∩ (y1, J3)∩ (y2, J2)∩ (y3, J1) and so J∨ = (y1y2, y1y3, y2y3, y1 J∨3 , y2 J∨2 , y3 J∨1 , p

∨).
That is, J∨ has linear quotients. Thus J is SCM.

(=⇒). Let J be a SCM ideal. Then by Lemma 4.1, J = y1y2y3p + y1y2 J1 + y1y3 J2 + y2y3 J3 + J4 and J1, J2, J3
are SCM matroidal ideals. Let gcd(J1) = y4. Since (J : y1) = y2y3p + y2 J1 + y3 J2 + (J4 : y1), gcd(J : y1) = 1
and (J : y1) is a SCM matroidal ideal, by Proposition 4.9 it follows gcd(J2) = y4 and (J4 : y1) = 0. Again
by using (J : y2) and (J : y3), we obtain gcd(J1) = gcd(J3) = gcd(J2) = y4 and J4 = 0. Also, if for some i,
gcd(Ji) = 1, then by Proposition 4.9 and by using (J : y1), (J : y2) and (J : y3) we have gcd(Ji) = 1 for i = 1, 2, 3.
If G(J4) = {y1y4y5y6}, then J is not a matroidal ideal since y1y4y5y6, y2y3y5y6 ∈ J, but y2y4y5y6 or y3y4y5y6
are not elements of J. Thus J4 = 0 or | G(J4) |= 2 or | G(J4) |= 3 and this completes the proof.

Proposition 4.11. Let n ≥ 6 and let J be a matroidal ideal of degree n − 2 such that gcd(J) = 1. Then J is a SCM
ideal if and only if

J =y1y2...yn−3p + y1y2...yn−4 J1 + y1y2...yn−5yn−3 J2 + ...+

y1y3...yn−3 Jn−4 + y2y3...yn−3 Jn−3 + Jn−2

such that Ji is SCM matroidal ideal for all i = 1, ..,n − 3 and satisfying in one of the following conditions:

(a) for i = 1, ...,n − 3, gcd(Ji) = 1 and | G(Jn−2) |=
(n−3

2
)
,

(b) for i = 1, ...,n − 3, gcd(Ji) = 1 and | G(Jn−2) |=
(n−3

2
)
− 1,

(c) for i = 1, ...,n − 3, gcd(Ji) = 1 and Jn−2 = 0, or

(d) for i = 1, ...n − 3, gcd(Ji) = yn−2 and Jn−2 = 0.

Proof. (⇐=).
If case (a) holds, then J is a square-free Veronese ideal and so by theorem 1.2, J is SCM. Let (b), then J is

an almost square-free Veronese ideal and so by Lemma 3.7, J is SCM. If (d), then by using the same proof of
Lemma 4.5, J∨ has linear quotients and so J is SCM. Let (c), then we have

J =p ∩ (y1, y2) ∩ ... ∩ (y1, yn−3) ∩ (y2, y3) ∩ ... ∩ (y2, yn−3)
∩ ... ∩ (yn−4, yn−3) ∩ (y1, Jn−3) ∩ ... ∩ (yn−3, J1)

and so
J∨ = (y1y2, ..., y1yn−3, y2y3, ..., y2yn−3, ..., yn−4yn−3, y1 J∨n−3, ..., yn−3 J∨1 , p

∨).

Since Ji are square-free Veronese ideals, it follows that J∨ has linear quotients. That is, J is SCM.
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(=⇒). Let J be a SCM ideal. Then by Lemma 4.1,

J =y1y2...yn−3p + y1y2...yn−4 J1 + y1y2...yn−5yn−3 J2 + ...+

y1y3...yn−3 Jn−4 + y2y3...yn−3 Jn−3 + Jn−2

and Ji are SCM matroidal ideals for all i = 1, ...,n − 3. We use induction on n ≥ 6. If n = 6, then the result
follows by Proposition 4.10. Let n > 6 and gcd(J1) = yn−2.

