

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Sequentially Cohen-Macaulay Matroidal Ideals

Madineh Jafaria, Amir Mafia, Hero Saremib

^aDepartment of Mathematics, University of Kurdistan, P.O. Box: 416, Sanandaj, Iran. ^bDepartment of Mathematics, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.

Abstract. Let $R = K[x_1, ..., x_n]$ be the polynomial ring in n variables over a field K and let K and let K and let K and ideal of degree K in K. Our main focus is determining when matroidal ideals are sequentially Cohen-Macaulay. In particular, all sequentially Cohen-Macaulay matroidal ideals of degree 2 are classified. Furthermore, we give a classification of sequentially Cohen-Macaulay matroidal ideals of degree K in some special cases.

Introduction

Our goal is to classify the sequentially Cohen-Macaulay matroidal ideals. While for the Cohen-Macaulay property of matroidal ideals, a complete classification was given by Herzog and Hibi [10], the classification of the sequentially Cohen-Macaulay matroidal ideals seems to be much harder. In the present paper partial answers to this problem are given. Herzog and Hibi [9] were the first to give a systematic treatment of polymatroidal ideals and they studied some combinatoric and algebraic properties related to it. They defined the polymatroidal ideal, a monomial ideal having the exchange property. A square-free polymatroidal ideal is called a matroidal ideal. Herzog and Takayama [13] proved that all polymatroidal ideals have linear quotients which implies that they have linear resolutions. Herzog and Hibi [10] proved that a polymatroidal ideal *I* is Cohen-Macaulay (i.e. CM) if and only if *I* is a principal ideal, a Veronese ideal, or a square-free Veronese ideal.

Let $R = K[x_1, ..., x_n]$ be the polynomial ring in n indeterminate over a field K and $I \subset R$ be a homogeneous ideal. For a positive integer i, let (I_i) be the ideal generated by all forms in I of degree i. We say that I is componentwise linear if for each positive integer i, (I_i) has a linear resolution. Componentwise linear ideals were first introduced by Herzog and Hibi [8] to generalize Eagon and Reiner's result that the Stanley-Reisner ideal I_{Δ} of simplicial complex Δ has a linear resolution if and only if the Alexander dual Δ is C.M [5]. In particular, Herzog and Hibi [8] and Herzog, Reiner, and Welker [12] showed that the Stanley-Reisner ideal I_{Δ} is componentwise linear if and only if Δ is sequentially Cohen-Macaulay(i.e. SCM).

It is of interest to understand the SCM matroidal ideals, and this paper may be considered as a first attempt to characterize such ideals for matroidal ideals in low degree or in a small number of variables. The remainder of this paper is organized as follows. Section 1 and 2 recall some definitions and results of componentwise linear ideals, simplicial complexes, and polymatroidal ideals. Section 3 classifies all SCM

2010 Mathematics Subject Classification. 13C14, 13F20, 05B35

Keywords. Sequentially Cohen-Macaulay, monomial ideals, matroidal ideals

Received: 03 January 2020; Accepted: 07 September 2020

Communicated by Dijana Mosić

Email addresses: madineh.jafari3978@gmail.com (Madineh Jafari), a.mafi@ipm.ir (Amir Mafi), hero.saremi@gmail.com (Hero Saremi)

matroidal ideals of degree 2. Section 4 studies SCM matroidal ideals of degree $d \ge 3$ over polynomial rings of small dimensional.

For any unexplained notion or terminology, we refer the reader to [11] and [21]. Several explicit examples were performed with help of the computer algebra systems Macaulay2 [7].

1. Preliminaries

In this section, we recall some definitions and results used throughout the paper. As in the introduction, let K be a field and $R = K[x_1, ..., x_n]$ be the polynomial ring in n variables over K with each deg $x_i = 1$. Let $I \subset R$ be a monomial ideal and G(I) be its unique minimal set of monomial generators of I.

We say that a monomial ideal I with $G(I) = \{u_1, ..., u_r\}$ has *linear quotients* if there is an ordering $\deg(u_1) \le \deg(u_2) \le ... \le \deg(u_r)$ such that for each $2 \le i \le r$ the colon ideal $(u_1, ..., u_{i-1}) : u_i$ is generated by a subset $\{x_1, ..., x_n\}$ It is known that if a monomial ideal I generated in single degree has linear quotients, then I has a linear resolution (see [3, Lemma 4.1]). In particular, a monomial ideal I generated in degree I has a linear resolution if and only if the Castelnuovo-Mumford regularity of I is $\operatorname{reg}(I) = I$ (see [20, Lemma 49]).

Lemma 1.1. [4, Corollary 20.19] If $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is a short exact sequence of graded finitely generated *R*-modules, then

- (a) $reg A \le max(reg B, reg C + 1)$.
- (b) reg B ≤ max(reg A, reg C),
- (c) $\operatorname{reg} C \leq \max(\operatorname{reg} A 1, \operatorname{reg} B)$.
- (d) If A has a finite length, set $s(A) = \max\{s : A_s \neq 0\}$, then $\operatorname{reg}(A) = s(A)$ and the equality holds in (b).

One of the important classes of monomial ideals with linear quotients is the class of polymatroid ideals. Let $I \subset R$ be a monomial ideal generated in one degree. We say that I is *polymatroidal* if the following "exchange condition" is satisfied: For any two monomials $u = x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}$ and $v = x_1^{b_1} x_2^{b_2} \dots x_n^{b_n}$ belong to G(I) such that $\deg_{x_i}(v) < \deg_{x_i}(u)$, there exists an index j with $\deg_{x_j}(u) < \deg_{x_j}(v)$ such that $x_j(u/x_i) \in G(I)$. The polymatroidal ideal I is called *matroidal* if I is generated by square-free monomials. Note that if I is a matroidal ideal of degree d, then $\operatorname{depth}(R/I) = d - 1$ (see [2]).

Theorem 1.2. [10, theorem 4.2] A polymatroidal ideal I is CM if and only if I is a principal ideal, a Veronese ideal, or a square-free Veronese ideal.

2. review on componentwise linear ideals

For a homogeneous ideal I, we write (I_i) to denote the ideal generated by the degree i elements of I. Note that (I_i) is different from I_i , the vector space of all degree i elements of I. Herzog and Hibi introduced the following definition in [8].

Definition 2.1. A monomial ideal I is componentwise linear if (I_i) has a linear resolution for all i.

A number of familiar classes of ideals are componentwise linear. For example, all ideals with linear resolutions, all stable ideals, all square-free strongly stable ideals are componentwise linear (see [11]).

Proposition 2.2. [6, Proposition 2.6] If Iis a homogeneous ideal with linear quotients, then I is componentwise linear.

If I is generated by square-free monomials, then we denote by $I_{[i]}$ the ideal generated by the square-free monomials of degree i of I.

Theorem 2.3. [8, Proposition 1.5] Let I be a monomial ideal generated by square-free monomials. Then I is componentwise linear if and only if $I_{[i]}$ has a linear resolution for all i.

The notion of componentwise linearity is intimately related to the concept of sequential Cohen-Macaulayness.

Definition 2.4. [18] A graded R-module M is called sequentially Cohen-Macaulay (SCM) if there exists a finite filtration of graded R-modules $0 = M_0 \subset M_1 \subset ... \subset M_r = M$ such that each M_i/M_{i-1} is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

$$\dim(M_1/M_0) < \dim(M_2/M_1) < ... < \dim(M_r/M_{r-1}).$$

The theorem connecting sequentially Cohen-Macaulayness to componentwise linearity is based on the idea of Alexander duality. We recall the definition of Alexander duality for square-free monomial ideals and then state the fundamental result of Herzog and Hibi [8] and Herzog, Reiner, and Welker [12].

