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Abstract. The main aim of this paper is to prove the existence of the fixed point of the sum of two
operators in setting of the cone-normed spaces with the values of cone-norm belonging to an ordered
locally convex space. We apply this result to prove the existence of global solution of the Cauchy problem
with perturbation of the form{

x′ (t) = f [t, x (t)] + 1 [t, x (t)] , t ∈ [0,∞),
x (0) = x0 ∈ F1,

in a scale of Banach spaces {(Fs, ‖.‖s) : s ∈ (0, 1]}.

1. Introduction.

One of the trend in fixed point theory is to extend the structure on which the functions are defined
on. Among several of them, we mention one of the natural extension of metric space:Cone metric space.
Indeed, both cone metric and cone normed spaces (also called a K-metric spaces and K-normed spaces)
are expected extension of the standard metric spaces and standard normed spaces that are obtained by
replacing an ordered Banach space instead of the set of real numbers. The history of the discussion on
cone metric (normed spaces) are back to about 1950. In fact, these spaces have been used in Differential
Equations and Theory Fixed Point in the researches of Kantorovich [15, 16], Collatz [5], P.Zabreiko and
other mathematicians [28]. In 2007, the notion of cone metric is re-introduced by L.G.Huang and X.Zhang
[10], the investigation of fixed point theory in cone-metric spaces (in most cases for contractive mappings)
has again attracted much attention from mathematicians. We refer to the papers [2, 4, 6, 9, 14, 25, 27, 17, 18,
19, 20, 11, 12, 13] for some historical notes, discussion on obtained results and further references. Recently,
it was understood that the cone metric space defined over a normal-cone are equivalent to the standard
metric spaces, see e.g. [1, 7, 21]. On the other hand, for our purpose, we prefer to use the structures of cone
metric (normed) spaces
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The purpose of this paper is to present a type of the Krasnoselkii fixed point theorem for operator T + S
in cone normed spaces with the values of cone norm belonging to an ordered locally convex space. We use
obtained result to prove the existence of global solution of the Cauchy problem with perturbation of the
form

x′ (t) = f [t, x (t)] + 1 [t, x (t)] (1)

in a scale of Banach spaces {(Fs, ‖.‖s) : s ∈ (0, 1]}.
The existence of solutions of (1) with f satisfying Lipschitz-Ovcjannikov condition of the form

‖ f (t,u) − f (t, v)‖s ≤
c

r − s
‖u − v‖r, 0 < s < r ≤ 1

and 1(t,u) = 0 were studied by F.Treves, L.Ovcjannikov, L.Nirenber, T.Nishida, et al [22, 23, 24, 26]. In
case 1 is compact, the problem was studied by H.Begehr [3], M.Ghisi [8], these author was proved the
existence of locally solution of (1). However, we study the problem with a condition that seems stronger
than Lipschitz-Ovcjannikov condition, that is,

∥∥∥ f (t,u) − f (t, v)
∥∥∥

s ≤ l (s) ‖u − v‖s

if ‖u − v‖s is sufficiently small. Our paper may be the first study on such condition as above.
This paper is organized as follows. In section 2, we give some premilinaries on some definitions of ordered
locally convex space and their properties. In section 3, we state the main results which shows the existence
of the fixed point of the sum of two operators in cone-normed spaces. Section 4 illustrate main results in
Section 3 in order to give applications for concrete equations.

2. Preliminaries.

Let E be a real locally convex space. A subset K of E is called a cone if K is a closed convex subset
satisfying λK ⊂ K for all λ ≥ 0 and K ∩ (−K) = {θ}. Assume that the topology on E defined by a separating
family of seminorms Γ satisfying the following condition

θ ≤ x ≤ y⇒ ϕ (x) ≤ ϕ
(
y
)
∀ϕ ∈ Γ. (2)

If in E we define a partial order by x ≤ y if and only if y − x ∈ K, then the triple (E,K,Γ) is called an ordered
locally convex space. An operator 1 : E −→ E is said to be positive if 1 (x) ≥ θ for all x ∈ K.

A sequence (xn), xn ∈ E, is called fundamental in the Cauchy sense, if for any
(
ε, ϕ

)
∈ (0,∞) × Γ, there exist

n0 ∈N such that

ϕ (xn+m − xn) < ε for all n ≥ n0, m ∈N.