(J : y1) = y2y3...yn−3p + y2...yn−4 J1 + y2...yn−5yn−3 J2 + ... + y3...yn−3 Jn−4 + (Jn−2 : y1),

gcd(J : y1) = 1 and (J : y1) is a SCM matroidal ideal, by induction hypothesis it follows gcd(Ji) = yn−2 for
i = 1, ...,n− 4 and (Jn−2 : y1) = 0. Again by using (J : yi) for i = 2, ...,n− 3 and by using induction hypothesis,
gcd(Ji) = yn−2 for i = 1, ...n − 3 and Jn−2 = 0. Also, if for some i, gcd(Ji) = 1, then again by using (J : yi) for
i = 1, ...,n−3 and by using induction hypothesis we have gcd(Ji) = 1 for i = 1, ...,n−3. If | G(Jn−2) |<

(n−3
2
)
−1,

then there exists 1 ≤ i ≤ n − 3 such that | G(I : yi) |<
(n−4

2
)
− 1 and this is a contradiction. Thus Jn−2 = 0 or

| G(Jn−2) |=
(n−3

2
)

or | G(Jn−2) |=
(n−3

2
)
− 1 and this completes the proof.

Theorem 4.12. Let n = 6 and let J be a matroidal ideal of degree 3 such that gcd(J) = 1. Then J is a SCM ideal if
and only if J = y1y2p + y1 J1 + y2 J2 + J3 such that J1 and J2 are SCM matroidal ideals and satisfying in one of the
following conditions:

(a) | G(J3) |= 4 and one of J1 or J2 is an almost square-free Veronese ideal and the other is a square-free Veronese
ideal,

(b) | G(J3) |= 3, J1, J2 are square-free Veronese ideals,

(c) J3 = 0 and J1 = J2 are square-free Veronese ideals or almost square-free Veronese ideals either J3 = 0 and
gcd(J1) = y3 = gcd(J2).

Proof. (⇐=). If we consider the (a) or (b), then J is a square-free Veronese ideal or an almost square-free
Veronese ideal and so J is SCM. Consider (c) and suppose that gcd(J1) = gcd(J2) = y3. Then by using Lemma
4.5, J is SCM. Also, for (c) if J1 = J2 are square-free Veronese ideals or almost square-free Veronese ideals,
we have J∨ = (y1y2, y1 J∨2 , y2 J∨1 , p

∨) and so J∨ has linear quotients. Thus J is SCM.
(=⇒). Let J be a SCM ideal. Then by Lemma 4.1, J = y1y2p + y1 J1 + y2 J2 + J3 and J1 and J2 are SCM

matroidal ideals and J3 ⊆ J1 ∩ J2 with (J3) = {y3, y4, y5, y6}. Therefore | G(J3) |≤ 4. We have four cases:

Case (i) Suppose that | G(J3) |= 4 ,then by Lemmas 4.6 and 4.8 we have gcd(J1) = 1 = gcd(J2). By Proposition
4.3, we have the case (a) if we prove J1 and J2 aren’t almost square-free Veronese ideals in the same
time. Let contrary, if y1y3y5, y2y3y5 are not elements of J, then y1y2y3, y3y4y5 ∈ J. But y1y3y5 or y2y3y5
are not elements of J and this is a contradiction.

If y1y3y5, y2y3y6 are not elements of J, then

(J : y3) =(y1y2, y1(y4, y6), y2(y4, y5), y4y5, y4y6, y5y6)
=y4(y1, y2, y5, y6) + (y1y2, y1y6, y2y5, y5y6).

By theorem 3.8, (y1y2, y1y6, y2y5, y5y6) is not SCM and this is a contradiction.

If y1y3y5, y2y4y6 are not elements of J, then (J∨[3]) = (y1y3y5, y2y4y6) and so reg(J∨[3]) = 5. Thus J is not
SCM and this is a contradiction.

Case (ii) Let | G(J3) |= 3. We consider the following cases.