Let Δ be a simplicial complex on the vertex set $V = \{x_1, x_2, ..., x_n\}$, i.e., Δ is a collection of subsets V such that (1) $\{x_i\} \in \Delta$ for each i = 1, 2, ..., n and (2) if $F \in \Delta$ and $G \subseteq F$, then $G \in \Delta$. Let Δ^{\vee} denote the dual simplicial complex of Δ , that is to say, $\Delta^{\vee} = \{V \setminus F \mid F \notin \Delta\}$.

If I is a square-free monomial ideal, then the square-free Alexander dual of $I = (x_{1,1}...x_{1,n_1},...,x_{t,1}...x_{t,n_t})$ is the ideal $I^{\vee} = (x_{1,1},...,x_{1,n_1}) \cap ... \cap (x_{t,1},...,x_{t,n_t})$.

We quote the following results which are proved in [5], [8], [19] and [15].

Theorem 2.5. Let I be a square-free monomial ideal of R. Then the following conditions hold:

- (a) R/I is CM if and only if the Alexander dual I^{\vee} has a linear resolution.
- (b) R/I is SCM if and only if the Alexander dual I^{\vee} is componentwise linear.
- (c) $\operatorname{projdim}(R/I) = \operatorname{reg}(I^{\vee}).$
- (d) If $y_1, ..., y_r$ is an R-sequence with $\deg(y_i) = d_i$ and $I = (y_1, ..., y_r)$, then $\operatorname{reg}(I) = d_1 + ... + d_r r + 1$.

In the following if $G(I) = \{u_1, ..., u_t\}$, then we set $\text{supp}(I) = \bigcup_{i=1}^t \text{supp}(u_i)$, where $\text{supp}(u) = \{x_i : u = x_1^{a_1} ... x_n^{a_n}, a_i \neq 0\}$. Also we set $\gcd(I) = \gcd(u_1, ..., u_m)$ and $\deg(I) = \max\{\deg(u_1), ..., \deg(u_m)\}$.

Throughout this paper we assume that all matroidal ideals are full supported, that is, supp(I) = { x_1 , ..., x_n }.

Corollary 2.6. [6, Corollary 6.6] Let Δ be a simplicial complex on n vertices, and let I_{Δ} be it's Stanley-Reisner ideal, minimally generated by square-free monomials $m_1, ..., m_s$. If $s \leq 3$, so that Δ has at most three minimal nonfaces, or if $\operatorname{Supp}(m_i) \cup \operatorname{Supp}(m_j) = \{x_1, ..., x_n\}$ for all $i \neq j$, then Δ is SCM.

Definition 2.7. *Let* I *be a monomial ideal of* R. *Then the big height of* I, *denoted by bight*(I), *is* max{height(\mathfrak{p})| $\mathfrak{p} \in Ass(R/I)$ }.

Note that, if *I* is a matroidal ideal of degree *d*, then by Auslander-Buchasbum formula $bight(I) \le n - d + 1$.

Proposition 2.8. [21, Corollary 6.4.20]. Let I be a monomial ideal of R such that R/I is SCM. Then proj dim(R/I) = bight(I).

The following examples say that the converse of Proposition 2.8 is not true even if I is matroidal with gcd(I) = 1.

Example 2.9. Let n = 5 and $I = (x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_2x_3, x_2x_4, x_3x_5, x_4x_5)$ be an ideal of R. Then I is a matroidal ideal of R with proj dim(R/I) = bight(I) but I is not SCM.

Proof. It is clear that *I* is a matroidal ideal and

$$Ass(R/I) = \{(x_1, x_3, x_4), (x_1, x_2, x_5), (x_2, x_3, x_4, x_5)\}.$$

Thus $I_{[3]}^{\vee}=(x_1x_3x_4,x_1x_2x_5)$ and so $\operatorname{reg}(I_{[3]}^{\vee})=4$. Hence I^{\vee} is not componentwise linear resolution. Therefore I is not SCM but $\operatorname{proj\,dim}(R/I)=4=bight(I)$. \square

3. SCM matroidal ideals of degree 2

In this section, we classify all SCM matroid ideals of degree 2.

Lemma 3.1. Let n = 3 and I be a matroidal ideal in R generated in degree d. Then I is a SCM ideal.

Proof. Let n = 3, then every matroidal ideal in R generated by at most three square-free monomials and so by Corollary 2.6 we have the result. \Box

Lemma 3.2. Let I be a monomial ideal of R such that $I = (u_1, ..., u_d)$ and $deg(u_i) \le deg(u_d) = d$ for all i. If reg(I) = d, then $reg(I_i) = i$ for all i > d.

Proof. Consider the following exact sequence for i > d,

$$0 \longrightarrow \frac{I}{(I_i)} \longrightarrow \frac{R}{(I_i)} \longrightarrow \frac{R}{I} \longrightarrow 0.$$

 $l(\frac{I}{(I_i)}) < \infty$, so by Lemma 1.1 (d) $reg(\frac{I}{(I_i)}) = i - 1$ and

$$reg(\frac{R}{(I_i)}) = max\{reg(\frac{R}{I}), reg(\frac{I}{(I_i)})\} = max\{d - 1, i - 1\} = i - 1.$$

On the other hand $reg(I_i) = reg(\frac{R}{(I_i)}) + 1$, that is, $reg(I_i) = i$ for all i > d. \square

Proposition 3.3. Let I be monomial ideal which is componentwise linear in R. Then $J = (x_{n+1}, I)$ is componentwise linear in $R' = K[x_1, ..., x_n, x_{n+1}]$.

Proof. Suppose that $I = (u_1, ..., u_m)$, where $\deg(u_i) = d_i$ and $d_{i-1} \le d_i$ for i = 2, ..., m. We induct on m, the number of minimal generators of I. If m = 1, then $I = (x_{n+1}, u_1)$. Set $J' = x_{n+1}R'$. Note that $(J_j) = (J'_j)$ for all $j < d_1$ and so (J_j) has a linear resolution for all $j < d_1$. By theorem 2.5, $\operatorname{reg}(J) = d_1$. Thus (J_{d_1}) has a linear resolution and also (J_j) has a linear resolution for all $j > d_1$, by using Lemma 3.2.

Now, let m > 1 and assume that the ideal $L = (x_{n+1}, u_1, ..., u_{m-1})$ is componentwise linear. Set $J = (L, u_m) = (I, x_{n+1})$. Note that $(J_j) = (L_j)$ for all $j < d_m$ and so (J_j) has a linear resolution for all $j < d_m$. Hence by using [14, Lemma 3.2] we have $\operatorname{reg}(J) = \operatorname{reg}(I) = d_m$. Therefore (J_{d_m}) has a linear resolution. Again, by using Lemma 3.2, we have (J_j) has a linear resolution for all $j > d_m$. This completes the proof. \square

Corollary 3.4. Let I be a SCM matroidal ideal in R and let $J = x_{n+1}I$ be a monomial ideal in $R' = K[x_1, ..., x_n, x_{n+1}]$. Then I is a SCM matroidal ideal in $R' = k[x_1, ..., x_n, x_{n+1}]$.

Proof. The Alexander dual of J is $J^{\vee} = (x_{n+1}, I^{\vee})$ and by our hypothesis on I, I^{\vee} is componentwise linear resolution. Thus by Proposition 3.3, J^{\vee} is componentwise linear resolution. Thus J is a SCM matroidal ideal of R'. \square

One of the most distinguished polymatroidal ideals is the ideal of Veronese type. Consider the fixed positive integers d and $1 \le a_1 \le ... \le a_n \le d$. The ideal of *Veronese type* of R indexed by d and $(a_1, ..., a_n)$ is the ideal $I_{(d;a_1,...,a_n)}$ which is generated by those monomials $u = x_1^{i_1}...x_n^{i_n}$ of R of degree d with $i_j \le a_j$ for each $1 \le j \le n$.