The space E is called sequentially complete if each fundamental sequence (in the Cauchy sense) is convergent.

Definition 1 ([28]). Let (E,K,Γ) be an ordered locally convex space and X be a real linear space. A mapping
p : X −→ E is called a cone norm (or K-norm) if

(i) p (x) ∈ K or equivalently p (x) ≥ θE ∀x ∈ X and p (x) = θE if and only if x = θX, where θE, θX are the
zero elements of E and X respectively,

(ii) p (λx) = |λ| p (x) ∀λ ∈ R, ∀x ∈ X,
(iii) p

(
x + y

)
≤ p (x) + p

(
y
)
∀x, y ∈ X.

If p is a cone norm in X, then the pair
(
X, p

)
is called a cone normed space (or K-normed space). The cone

normed space
(
X, p

)
endowed with a topology τ will be denoted by

(
X, p, τ

)
, and it is said to be sequentially
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complete in the Weierstrass sense if each sequence {xn}, xn ∈ X, such that
∞∑

n=1
p (xn+1 − xn) converges in E is

convergent in
(
X, p, τ

)
.

In what follows, we always suppose that (E,K,Γ) is an ordered locally convex space with the family of
seminorms Γ satisfies the condition (2) and

(
X, p, τ

)
is a cone normed space with the topology τ defined

by the family of seminorms
{
ϕ ◦ p : ϕ ∈ Γ

}
. It is easily seen that a sequence {xn} , xn ∈ X, converges to x in(

X, p, τ
)

if and only if
{
ϕp (xn − x)

}
converges to 0 in R for every ϕ ∈ Γ, or, equivalently,

xn
τ
→ x⇔

(
limϕp (xn − x) = 0 ∀ϕ ∈ Γ

)
.

Definition 2. A operator T : C ⊂ X→ X is said to be uniformly continuous on C if for every
(
ϕ, ε

)
∈ Γ×(0,∞)

there exists
(
φ, δ

)
∈ Γ × (0,∞) such that

ϕp
(
Tx − Ty

)
< ε if φp

(
x − y

)
< δ (x, y ∈ C).

3. Main results.

Theorem 3. Let (E,K,Γ) be sequentially complete in the Cauchy sense and
(
X, p, τ

)
be sequentially complete in the

Weierstrass sense. Assume that C is a closed subset in
(
X, p, τ

)
and T : C→ X is an operator satisfying the following

conditions:
(1) T is uniformly continuous on C and Tz (x) = T (x) + z ∈ C for all x, z ∈ C,
(2) there is a sequence of positive continuous operators {Qn : E→ E}n=1,2,... such that the following conditions

hold:
(2a) ∀

(
ϕ, ξ

)
∈ Γ × K , the series

∑
∞

n=1 ϕ [Qn (ξ)] is convergent in R,
(2b) ∀

(
ϕ, ε

)
∈ Γ × (0,∞) and z ∈ C, there exists (δ, r) ∈ (0, ε) × N∗ such that if ϕp

(
x − y

)
< δ + ε, then

ϕp
(
Tr

z (x) − Tr
z
(
y
))
< ε for all x, y ∈ C,

(2c) ∀ϕ ∈ Γ, ∃ϕ′ ∈ Γ (ϕ′ ≥ ϕ) such that

ϕ
[
p
(
Tn

z (x) − Tn
z
(
y
))]
≤ ϕ′

(
Qn

[
p
(
x − y

)])
∀n ∈N∗, x, y, z ∈ C.

Then the operator (I − T)−1 is well defined and continuous on C.

Proof. We first prove that for any z ∈ C, the operator Tz has a unique fixed point in C. In addition, for any
x ∈ C the iterated sequence

{
Tn

z (x)
}
n converges to this fixed point.

Starting with fixed element x0 ∈ C, we construct the iterated sequence xn = Tz (xn−1) , n = 1, 2, .... By
induction we have xn = Tn

z (x0) , xn+1 = Tn
z (x1) . For every

(
ϕ, ε

)
∈ Γ× (0,∞), from the hypothesis (2c), ∃ϕ′ ∈ Γ

such that

ϕp (xn − xn+1) = ϕp
(
Tn

z (x0) − Tn
z (x1)

)
≤ ϕ′Qnp (x0 − x1) .