1) If gcd(J1) = y3 and gcd(J2) = 1, then G(J3) = {y3y4y5, y3y4y6, y3y5y6}, by Lemma 4.8. gcd(J2) =
1, so by Proposition 4.3, J2 is a square-free Veronese ideal or an almost square-free Veronese
ideal. If J2 = (y2y3y4, y2y3y5, y2y3y6, y2y4y5, y2y4y6) is an almost square-free Veronese ideal,
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then y3y5y6, y1y2y4 ∈ J but y1y5y6 or y2y5y6 either y4y5y6 are not elements of J and this is a
contradiction. So J2 is a square-free Veronese ideal and by using a new presentation for J and
change of variables we get J1 and J2 are square-free Veronese ideals and J3 = 0 and this is the
case (c).

2) If gcd(J1) = y3 and gcd(J2) = y4, then by Lemma 4.6 we have | G(J3) |= 2 and this is a contradiction.

3) If gcd(J1) = y3 = gcd(J2), then y1y2y4, y3y4y5 ∈ J but y1y4y5 or y2y4y5 are not elements of J and this
is a contradiction.

4) Let gcd(J1) = 1 = gcd(J2). Suppose that J1 is a square-free Veronese ideal and J2 is an almost
square-free Veronese ideal. We assume that J2 = (y2y3y4, y2y3y5, y2y3y6, y2y4y5, y2y4y6). Since
| G(J3) |= 3, we can assume that one of the element y3y5y6 or y3y4y6 are not in J. If y3y5y6 < J,
then y2y3y5, y1y5y6 ∈ J but y2y5y6 or y3y5y6 are not elements of J and this is a contradiction. If
y3y4y6 < J, then (J : y6) = (y1y2, y1(y3, y4, y5), y2(y3, y4), y3y5, y4y5). Therefore by using theorem
3.8 this is not SCM. Thus we do not have this case. Also, by the same argument of the Case
(i), J1 and J2 are not almost square-free Veronese ideals in the same time. Therefore J1, J2 are
square-free Veronese ideals and we have the case (b).

Case (iii) Let | G(J3) |= 2. Then by Lemmas 4.6, 4.8, we have gcd(J1) = y3, gcd(J2) = 1 or gcd(J1) =
1 = gcd(J2). If gcd(J1) = y3, gcd(J2) = 1, then we can assume that G(J3) = {y3y4y5, y3y4y6}. Since
gcd(J2) = 1, by Proposition 4.3 J2 is square-free Veronese ideal or almost Veronese ideal. If J2 is
square-free Veronese ideal, then y2y5y6, y3y4y5 ∈ J but y3y5y6 or y4y5y6 are not elements of J and this
is a contradiction. Let J2 be an almost square-free Veronese ideal and we assume that y5y6 is the
only element which is not in J2. In this case by change of variables we have J3 = 0 and J1 = J2 are
almost square-free Veronese ideals and and this is the case (c). If y4y5 is the only element which is
not in J2, then y3y4y5, y2y4y6 are elements of J but y2y4y5 or y4y5y6 are not elements of J and this is a
contradiction. Also, if y4y6 is the only element which is not in J2, then again J is not matroidal and this
is a contradiction. Now we can assume that J3 = 0. If gcd(J1) = y3, then by Lemmas 4.6, 4.8 we have
gcd(J2) = 1 or gcd(J2) = y3. If gcd(J2) = 1, then y1y3y5 and y2yiy j are elements of J for some i, j = 4, 5, 6,
but y1yiy j or y3yiy j are not elements of J and this is a contradiction. Therefore gcd(J2) = y3 and this is
the case (c). Also, if gcd(J1) = 1 then gcd(J2) = 1. If J1 , J2 are almost square-free Veronese ideals, then
again by using the above argument J is not matroidal and this is a contradiction. Therefore J1 = J2 are
square-free Veronese ideals or almost square-free Veronese ideals.

Case (iv) Let | G(J3) |= 1. Then by Lemmas 4.6, 4.8, we have gcd(J1) = 1 = gcd(J2). Therefore by Proposition
4.3 J1 and J2 are square-free Veronese ideals or almost Veronese ideals. By choosing one element from
J1 and the only element from J3, we have | G(J3) |≥ 2. This is a contradiction.
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