Remark 3.5. Let I be a SCM matroidal ideal in R and let $J = x_{n+1}...x_mI$ be a monomial ideal in $R' = K[x_1, ..., x_n, x_{n+1}, ..., x_m]$. Then, by induction on m, J is a SCM matroidal ideal in $R' = K[x_1, ..., x_n, x_{n+1}, ..., x_m]$. Hence for a SCM matroidal ideal J, we can assume that gcd(J) = 1. By using [16, Lemma 2.16] all fully supported matroid ideals of degree $n - 1(n \ge 2)$ are Veronese type ideals and then by theorem 1.2, all matroidal ideals generated in degrees d = 1, n - 1, n are SCM.

Definition 3.6. Let I be a square-free Veronese ideal of degree d. We say that J is an almost square-free Veronese ideal of degree d when $J \neq 0$, $G(J) \subseteq G(I)$ and

 $|G(J)| \ge |G(I)| -1$. Note that every square-free Veronese ideal is an almost quare-free Veronese ideal. Also, if J is an almost square-free Veronese ideal of degree n, then J is a square-free Veronese ideal.

Lemma 3.7. Let J be an almost square-free Veronese ideal of degree d < n. Then J is a SCM matroidal ideal of R.

Proof. Suppose that $y_1, ..., y_n$ is an arbitrary permutation of the variables of R such that $\{y_1, ..., y_n\} = \{x_1, ..., x_n\}$ and let I be a square-free Veronese ideal of degree d. We may assume that $I = J + (y_{n-d+1}y_{n-d+2}...y_n)$. Then we have $J = (y_1, ..., y_{n-d}) \cap I$ and so J is a matroidal ideal. Therefore $J^{\vee} = (y_1...y_{n-d}, I^{\vee})$. Set $J' = (y_1...y_{n-d})$. Then, for all $i \le n - d$, $J^{\vee}_{[i]} = J'_{[i]}$ and so it is componentwise linear. For all $i \ge n - d + 1$, $J^{\vee}_{[i]}$ is a square-free Veronese ideal and so J^{\vee} is a componentwise linear ideal. Hence J is a SCM matroidal ideal, as required. □

From now on, we will let $y_1, ..., y_n$ be an arbitrary permutation variables of R such that $\{x_1, ..., x_n\} = \{y_1, ..., y_n\}$.

Theorem 3.8. Let J be a matroidal ideal of R with deg(J) = 2 and gcd(J) = 1. Then J is SCM if and only if there exists a permutation of variables such that the following hold:

- (a) $J = y_1 \mathfrak{p} + J'$, where \mathfrak{p} is a monomial prime ideal with $y_1 \notin \mathfrak{p}$, height(\mathfrak{p}) = n 1 and J' is a SCM matroidal ideal with Supp(J') = $\{y_2, ..., y_n\}$ and gcd(J') = 1, or
- (b) $J = y_1 \mathfrak{p} + y_2 \mathfrak{q}$, where \mathfrak{p} and \mathfrak{q} are monomial prime ideals with $y_1 \notin \mathfrak{p}$ and $y_1, y_2 \notin \mathfrak{q}$ such that height(\mathfrak{p}) = n-1, height(\mathfrak{q}) = n-2.

Proof. (\Leftarrow). Consider the case (a). We have $J = \mathfrak{p} \cap (y_1, J')$, then $J^{\vee} = (\mathfrak{p}^{\vee}, y_1 J'^{\vee})$ and $\mathfrak{p}^{\vee} \in (u)$ for all $u \in J'^{\vee}$. Since $J^{\vee}_{[i]} = y_1 J'^{\vee}_{[i-1]}$ for all $i \leq n-2$, and $J'^{\vee}_{[i-1]}$ is componentwise linear, it follows that $J^{\vee}_{[i]}$ is componentwise linear for all $i \leq n-2$. now consider the exact sequence

$$0 \longrightarrow R/(y_1J'^\vee: \mathfrak{p}^\vee)(-n+1) \xrightarrow{y_2y_3...y_n} R/y_1J'^\vee \longrightarrow R/(\mathfrak{p}^\vee, y_1J'^\vee) \longrightarrow 0.$$

From $(y_1J'^{\vee}: \mathfrak{p}^{\vee}) = (y_1)$, we have $\operatorname{reg}(R/(y_1J'^{\vee}: \mathfrak{p}^{\vee})) = 0$. Since $\operatorname{deg}(\mathfrak{p}^{\vee}) = n-1$, we have $\operatorname{reg}(R/(\mathfrak{p}^{\vee}, y_1J'^{\vee})) \ge n-2$. Since $y_1J'^{\vee}$ is componentwise linear and $\operatorname{deg}(u) \le n-2$ for all $u \in J'^{\vee}$, by [11, Corollary 8.2.14] we have $\operatorname{reg}(R/y_1J'^{\vee}) \le n-2$. By using Lemma 1.1,

$$reg(R/(\mathfrak{p}^{\vee}, y_1 J'^{\vee})) \le \max\{reg(R/(y_1 J'^{\vee} : \mathfrak{p}^{\vee})(-n+1)) - 1, reg(R/y_1 J'^{\vee})\}\$$

$$= \max\{n - 2, reg(R/y_1 J'^{\vee})\}.$$

It therefore follows $\operatorname{reg}(R/(\mathfrak{p}^{\vee},y_1J'^{\vee}))=n-2$. Thus $J^{\vee}_{[n-1]}$ has a linear resolution and so J is a SCM ideal.

Let us consider the case (*b*). $J = (y_1, y_2) \cap (y_1, \mathfrak{q}) \cap \mathfrak{p}$ and so $J^{\vee} = (y_1y_2, y_1\mathfrak{q}^{\vee}, \mathfrak{p}^{\vee})$. It is clear that J^{\vee} is a monomial ideal with linear quotients. Thus, by Proposition 2.2, J^{\vee} is componentwise linear and so J is a SCM ideal.

(⇒). Let J be a SCM ideal. Then there exists $\mathfrak{p} \in \operatorname{Ass}(R/J)$ such that height(\mathfrak{p}) = proj dim(R/J) = n-1. Since $J = \cap_{i=1}^n (J:y_i)$ and deg(J) = 2, we can consider $\mathfrak{p} = (J:y_1)$ and $\mathfrak{p} = (y_2,...,y_n)$. Hence $J = y_1\mathfrak{p} + J'$, where J' is a matroidal ideal of degree 2 in $K[y_2,...,y_n]$. We claim that Supp(J') = $\{y_2,...,y_n\}$. Let $y_l \notin \operatorname{Supp}(J')$, where $l \geq 2$. Thus $y_1y_l,y_jy_k \in J$, where $j,k \geq 2$. Since J is a matroidal ideal, it follows y_ly_k or $y_ly_j \in J$. Hence y_ly_k or $y_ly_j \in J'$ and this is a contradiction. Therefore Supp(J') = $\{y_2,...,y_n\}$. $J = \mathfrak{p} \cap (J',y_1)$, it follows that $J^\vee = (\mathfrak{p}^\vee,y_1J'^\vee)$. For all $i \leq n-2$, we have $J^\vee_{[i]} = y_1J'^\vee_{[i-1]}$ and so $J'^\vee_{[i-1]}$ has a linear resolution for all $i \leq n-2$. Since $J^\vee_{[n-1]} = y_1J'^\vee_{[n-2]} + (\mathfrak{p}^\vee)$ and $\operatorname{reg}(J^\vee_{[n-1]}) = n-1$, it follows that $\operatorname{reg}(J'^\vee_{[n-2]}) \leq n-2$. Therefore $J'^\vee_{[n-2]}$ has a linear resolution and so J'^\vee is componentwise linear. That is J' is a SCM matroidal ideal of degree 2. If $\operatorname{gcd}(J') = 1$, then J satisfy in the case (a). If $\operatorname{gcd}(J') \neq 1$, then we have the case (b). This completes the proof. \square

4. SCM matroidal ideals over polynomial rings of small dimensional

We start this section by the following fundamental lemma.