By the hypothesis (2a) if follows that
∞∑

n=0
ϕ′Qnp (x0 − x1) < ∞. Therefore, there exists n0 ∈N such that

n+m∑
k=n+1

ϕ′Qkp (x0 − x1) < ε for all n ≥ n0, m ∈N.
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Let sn =
n∑

k=0
p (xk − xk+1). We have

ϕ (sn+m − sn) = ϕ

 n+m∑
k=n+1

p (xk − xk+1)


≤

n+m∑
k=n+1

ϕp (xk − xk+1) ≤
n+m∑

k=n+1

ϕ′Qkp (x0 − x1) < ε

for n ≥ n0, m ∈ N. Hence, {sn} is fundament in E. Since E is sequentially complete, we see that the series
∞∑

n=0
p (xn − xn+1) is convergent. By the sequentially complete property (in the Weierstrass sense) of

(
X, p, τ

)
shows that ∃x∗ ∈ X such that xn

τ
→ x∗. We have

ϕp (x∗ − Tz (x∗)) ≤ ϕp (x∗ − xn+1) + ϕp (xn+1 − Tz (x∗))
= ϕp (x∗ − xn+1) + ϕp (Tz (xn) − Tz (x∗))
≤ ϕp (x∗ − xn+1) + ϕ′Q1

(
p (xn − x∗)

)
. (3)

By letting n → ∞ in (3) we conclude that Tz (x∗) = x∗. We shall prove that x∗ is unique. Indeed, if we also
have Tz (a) = a, then for every ϕ ∈ Γ, by condition (2c), ∃ϕ′ ∈ Γ such that

ϕ
[
p (x∗ − a)

]
= ϕp

(
Tn

z (x∗) − Tn
z (a)

)
≤ ϕ′Qnp (x∗ − a) ∀n ∈N∗. (4)

Since
∞∑

n=0
ϕ′Qnp (x0 − x1) < ∞ (by (2a)) shows that limϕ′Qnp (x∗ − a) = 0. It follows that limϕQnp (x∗ − a) = 0

from (4). Hence that p (x∗ − a) = θE, so x∗ = a. We have thus proved that the operator Tz has a unique fixed
point for all z ∈ C. From this it follows that (I − T)−1 = φ is well defined on C, where φ (z) is a fixed point of
Tz.

We next prove that (I − T)−1 is continuous on C. Fix y ∈ C, set x = φ
(
y
)
, for every

(
ϕ, ε′

)
∈ Γ× (0,∞) , we

shall construct a neighborhood V of θE such that

if y′ ∈ C, x′ = φ
(
y′

)
and p

(
y′ − y

)
∈ V imply that ϕ

(
p (x − x′)

)
< ε′. (5)

Indeed, by the condition (2b) for ε = 1
3ε
′, ∃ (δ, r) ∈ (0, ε) ×N∗ such that

if ϕp (a − b) < δ + ε implies that ϕp
(
Tr

z (a) − Tr
z (b)

)
< ε ∀z ∈ C. (6)

Let φ0 = ϕ, δ0 = δ and δ′0 =
1
2
δ0. By uniformly continuous of T, for the pair

(
φ0, δ′0

)
, we find a pair(

φ1, δ1

)
∈ Γ ×

(
0, δ′0

)
such that

φ1
[
p (a − b)

]
< δ1 ⇒ φ0p [T (a) − T (b)] < δ′0 (a, b ∈ C). (7)

By induction, we can construct a family
{(
φ j, δ j, δ′j

)}
i=0,1,...,r−1

satisfying the following conditions

δ j < δ
′

j−1, δ′j + δ′j ≤ δ j ∀ j = 1, 2, ..., r − 1 (8)

and

φ jp (a − b) < δ j ⇒ φ j−1p [T (a) − T (b)] < δ′j−1 ∀ j = 1, 2, ..., r − 1. (9)
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Now, set δ∗ = δr−1, and

V =
{
ξ ∈ E : φr− j (ξ) < δ∗ ∀ j = 1, r

}
,

Clearly, V is a neighborhood of θE. We can prove this by induction that

φr−k

[
p
(
Tk

y (z) − Tk
y′ (z)

)]
< δr−k ∀z ∈ C,∀k ∈ {1, 2, ..., r} (10)

where y′ ∈ C and p
(
y − y′

)
∈ V. Indeed, we have

φr−1

[
p
(
Ty (z) − Ty′ (z)

)]
= φr−1

(
y − y′

)
= φr−1p

(
y − y′

)
< δ∗ = δr−1.