Lemma 4.1. Let $n \ge 5$ and J be a matroidal ideal of degree d in R and gcd(J) = 1. If J is SCM, then

$$J = y_1 y_2 ... y_{d-1} \mathfrak{p} + y_1 y_2 ... y_{d-2} J_1 + y_1 y_2 ... y_{d-3} y_{d-1} J_2 + ... + y_1 y_3 ... y_{d-1} J_{d-2} + y_2 y_3 ... y_{d-1} J_{d-1} + J_d,$$

where $\mathfrak{p}=(y_d,...,y_n)$ is a monomial prime ideal, J_i is a SCM matroidal ideal of degree 2 with $Supp(J_i)=\{y_d,y_{d+1},...,y_n\}$ for i=1,...,d-1 and $J_d\subseteq \cap_{i=1}^{d-1}J_i$.

Proof. J is a SCM matroidal ideal, then there is a prime ideal $\mathfrak{p} \in \mathrm{Ass}(R/J)$ such that height(\mathfrak{p}) = proj dim(R/J). Since depth(R/J) = d-1, it follows that height(\mathfrak{p}) = n-d+1. For every square-free monomial ideal in R, we have $J = \bigcap_{i=1}^n (J:y_i)$. It follows that $\mathfrak{p} = (J:y_1y_2...y_{d-1})$ and we can write $J = y_1...y_{d-1}\mathfrak{p} + J'$, where J' is a square-free monomial ideal of degree d. It is clear that J' has a presentation

$$J' = y_1 y_2 ... y_{d-2} J_1 + y_1 y_2 ... y_{d-3} y_{d-1} J_2 + ... + y_1 y_3 ... y_{d-1} J_{d-2} + y_2 y_3 ... y_{d-1} J_{d-1} + J_d$$

and $J_d \subseteq \bigcap_{i=1}^{d-1} J_i$. Note that gcd(J) = 1 and

$$(J: y_1y_2...y_{d-i-1}y_{d-i+1}...y_{d-1}) = y_{d-i}\mathfrak{p} + J_i,$$

we have height(J) \geq 2 and so $J_i \neq 0$ for i = 1, ..., d - 1. It is known that the localization of every SCM ideal is SCM and so

$$(J: y_1y_2...y_{d-i-1}y_{d-i+1}...y_{d-1}) = y_{d-i}\mathfrak{p} + J_i$$

is a SCM matroidal ideal of degree 2 for i=1,...,d-1. By using the proof of theorem 3.8, J_i is a SCM matroidal ideal with Supp(J_i) = { $y_d, y_{d+1}, ..., y_n$ } for i=1,...,d-1. \square

It is known that the localization of each SCM matroidal ideal is a SCM matroidal ideal. The following example shows that the converse is not true.

Example 4.2. Let n = 4 and $J = (x_1x_3, x_1x_4, x_2x_3, x_2x_4)$. Then J is a matroidal ideal and $(J : x_i)$ is SCM matroidal for i = 1, 2, 3, 4; but J is not SCM.

Proof. It is clear that J is matroidal and $(J: x_i)$ is SCM matroidal for i = 1, 2, 3, 4. Since $J^{\vee} = (x_1x_2, x_3x_4)$, it follows that $\operatorname{reg}(J^{\vee}) = 3$. Therefore J is not SCM. \square

From now on, as Lemma 4.1, for a SCM matroidal ideal J of degree d and gcd(J) = 1 in R with $n \ge 5$, we can write

$$J = y_1...y_{d-1}\mathfrak{p} + y_1y_2...y_{d-2}J_1 + y_1y_2...y_{d-3}y_{d-1}J_2 + ... + y_2y_3...y_{d-1}J_{d-1} + J_d,$$

where $\mathfrak{p}=(y_d,...,y_n)$ is a monomial prime ideal, J_i is a SCM matroidal ideal of degree 2 with Supp $(J_i)=\{y_d,y_{d+1},...,y_n\}$ for i=1,...,d-1 and $J_d\subseteq \cap_{i=1}^{d-1}J_i$.

Note that if for instance $gcd(J_1) = y_d$, then we have

$$J = y_1...y_{d-1}\mathfrak{p} + y_1y_2...y_{d-2}y_d\mathfrak{q} + y_1y_2...y_{d-3}y_{d-1}J_2 + ... + y_1y_3...y_{d-2}J_{d-2} + y_2y_3...y_{d-1}J_{d-1} + J_d,$$

where $q = (y_{d+1}, ..., y_n)$.

Bandari and Herzog in [1, Proposition 2.7] proved that if n = 3 and J is a matroidal ideal with gcd(J) = 1, then J is a square-free Veronese ideal and so by theorem 1.2, it is CM (see also [17, Proposition 1.5]). In the following proposition we prove this result in the case n = 4 for SCM ideals.

Proposition 4.3. Let n = 4 and J be a matroidal ideal of R of degree d and gcd(J) = 1. Then J is a SCM ideal if and only if J is

(a) a square-free Veronese ideal, or

(b) an almost square-free Veronese ideal.

Proof. (\iff) is clear by theorem 1.2 and Lemma 3.7.

(⇒). If d = 1, 3, 4, then by theorem 1.2 and [16, Lemma 2.16] J is a square-free Veronese ideal. If d = 2, then by theorem 3.8, $J = y_1 \mathfrak{p} + J'$, where \mathfrak{p} is a monomial prime ideal with $y_1 \notin \mathfrak{p}$, height(\mathfrak{p}) = 3 and J' is a SCM matroidal ideal with Supp(J') = { y_2, y_3, y_4 }. If $\gcd(J') = 1$, then J' is a square-free Veronese ideal and so is J. If $\gcd(J') \neq 1$, then J' is an almost square-free Veronese ideal. \Box

Proposition 4.4. Let n = 4 and J be a matroidal ideal of R of degree d. Then J is a SCM ideal if and only if proj dim(R/J) = bight(J).

Proof. (\Longrightarrow) . It follows by Proposition 2.8.

(\Leftarrow). If d = 1, 3, 4, then by Remark 3.5 J is SCM. Let d = 2. By our hypothesis, there exists $\mathfrak{p} \in \operatorname{Ass}(R/J)$ such that $\mathfrak{p} = (J : y_1)$. Thus $J = y_1\mathfrak{p} + J'$, where J' is matroidal ideal of degree 2 in $K[y_2, y_3, y_4]$. Hence J' is a square-free Veronese ideal. Therefore by Proposition 4.3, J is SCM. \square

Lemma 4.5. Let $n \ge 5$ and J be a matroidal ideal of degree 3 in R such that $J = y_1y_2\mathfrak{p} + y_1y_3\mathfrak{q} + y_2y_3\mathfrak{q}$, where \mathfrak{p} and \mathfrak{q} are monomial prime ideals with $y_1, y_2 \notin \mathfrak{p}$ and $y_1, y_2, y_3 \notin \mathfrak{q}$ such that height(\mathfrak{p}) = n - 2, height(\mathfrak{q}) = n - 3. Then J is SCM.