Hence, (10) holds for k = 1. Assume that (10) holds for k ∈
{
1, 2, ..., j

}
, i.e.

φr− j

[
p
(
T j

y (z) − T j
y′ (z)

)]
< δr− j ∀z ∈ C. (11)

We have

T j+1
y (z) − T j+1

y′ (z) = Ty

(
T j

y (z)
)
− Ty′

(
T j

y′ (z)
)

= T (a) − T (b) + y − y′, (12)

here a = T j
y (z) , b = T j

y′ (z) . Combining the hypothesis (11) with (9) we have

φr− j−1p [T (a) − T(b)] < δ′r− j−1 (13)

Since p
(
y′ − y

)
∈ V, it follows that φr− j−1p

(
y − y′

)
< δ∗ ≤ δ′r− j−1. From (12) and (13) we deduce that

φr− j−1p
(
T j+1

y (z) − T j+1
y′ (z)

)
≤ δ′r− j−1 + δ′r− j−1 < δr− j−1. (14)

Hence (10) holds. In particular, for k = r we have

ϕ
[
p
(
Tr

y (z) − Tr
y′ (z)

)]
< δ ∀z ∈ C. (15)

We now prove by induction that

ϕ
[
p
(
Trn

y (z) − Trn
y′ (z)

)]
< δ + ε ∀z ∈ C,∀n ∈N∗. (16)

Indeed, since (15) shows that (16) holds for n = 1. Assume that (16) holds for k = n, i.e.

ϕ
[
p
(
Trk

y (z) − Trk
y′ (z)

)]
< δ + ε ∀z ∈ C. (17)

We have

p
(
Tr(k+1)

y (z) − Tr(k+1)
y′ (z)

)
= p

(
Tr

y

(
Trk

y (z
)
− Tr

y′
(
Trk

y′ (z
))

≤ p
(
Tr

y (a) − Tr
y (b)

)
+ p

(
Tr

y (b) − Tr
y′ (b)

)
,

here a := Trk
y (z), b := Trk

y′ (z). Combining (17), (6) and (15) gives

ϕp
(
Tr(k+1)

y (z) − Tr(k+1)
y′ (z)

)
< ε + δ whenever p

(
y − y′

)
∈ V. (18)
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This completes the induction process. Now, y′ ∈ C, x′ = φ
(
y
)
, p

(
y − y′

)
∈ V. From Tnr

y′ (x) τ
→ x′ (n → ∞)

there exists a number ny′ ∈N∗ such that

ϕ
[
p
(
T

ny′ r
y′ (x) − x′

)]
< ε. (19)

We have

p (x − x′) ≤ p
(
T

ny′ r
y (x) − T

ny′ r
y′ (x)

)
+ p

(
T

ny′ r
y′ (x) − x′

)
. (20)

Combining (16), (19) and (20) yields

ϕ
[
p (x − x′)

]
< ε + δ + ε < ε′.

Therefore, (5) holds. This shows that (I − T)−1 is continuous on C . The theorem is proved. �

Theorem 4. Let (E,K,Γ) be sequentially complete in the Cauchy sense and
(
X, p, τ

)
be sequentially complete in the

Weierstrass sense. Assume that T, S : X −→ X are operators such that
(1) T is uniformly continuous, S is continuous, S (C) ⊂ C and S (C) is relatively compact.
(2) There is a sequence of positive continuous operators {Qn : E→ E}n=1,2,... satisfies the conditions (2a), (2b) and

(2c) of Theorem 3.
Then the operator T + S has a fixed point.

Proof. By the Theorem 3 the operator (I − T)−1 : X −→ X is well defined and continuous. The operator

(I − T)−1
◦ S : C → X is continuous, it shows that (I − T)−1

◦ S (C) is compact. By the Tychonoff theorem
there exists x ∈ X such that x = (I − T)−1

◦ S (x) or equivalently x = T (x) + S (x). �

4. Application.

Let (Fs, ‖.‖s)s∈(0,1] be a family of Banach spaces such that 1 ≥ r > s implies that Fr ⊂ Fs and ‖.‖s ≤ ‖.‖r. Set
F = ∩s∈(0,1]Fs and we denote Ω = [0,∞). Let f , 1 : Ω × (F, ‖.‖r) → (F, ‖.‖s) be continuous functions for every
(r, s) satisfying 0 < s < r ≤ 1. In this section we study the existence of solution of a Cauchy problem with
perturbation, in the scale of Banach spaces (Fs, ‖.‖s)s∈(0,1] , of the form

{
x′ (t) = f [t, x (t)] + 1 [t, x (t)] , t ∈ Ω,
x (0) = x0 ∈ F1,

(21)

where f and 1 satisfy the following conditions:
(A1) For any (r, s) ∈ (0, 1) × (0, 1) satisfying r > s , then∥∥∥ f (t, x) − f

(
t, y

)∥∥∥
s ≤ k (r, s)

∥∥∥x − y
∥∥∥

r for all t ∈ Ω, (22)

where k (r, s) = c (r − s)−µ,
(
c, µ

)
∈ (0,∞) × (0, 1) and

(A2) for every s ∈ (0, 1) there exist ξ (s) > 0 and l (s) > 0 such that∥∥∥x − y
∥∥∥

s < ξ (s) implies that
∥∥∥ f (t, x) − f

(
t, y

)∥∥∥
s ≤ l (s)

∥∥∥x − y
∥∥∥

s (t ∈ Ω, x, y ∈ F), (23)

(A3) for every s ∈ (0, 1) the set 1 (I × F) is relatively compact in (Fs, ‖.‖s) , where I is an any bounded
segment of [0,∞).

The problem (21) is equivalent to the following integral equation

x (t) = x0 +

∫ t

0
f (v, x (v)) dv +

∫ t

0
1 (v, x (v)) dv := Tx (t) + Sx (t) . (24)
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(where Tx (t) = x0 +
∫ t

0 f (v, x (v)) dv, Sx (t) =
∫ t

0 1
(v, x (v)) dv).

Let us denote by (E,K,Γ) the ordered locally convex space, where
E =

{
x =

(
x(1), x(2), ....

)
: x(i)
∈ R

}
equipped with the normal algebraic operations;

K =
{
x =

(
x(1), x(2), ....

)
: x( j)

≥ 0 ∀ j ∈N∗
}

and the topology on E defined by a family of seminorms Γ ={
ϕn : E→ R

}
n=1,2,... , where ϕn (x) =

∣∣∣x(n)
∣∣∣. We can verify that (E,K,Γ) is sequentially complete and the

condition (2) holds.
Let (sn) ⊂ (0, 1) be an sequence such that s1 < s2 < ... < sn < ... and lim sn = 1. Set

X = {x : Ω→ (F, ‖.‖s) | x is continuous ∀s ∈ (0, 1) } .

For n ∈N∗ we write Ωn = [0,n] and define qn (x) = supt∈Ωn
‖x (t)‖sn

and p (x) =
{
qn (x)

}
n=1,2,.... We will denote

by Xn the set of continuous functions from Ωn to the Banach space Fsn . We can verify that
(
Xn, qn

)
is a

Banach space, qn = ϕnp, and
(
X, p, τ

)
is a cone normed space, where τ is a topology on X defined by family

of seminorms
{
ϕ ◦ p : ϕ ∈ Γ

}
.

Lemma 5. 1. Let x : [0,∞)→ F be a function such that x|Ωn ∈ Xn for all n ∈N∗, then x ∈ X.
2.

(
X, p, τ

)
is sequentially complete in the Weierstrass sense.

Proof. Fix s ∈ (0, 1) and t0 ∈ Ω. We can choose n ∈ N∗ so that sn > s and t0 + 1 ∈ Ωn. By the continuity of
x|Ωn : Ωn → Fsn and inequality ‖.‖s ≤ ‖.‖sn

we can prove that x is continuous at t0. Hence, the first assertion
holds. Let {xn} be a sequence in X, and we assume that

∑
∞

n=1 p (xn+1 − xn) converges in E. From this we see
that the sequence {Sn} , Sn =

∑n
k=1 p (xk+1 − xk) , is convergent in E. For every a ∈N∗ we have

ϕa [Sn+k − Sn] =

n+k∑
j=n+1

qa

(
x j+1 − x j

)
. (25)