Proof. Since $J = \mathfrak{p} \cap (y_1y_2, y_1y_3\mathfrak{q}, y_2y_3\mathfrak{q})$, it follows that $J = \mathfrak{p} \cap (y_1, y_2) \cap (y_1, y_3) \cap (y_2, y_3) \cap (y_1, \mathfrak{q}) \cap (y_2, \mathfrak{q})$. Therefore $J^{\vee} = (y_1y_2, y_1y_3, y_2y_3, y_1\mathfrak{q}^{\vee}, y_2\mathfrak{q}^{\vee}, \mathfrak{p}^{\vee})$. It is clear that J^{\vee} is a monomial ideal with linear quotients and so by Proposition 2.2, J^{\vee} is componentwise linear. Thus J is SCM. \square

Lemma 4.6. Let $n \ge 5$ and J be a matroidal ideal of degree 3 such that

$$J = y_1 y_2 \mathfrak{p} + y_1 y_3 \mathfrak{q}_1 + y_2 y_4 \mathfrak{q}_2 + J_1$$

where \mathfrak{p} , \mathfrak{q}_1 and \mathfrak{q}_2 are monomial prime ideals with $y_1, y_2 \notin \mathfrak{p}$, $y_1, y_2, y_3 \notin \mathfrak{q}_1$ and $y_1, y_2, y_4 \notin \mathfrak{q}_2$ such that height(\mathfrak{p}) = n-2, height(\mathfrak{q}_1) = n-3 = height(\mathfrak{q}_2) and J_1 is a matroidal ideal in $R' = K[y_3, ..., y_n]$. Then $G(J_1) = \{y_3y_4y_i \mid i=5,6,...,n\}$. In particular, J is not SCM.

Proof. We consider two cases:

Case (a) $J_1 = 0$, then we have $y_1y_3y_5$, $y_2y_3y_4 \in J$ but $y_2y_3y_5$ or $y_3y_4y_5$ are not elements of J. Thus J is not a matroidal ideal and this is a contradiction.

Case (b) $J_1 \neq 0$.

1) For n = 5, $J_1 = (y_3y_4y_5)$ and

$$J = (y_1, y_4) \cap (y_2, y_3) \cap (y_1, y_2, J_1) \cap (y_2, y_3, J_1) \cap (y_1, q_2) \cap (y_2, q_1) \cap \mathfrak{p}.$$

Therefore $reg(J_{2}) = 3$ and so J is not SCM.

2) Suppose that $n \ge 6$. Then $(J: y_3) = (y_1y_2, y_2y_4, y_1\mathfrak{q}_1, (J_1: y_3))$. If $y_iy_j \in (J: y_3)$ for $5 \le i \ne j \le n$, then $y_2y_i \in (J: y_3)$ for $i \ge 5$, since $y_2y_4 \in (J: y_3)$. But this is a contradiction. Therefore $y_3y_iy_j \notin J$ for all $5 \le i \ne j \le n$. Consider $(J: y_4)$, we have $y_4y_iy_j \notin J$ for all $5 \le i \ne j \le n$. Also, if $y_iy_jy_t \in J$ for different numbers i, j, t with $5 \le i, j, t \le n$, then since $y_1y_3y_i \in J$, we have $y_3y_iy_j \in J$ or $y_3y_iy_t \in J$ and this is a contradiction. Thus $G(J_1) \subseteq \{y_3y_4y_i \mid i = 5, 6, ..., n\}$. On the other hand, since $y_2y_4y_i$ and $y_1y_3y_i$ are elements in J for $i \ge 5$ we have $y_3y_4y_i \in J$ for $i \ge 5$. Hence $G(J_1) = \{y_3y_4y_i \mid i = 5, 6, ..., n\}$. Therefore

$$J = (y_1, y_4) \cap (y_2, y_3) \cap (y_1, y_2, J_1) \cap (y_1, \mathfrak{q}_2) \cap (y_2, \mathfrak{q}_1) \cap \mathfrak{p}$$

and so $J^{\vee} = (y_1 y_4, y_2 y_3, y_1 y_2 J_1^{\vee}, y_1 q_2^{\vee}, y_2 q_1^{\vee}, \mathfrak{p}^{\vee})$. Thus $\operatorname{reg}(J_{12}^{\vee}) = 3$ and so J is not SCM.

Lemma 4.7. Let $n \ge 6$ and J be a matroidal ideal of degree 3 such that $J = y_1y_2\mathfrak{p} + y_1y_3\mathfrak{q} + y_2J_1$, where \mathfrak{p} and \mathfrak{q} are monomial prime ideals with $y_1, y_2 \notin \mathfrak{p}$, $y_1, y_2, y_3 \notin \mathfrak{q}$ such that height(\mathfrak{p}) = n-2, height(\mathfrak{q}) = n-3 and J_1 is a matroidal ideal in $R' = K[y_3, ..., y_n]$ with $\gcd(J_1) = 1$. Then J is not SCM matroidal.

Proof. By contrary, we assume that J is SCM matroidal. Then $(J: y_2) = y_1 \mathfrak{p} + J_1$ is SCM matroidal and so by theorem 3.8 J_1 is SCM matroidal of degree 2. From $\gcd(J_1) = 1$, we have $J_1 = y_i \mathfrak{q}_1 + J_2$, where \mathfrak{q}_1 and J_2 are a monomial prime ideal of height n-3 and a matroidal ideal respectively in $R' = K[y_3, ..., y_{i-1}, y_{i+1}, ..., y_n]$. There are two main cases to consider.

- a) i = 3, then $(J : y_j) = (y_1y_2, y_1y_3, y_2y_3, y_2(J_2 : y_j))$ when $j \neq 1, 2, 3$. Since $y_t \in (J_2 : y_j)$ for $t \neq 1, 2, 3, j$, we have y_2y_t and y_1y_3 are elements of $(J : y_j)$ but y_1y_t or y_3y_t are not elements of $(J : y_j)$. This is a contradiction.
- b) $i \neq 3$, then $(J: y_i) = (y_1y_2, y_1y_3, y_2\mathfrak{q}_1)$. Thus y_2y_t and y_1y_3 for $t \neq 3$ are elements of $(J: y_i)$ but y_1y_t or y_3y_t are not elements of $(J: y_i)$ and this is a contradiction. Thus J is not SCM matroidal.

Lemma 4.8. Let $n \ge 6$ and J be a matroidal ideal of degree 3 such that $J = y_1y_2\mathfrak{p} + y_1y_3\mathfrak{q} + y_2J_1 + J_2$ or $J = y_1y_2\mathfrak{p} + y_1y_3\mathfrak{q} + y_2y_3\mathfrak{q} + J_2$, where \mathfrak{p} and \mathfrak{q} are monomial prime ideals with $y_1, y_2 \notin \mathfrak{p}$, $y_1, y_2, y_3 \notin \mathfrak{q}$ such that height(\mathfrak{p}) = n - 2, height(\mathfrak{q}) = n - 3 and J_1 is a nonzero matroidal ideal in $R' = K[y_3, ..., y_n]$ with $\gcd(J_1) = 1$. Then $G(J_2) \subseteq \{y_3y_iy_j \mid 4 \le i \ne j \le n\}$ and if $J_2 \ne 0$, then $\operatorname{Supp}(J_2) = \{y_3, y_4, ..., y_n\}$. In particular, if $J = y_1y_2\mathfrak{p} + y_1y_3\mathfrak{q} + y_2y_3\mathfrak{q} + J_2$, then $J_2 = 0$.