We conclude from (25) that
∑
∞

n=1 qa (xn+1 − xn) converges in R. We have

qa
(
xn|Ωa − xn+k|Ωa

)
= qa (xn − xn+k)

= ϕap (xn − xn+k) ≤ ϕa

n+k−1∑
j=n

p
(
x j − x j+1

)
≤

n+k−1∑
j=n

ϕap
(
x j − x j+1

)
=

n+k−1∑
j=n

qa

(
x j − x j+1

)
(26)

It follows from (26) that
{
xn|Ωa

}
n is Cauchy in

(
Xa, qa

)
, hence that ∃ya ∈ Xa such that xn|Ωa

‖.‖sa
→ ya. Now,

assume that a, a′ ∈N∗, a′ > a, xn|Ωa

qa
→ ya and xn|Ωa′

qa′
→ ya′ . We will prove that ya′ |Ωa = ya. Indeed, we have

qa
(
ya − ya′ |Ωa

)
≤ qa

(
ya − xn|Ωa

)
+ qa

(
xn|Ωa − ya′ |Ωa

)
≤ qa

(
ya − xn|Ωa

)
+ qa′

(
xn|Ωa′ − ya′ |Ωa′

)
. (27)

Letting n→∞ in (27) we obtain ya′ |Ωa = ya. We define x : Ω→ F, x (t) := ya (t) if t ∈ Ωa. Then x|Ωn = yn ∈ Xn
for all n ∈N∗. That x ∈ X follows from the first assertion. Since

qa (xn − x) = qa
(
xn|Ωa − x|Ωa

)
= qa

(
xn|Ωa − ya

)
→ 0 for all a ∈N∗,

we conclude that xn
τ
→ x. �
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Lemma 6. Let T be defined by (24). Assume that the condition (A2) holds. Then for every
(
ϕa,n

)
∈ Γ ×N∗ and for

every z ∈ X, there exists δ (a,n) > 0 such that∥∥∥(Tn
z x − Tn

z y
)

(t)
∥∥∥

sa
≤

(lat)n

n!
qa

(
x − y

)
if ϕap

(
x − y

)
< δ (a,n) , (28)

where la = l (sa), x, y ∈ X, t ∈ Ω.

Proof. We will prove this lemma by induction. For n = 1. Since condition (A2), ∃ξa > 0 such that∥∥∥x (v) − y (v)
∥∥∥

sa
< ξa implies that

∥∥∥ f (v, x (v)) − f
(
v, y (v)

)∥∥∥
sa
≤ la

∥∥∥x (v) − y (v)
∥∥∥

sa
. (29)

Choose δ (a, 1) ∈ (0, ξa) and if ϕap
(
x − y

)
< δ (a, 1) , then (29) holds. Hence that

∥∥∥(Tzx − Tzy
)

(t)
∥∥∥

sa
≤

t∫
0

∥∥∥ f (v, x (v)) − f
(
v, y (v)

)∥∥∥
sa

dv

≤ la

t∫
0

∥∥∥x (v) − y (v)
∥∥∥

sa
dv ≤ latqa

(
x − y

)
.

It follows that (28) holds for n = 1.

Suppose that, by induction, there exists {δ (a, i)}i=1,2,..., j ⊂ (0,∞) such that

ϕap
(
x − y

)
< δ

(
a, j

)
⇒

∥∥∥∥(T j
zx − T j

zy
)

(t)
∥∥∥∥

sa
≤

(lat) j

j!
qa

(
x − y

)
. (30)

Then for any (t, s) ∈ Ω × [0, 1), z, x, y ∈ X we have

∥∥∥∥(T j+1
z x − T j+1

z y
)

(t)
∥∥∥∥

s
≤

t∫
0

∥∥∥∥ f
(
v,T j

zx (v)
)
− f

(
v,T j

zy (v)
)∥∥∥∥

s
dv. (31)

Choose δ
(
a, j + 1

)
∈

(
0,min

{
ξa j!

(laa) j , δ
(
a, j

)})
, then, if

ϕap(x − y) < δ
(
a, j + 1

)
,

by (30), then∥∥∥∥(T j
zx − T j

zy
)

(t)
∥∥∥∥

sa
≤

(lat) j

j!
qa

(
x − y

)
≤

(laa) j

j!
qa

(
x − y

)
< ξa ∀t ∈ Ω.