Proof. Let us consider $J = y_1y_2\mathfrak{p} + y_1y_3\mathfrak{q} + y_2J_1 + J_2$. Then we have $(J:y_t) = (y_1y_2, y_1y_3, y_2(J_1:y_t), (J_2:y_t))$ for some $t \geq 4$. If $y_iy_jy_t \in J$ for some different numbers $4 \leq i, j, t \leq n$, then $y_iy_j \in (J:y_t)$. Since $y_1y_3 \in (J:y_t)$, it follows that $y_1y_i \in (J:y_t)$ for some $i \geq 4$ and this is a contradiction. It therefore follows that $G(J_2) \subseteq \{y_3y_iy_j \mid 4 \leq i \neq j \leq n\}$. Also, $(J:y_3) = (y_1y_2, y_1\mathfrak{q}, y_2(J_1:y_3), (J_2:y_3))$. If $y_iy_j \in (J:y_3)$ for some $4 \leq i \neq j \leq n$, then $y_iy_t \in (J:y_3)$ for all t with $4 \leq i \neq t \leq n$ since $y_1y_t \in (J:y_3)$. Hence Supp $(J_2) = \{y_3, y_4, ..., y_n\}$. The proof for the case $J = y_1y_2\mathfrak{p} + y_1y_3\mathfrak{q} + y_2y_3\mathfrak{q} + J_2$ is similar to the above argument. In particular, if $y_3y_iy_j \in J_2$ for some $4 \leq i \neq j \leq n$ then from $y_1y_2y_t \in J$ for some $4 \leq i \neq t \neq j \leq n$ we have $y_iy_jy_t \in J$. This is a contradiction. Thus $J_2 = 0$. □

Proposition 4.9. Let n = 5 and J be a matroidal ideal of degree 3 such that gcd(J) = 1. Then J is a SCM ideal if and only if $J = y_1y_2\mathfrak{p} + y_1J_1 + y_2J_2 + J_3$, where J_1 and J_2 are SCM ideals with $Supp(J_1) = Supp(J_2) = \{y_3, y_4, y_5\}$, $J_3 \subseteq J_1 \cap J_2$ and satisfying in the one of the following cases:

- (a) $gcd(J_1) = 1$, $gcd(J_2) = 1$, or
- (b) $gcd(J_1) = y_3 = gcd(J_2)$ and $J_3 = 0$.

Proof. (\Leftarrow). Consider (a). Then J_1 and J_2 are square-free Veronese ideal and $G(J_3) \subseteq \{y_3y_4y_5\}$. If $J_3 = 0$, then J is an almost square-free Veronese ideal and so by using Lemma 3.7, J is a SCM matroidal ideal. If $J_3 \neq 0$, then J is a square-free Veronese ideal and so J is a SCM matroidal ideal.

If we have the case (*b*), then by Lemma 4.5 the result follows.

- (⇒). Let *J* be a SCM, then by Lemma 4.1, *J* has the presentation $J = y_1y_2\mathfrak{p} + y_1J_1 + y_2J_2 + J_3$, where J_1 and J_2 are SCM matroidal ideals with Supp(J_1) = Supp(J_2) = { y_3 , y_4 , y_5 } and $J_3 \subseteq J_1 \cap J_2$.
- 1) If $gcd(J_1) = y_3$ and $gcd(J_2) = y_4$, then by Lemma 4.6 J is not a SCM matroidal ideal and we don't have this case.
- 2) If $gcd(J_1) = gcd(J_2) = y_3$, then $J_3 = 0$. Let contrary, then $G(J_3) = \{y_3y_4y_5\}$ and $y_1y_2y_5$, $y_3y_4y_5 \in J$ but $y_1y_4y_5$ or $y_2y_4y_5$ are not elements of J. This is a contradiction.
- 3) If $gcd(J_1) = y_3$, $gcd(J_2) = 1$ and $J_3 = 0$, then $y_1y_3y_5$, $y_2y_4y_5 \in J$ but $y_1y_4y_5$ or $y_3y_4y_5$ are not elements of J. Therefore J is not matroidal and we don't have this case.

4) If $gcd(J_1) = y_3$, $gcd(J_2) = 1$ and $G(J_3) = \{y_3y_4y_5\}$, then by change of variables (*a*) follows with $J_3 = 0$.

Proposition 4.10. Let n = 6 and let J be a matroidal ideal of degree 4 such that gcd(J) = 1. Then J is a SCM ideal if and only if $J = y_1y_2y_3p + y_1y_2J_1 + y_1y_3J_2 + y_2y_3J_3 + J_4$ such that J_1, J_2, J_3 are SCM matroidal ideals and satisfying in one of the following conditions:

(a) for
$$i = 1, 2, 3$$
, $gcd(J_i) = 1$ and $|G(J_4)| = 3$,

(b) for
$$i = 1, 2, 3$$
, $gcd(J_i) = 1$ and $|G(J_4)| = 2$,

(c) for
$$i = 1, 2, 3$$
, $gcd(J_i) = 1$ and $J_4 = 0$, or

(d) for
$$i = 1, 2, 3$$
, $gcd(J_i) = y_4$ and $J_4 = 0$.

Proof. (\iff). If we have (*a*), then *J* is a square-free Veronese ideal and so by theorem 1.2, *J* is SCM. Consider case (*b*), then *J* is an almost square-free Veronese ideal and so by Lemma 3.7, *J* is SCM. If we consider (*d*), then by using the same proof of Lemma 4.5 J^{\vee} has linear quotients and so *J* is SCM. Let (*c*), then we have $J = \mathfrak{p} \cap (y_1, y_2) \cap (y_1, y_3) \cap (y_2, y_3) \cap (y_1, J_3) \cap (y_2, J_2) \cap (y_3, J_1)$ and so $J^{\vee} = (y_1y_2, y_1y_3, y_2y_3, y_1J_3^{\vee}, y_2J_2^{\vee}, y_3J_1^{\vee}, \mathfrak{p}^{\vee})$. That is, J^{\vee} has linear quotients. Thus *J* is SCM.

(\Longrightarrow). Let J be a SCM ideal. Then by Lemma 4.1, $J=y_1y_2y_3\mathfrak{p}+y_1y_2J_1+y_1y_3J_2+y_2y_3J_3+J_4$ and J_1,J_2,J_3 are SCM matroidal ideals. Let $\gcd(J_1)=y_4$. Since $(J:y_1)=y_2y_3\mathfrak{p}+y_2J_1+y_3J_2+(J_4:y_1)$, $\gcd(J:y_1)=1$ and $(J:y_1)$ is a SCM matroidal ideal, by Proposition 4.9 it follows $\gcd(J_2)=y_4$ and $(J_4:y_1)=0$. Again by using $(J:y_2)$ and $(J:y_3)$, we obtain $\gcd(J_1)=\gcd(J_3)=\gcd(J_2)=y_4$ and $J_4=0$. Also, if for some i, $\gcd(J_i)=1$, then by Proposition 4.9 and by using $(J:y_1)$, $(J:y_2)$ and $(J:y_3)$ we have $\gcd(J_i)=1$ for i=1,2,3. If $G(J_4)=\{y_1y_4y_5y_6\}$, then J is not a matroidal ideal since $y_1y_4y_5y_6,y_2y_3y_5y_6\in J$, but $y_2y_4y_5y_6$ or $y_3y_4y_5y_6$ are not elements of J. Thus $J_4=0$ or $|G(J_4)|=2$ or $|G(J_4)|=3$ and this completes the proof. \square

Proposition 4.11. Let $n \ge 6$ and let J be a matroidal ideal of degree n-2 such that gcd(J)=1. Then J is a SCM ideal if and only if

$$J = y_1 y_2 ... y_{n-3} \mathfrak{p} + y_1 y_2 ... y_{n-4} J_1 + y_1 y_2 ... y_{n-5} y_{n-3} J_2 + ... + y_1 y_3 ... y_{n-3} J_{n-4} + y_2 y_3 ... y_{n-3} J_{n-3} + J_{n-2}$$

such that I_i is SCM matroidal ideal for all i = 1, ..., n - 3 and satisfying in one of the following conditions:

(a) for
$$i = 1, ..., n - 3$$
, $gcd(J_i) = 1$ and $|G(J_{n-2})| = {n-3 \choose 2}$,

(b) for
$$i = 1, ..., n - 3$$
, $gcd(J_i) = 1$ and $|G(J_{n-2})| = {n-3 \choose 2} - 1$,

(c) for
$$i = 1, ..., n - 3$$
, $gcd(J_i) = 1$ and $J_{n-2} = 0$, or

(d) for
$$i = 1, ...n - 3$$
, $gcd(J_i) = y_{n-2}$ and $J_{n-2} = 0$.

Proof. $(\Leftarrow=)$.

If case (a) holds, then J is a square-free Veronese ideal and so by theorem 1.2, J is SCM. Let (b), then J is an almost square-free Veronese ideal and so by Lemma 3.7, J is SCM. If (d), then by using the same proof of Lemma 4.5, J^{\vee} has linear quotients and so J is SCM. Let (c), then we have

$$J = \mathfrak{p} \cap (y_1, y_2) \cap ... \cap (y_1, y_{n-3}) \cap (y_2, y_3) \cap ... \cap (y_2, y_{n-3})$$

$$\cap ... \cap (y_{n-4}, y_{n-3}) \cap (y_1, J_{n-3}) \cap ... \cap (y_{n-3}, J_1)$$

and so

$$J^{\vee}=(y_1y_2,...,y_1y_{n-3},y_2y_3,...,y_2y_{n-3},...,y_{n-4}y_{n-3},y_1J_{n-3}^{\vee},...,y_{n-3}J_1^{\vee},\mathfrak{p}^{\vee}).$$

Since J_i are square-free Veronese ideals, it follows that J^{\vee} has linear quotients. That is, J is SCM.

 (\Longrightarrow) . Let *J* be a SCM ideal. Then by Lemma 4.1,

$$J = y_1 y_2 ... y_{n-3} \mathfrak{p} + y_1 y_2 ... y_{n-4} J_1 + y_1 y_2 ... y_{n-5} y_{n-3} J_2 + ... + y_1 y_3 ... y_{n-3} J_{n-4} + y_2 y_3 ... y_{n-3} J_{n-3} + J_{n-2}$$

and J_i are SCM matroidal ideals for all i = 1, ..., n - 3. We use induction on $n \ge 6$. If n = 6, then the result follows by Proposition 4.10. Let n > 6 and $gcd(J_1) = y_{n-2}$.

$$(J: y_1) = y_2 y_3 \dots y_{n-3} \mathfrak{p} + y_2 \dots y_{n-4} J_1 + y_2 \dots y_{n-5} y_{n-3} J_2 + \dots + y_3 \dots y_{n-3} J_{n-4} + (J_{n-2}: y_1),$$

 $\gcd(J:y_1)=1$ and $(J:y_1)$ is a SCM matroidal ideal, by induction hypothesis it follows $\gcd(J_i)=y_{n-2}$ for i=1,...,n-4 and $(J_{n-2}:y_1)=0$. Again by using $(J:y_i)$ for i=2,...,n-3 and by using induction hypothesis, $\gcd(J_i)=y_{n-2}$ for i=1,...,n-3 and $J_{n-2}=0$. Also, if for some $i,\gcd(J_i)=1$, then again by using $(J:y_i)$ for i=1,...,n-3 and by using induction hypothesis we have $\gcd(J_i)=1$ for i=1,...,n-3. If $|G(J_{n-2})|<\binom{n-3}{2}-1$, then there exists $1 \le i \le n-3$ such that $|G(I:y_i)|<\binom{n-4}{2}-1$ and this is a contradiction. Thus $J_{n-2}=0$ or $|G(J_{n-2})|=\binom{n-3}{2}$ or $|G(J_{n-2})|=\binom{n-3}{2}-1$ and this completes the proof. \square

Theorem 4.12. Let n = 6 and let J be a matroidal ideal of degree 3 such that gcd(J) = 1. Then J is a SCM ideal if and only if $J = y_1y_2p + y_1J_1 + y_2J_2 + J_3$ such that J_1 and J_2 are SCM matroidal ideals and satisfying in one of the following conditions:

- (a) $|G(J_3)| = 4$ and one of J_1 or J_2 is an almost square-free Veronese ideal and the other is a square-free Veronese ideal.
- (b) $|G(J_3)| = 3$, J_1 , J_2 are square-free Veronese ideals,
- (c) $J_3 = 0$ and $J_1 = J_2$ are square-free Veronese ideals or almost square-free Veronese ideals either $J_3 = 0$ and $gcd(J_1) = y_3 = gcd(J_2)$.

Proof. (\Leftarrow). If we consider the (a) or (b), then J is a square-free Veronese ideal or an almost square-free Veronese ideal and so J is SCM. Consider (c) and suppose that $gcd(J_1) = gcd(J_2) = y_3$. Then by using Lemma 4.5, J is SCM. Also, for (c) if $J_1 = J_2$ are square-free Veronese ideals or almost square-free Veronese ideals, we have $J^{\vee} = (y_1y_2, y_1J_2^{\vee}, y_2J_1^{\vee}, \mathfrak{p}^{\vee})$ and so J^{\vee} has linear quotients. Thus J is SCM.

- (⇒). Let J be a SCM ideal. Then by Lemma 4.1, $J = y_1y_2\mathfrak{p} + y_1J_1 + y_2J_2 + J_3$ and J_1 and J_2 are SCM matroidal ideals and $J_3 \subseteq J_1 \cap J_2$ with $(J_3) = \{y_3, y_4, y_5, y_6\}$. Therefore $|G(J_3)| \le 4$. We have four cases:
- **Case (i)** Suppose that $|G(J_3)| = 4$, then by Lemmas 4.6 and 4.8 we have $gcd(J_1) = 1 = gcd(J_2)$. By Proposition 4.3, we have the case (a) if we prove J_1 and J_2 aren't almost square-free Veronese ideals in the same time. Let contrary, if $y_1y_3y_5$, $y_2y_3y_5$ are not elements of J, then $y_1y_2y_3$, $y_3y_4y_5 \in J$. But $y_1y_3y_5$ or $y_2y_3y_5$ are not elements of J and this is a contradiction.

If $y_1y_3y_5$, $y_2y_3y_6$ are not elements of J, then

$$(J: y_3) = (y_1y_2, y_1(y_4, y_6), y_2(y_4, y_5), y_4y_5, y_4y_6, y_5y_6)$$

= $y_4(y_1, y_2, y_5, y_6) + (y_1y_2, y_1y_6, y_2y_5, y_5y_6).$

By theorem 3.8, $(y_1y_2, y_1y_6, y_2y_5, y_5y_6)$ is not SCM and this is a contradiction.

If $y_1y_3y_5$, $y_2y_4y_6$ are not elements of J, then $(J_{[3]}^{\vee}) = (y_1y_3y_5, y_2y_4y_6)$ and so $\operatorname{reg}(J_{[3]}^{\vee}) = 5$. Thus J is not SCM and this is a contradiction.

Case (ii) Let $|G(J_3)| = 3$. We consider the following cases.

1) If $gcd(J_1) = y_3$ and $gcd(J_2) = 1$, then $G(J_3) = \{y_3y_4y_5, y_3y_4y_6, y_3y_5y_6\}$, by Lemma 4.8. $gcd(J_2) = 1$, so by Proposition 4.3, J_2 is a square-free Veronese ideal or an almost square-free Veronese ideal. If $J_2 = (y_2y_3y_4, y_2y_3y_5, y_2y_3y_6, y_2y_4y_5, y_2y_4y_6)$ is an almost square-free Veronese ideal,

then $y_3y_5y_6$, $y_1y_2y_4 \in J$ but $y_1y_5y_6$ or $y_2y_5y_6$ either $y_4y_5y_6$ are not elements of J and this is a contradiction. So J_2 is a square-free Veronese ideal and by using a new presentation for J and change of variables we get J_1 and J_2 are square-free Veronese ideals and $J_3 = 0$ and this is the case (c).

- **2)** If $gcd(J_1) = y_3$ and $gcd(J_2) = y_4$, then by Lemma 4.6 we have $|G(J_3)| = 2$ and this is a contradiction.
- 3) If $gcd(J_1) = y_3 = gcd(J_2)$, then $y_1y_2y_4$, $y_3y_4y_5 \in J$ but $y_1y_4y_5$ or $y_2y_4y_5$ are not elements of J and this is a contradiction.
- **4)** Let $gcd(J_1) = 1 = gcd(J_2)$. Suppose that J_1 is a square-free Veronese ideal and J_2 is an almost square-free Veronese ideal. We assume that $J_2 = (y_2y_3y_4, y_2y_3y_5, y_2y_3y_6, y_2y_4y_5, y_2y_4y_6)$. Since $|G(J_3)| = 3$, we can assume that one of the element $y_3y_5y_6$ or $y_3y_4y_6$ are not in J. If $y_3y_5y_6 \notin J$, then $y_2y_3y_5, y_1y_5y_6 \in J$ but $y_2y_5y_6$ or $y_3y_5y_6$ are not elements of J and this is a contradiction. If $y_3y_4y_6 \notin J$, then $(J:y_6) = (y_1y_2, y_1(y_3, y_4, y_5), y_2(y_3, y_4), y_3y_5, y_4y_5)$. Therefore by using theorem 3.8 this is not SCM. Thus we do not have this case. Also, by the same argument of the **Case** (i), J_1 and J_2 are not almost square-free Veronese ideals in the same time. Therefore J_1 , J_2 are square-free Veronese ideals and we have the case (b).
- Case (iii) Let $|G(J_3)| = 2$. Then by Lemmas 4.6, 4.8, we have $gcd(J_1) = y_3$, $gcd(J_2) = 1$ or $gcd(J_1) = 1 = gcd(J_2)$. If $gcd(J_1) = y_3$, $gcd(J_2) = 1$, then we can assume that $G(J_3) = \{y_3y_4y_5, y_3y_4y_6\}$. Since $gcd(J_2) = 1$, by Proposition 4.3 J_2 is square-free Veronese ideal or almost Veronese ideal. If J_2 is square-free Veronese ideal, then $y_2y_5y_6$, $y_3y_4y_5 \in J$ but $y_3y_5y_6$ or $y_4y_5y_6$ are not elements of J and this is a contradiction. Let J_2 be an almost square-free Veronese ideal and we assume that y_5y_6 is the only element which is not in J_2 . In this case by change of variables we have $J_3 = 0$ and $J_1 = J_2$ are almost square-free Veronese ideals and and this is the case (c). If y_4y_5 is the only element which is not in J_2 , then $y_3y_4y_5$, $y_2y_4y_6$ are elements of J but $y_2y_4y_5$ or $y_4y_5y_6$ are not elements of J and this is a contradiction. Also, if y_4y_6 is the only element which is not in J_2 , then again J is not matroidal and this is a contradiction. Now we can assume that $J_3 = 0$. If $gcd(J_1) = y_3$, then by Lemmas 4.6, 4.8 we have $gcd(J_2) = 1$ or $gcd(J_2) = y_3$. If $gcd(J_2) = 1$, then $y_1y_3y_5$ and $y_2y_iy_j$ are elements of J for some i, j = 4, 5, 6, but $y_1y_iy_j$ or $y_3y_iy_j$ are not elements of J and this is a contradiction. Therefore $gcd(J_2) = y_3$ and this is the case (c). Also, if $gcd(J_1) = 1$ then $gcd(J_2) = 1$. If $J_1 \neq J_2$ are almost square-free Veronese ideals, then again by using the above argument J is not matroidal and this is a contradiction. Therefore $J_1 = J_2$ are square-free Veronese ideals or almost square-free Veronese ideals.
- **Case (iv)** Let $|G(J_3)| = 1$. Then by Lemmas 4.6, 4.8, we have $gcd(J_1) = 1 = gcd(J_2)$. Therefore by Proposition 4.3 J_1 and J_2 are square-free Veronese ideals or almost Veronese ideals. By choosing one element from J_1 and the only element from J_3 , we have $|G(J_3)| \ge 2$. This is a contradiction.

References

- [1] S. Bandari, J. Herzog, Monomial localizations and polymatroidal ideals, Eur. J. Comb 34 (2013) 752–763.
- [2] H. J. Chiang-Hsieh, Some arithmetic properties of matroidal ideals, Comm. Algebra 38 (2010) 944–952.
- [3] A. Conca, J. Herzog, Castelnuovo-Mumford regularity of products of ideals, Collect. Math 54 (2003) 137–152.
- [4] D. Eisenbud, Commutative Algebra with a view towards Algebraic Geometry, GTM, 150, Springer, Berlin, 1995.
- [5] J. Eagon, V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998) 265–275.
- [6] C. Francisco, A. Van Tuyl, Some families of componentwise linear monomial ideals, Nagoya Math. J 187 (2007) 115–156.
- [7] D. R. Grayson, M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
- [8] J. Herzog, T. Hibi, Componentwise linear ideals, Nagoya Math. J 153 (1999) 141–153.
- [9] J. Herzog, T. Hibi, Discrete polymatroids, J. Algebraic Combin 16 (2002) 239–268.
- [10] J. Herzog, T. Hibi, Cohen-Macaulay polymatroidal ideals, Eur. J. Comb 27 (2006) 513–517.
- [11] J. Herzog, T. Hibi, Monomial ideals, GTM, 260, Springer, Berlin, 2011.
- [12] J. Herzog, V. Reiner, V. Welker, Componentwise linear ideals and Golod rings, Michigan Math J 46 (1999) 211–223.
- [13] J. Herzog, Y. Takayama, Resolutions by mapping cones, Homology Homotopy Appl 4 (2002) 277–294.
- [14] L.T. Hoa, N. D.Tam, On some invariants of a mixed product of ideals, Arch. Math 94 (2010) 327–337.

- [15] L. T. Hoa N. V. Trung, On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals, Math. Z 229 (1998)
- [16] Sh. Karimi and A. Mafi, On stability properties of powers of polymatroidal ideals, Collect. Math 70 (2019) 357–365.
- [17] A. Mafi and D. Naderi, Linear resolutions and polymatroidal ideals, to appear in Proc. Mathematical Sciences. [18] R. P. Stanley, Combinatorics and commutative algebra, (2nd. ed), Birkhäuser, Boston, 1996.

- [19] N. Terai, Generalization of Eagon-Reiner theorem and *h*-vectors of graded rings, Preprint (2000). [20] A. Van Tuyl, A beginner's guide to edge and cover ideals, Lecture notes in Math 2083 (2013) 63–94.
- [21] R. H. Villarreal, Monomial Algebras, Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, 2015.