This shows that

ϕap
(
T j

zx − T j
zy

)
< ξa.
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From (31) and (29) we have

∥∥∥∥(T j+1
z x − T j+1

z y
)

(t)
∥∥∥∥

sa
≤ la

t∫
0

∥∥∥∥T j
zx (v) − T j

zy (v)
∥∥∥∥

sa
dv

≤ la

t∫
0

(kat) j

j!
qa

(
x − y

)
dv

=
(lat) j+1(
j + 1

)
!
qa

(
x − y

)
,

which finish the induction process. �

Lemma 7. Let T be defined by (24). Assume that the condition (A1) holds. Then for every a,n ∈ N∗ and for every
z ∈ X we have

qa
(
Tn

z (x) − Tn
z
(
y
))
≤

(kaa)n

n!
qa+1

(
x − y

)
(∀x, y ∈ X), (32)

where ka = k (sa+1, sa).

Proof. By a similar argument as that of Lemma 6 we have∥∥∥(Tn
z x − Tn

z y
)

(t)
∥∥∥

sa
≤

(kat)n

n!
qa+1

(
x − y

)
∀x, y ∈ X and t ∈ Ω, (33)

where a,n ∈N∗, z ∈ X. This assertion (33) completes the proof. �

Lemma 8. Assume that the condition (A1) holds. Then T is uniformly continuous from
(
X, p, τ

)
to

(
X, p, τ

)
.

Proof. Fix
(
ϕa, ε

)
∈ Γ × (0,∞) (a ∈N∗). By the Lemma 7 we see that

ϕap
(
Tx − Ty

)
≤ kaaϕa+1p

(
x − y

)
for all x, y ∈ X.

Choose δ ∈
(
0, ε (kaa)−1

)
and φ = ϕa+1, then φp

(
x − y

)
< δ implies ϕap

(
Tx − Ty

)
< ε. It follows that T is

uniformly continuous. �

Lemma 9. Assume that 1 satisfies the condition (A3) and the operator S : X→ X defined by (24). Then
1. S is continuous,
2. S (X) is relatively compact in

(
X, p, τ

)
.

Proof. 1. Let {xn}n ⊂ X, and assume that xn
τ
−→ x. We will prove that ϕap (S (xn) − S (x))→ 0 for all a ∈ N∗.

Indeed, set A = {xn (t) : n ∈N, t ∈ Ωa} . Let
{
xnk (tk)

}
be a sequence in A. We can assume that {tk}k converges

to t ∈ Ωa. We have∥∥∥xnk (tk) − x (t)
∥∥∥

sa+1
≤

∥∥∥xnk (tk) − x (tk)
∥∥∥

sa+1
+ ‖x (tk) − x (t)‖sa+1

≤ ϕa+1p
(
xnk − x

)
+ ‖x (tk) − x (t)‖sa+1

. (34)

Since x : Ω→
(
Fsa+1 , ‖.‖sa+1

)
is continuous, from (34) it follows that xnk (tk)

‖.‖sa+1
−→ x (t) (as k→∞). From this we

see that A is relatively compact in Fsa+1 . Therefore, B := Ωa ×A is compact in Ω×
(
Fsa+1 , ‖.‖sa+1

)
. For any ε > 0,

since 1 is uniformly continuous on B, ∃δ > 0 such that∥∥∥1 (v, z) − 1 (v, z′)
∥∥∥

sa
<
ε
2a

for all v ∈ Ωa if ‖z − z′‖sa+1
< δ. (35)
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Since xn
τ
−→ x, it follows that ϕa+1p (xn − x) −→ 0, hence that there exists N0 ∈N such that ϕa+1p (xn − x) < δ

for n ≥ N0. Therefore,

‖xn (t) − x (t)‖sa+1
< δ for all t ∈ Ω, n ≥ N0. (36)

From (36) we obtain

‖S (xn) (t) − S (x) (t)‖sa
≤

t∫
0

∥∥∥1 (v, xn (v)) − 1 (v, x (v))
∥∥∥

sa
dv ≤

t∫
0

ε
2M

dv <
ε
2
. (37)

We conclude from (37) that ϕap (S (xn) − S (x)) < ε.

2. For every a ∈N∗, we set S (X) |Ωa =
{
S (x) |Ωa : x ∈ X

}
. We first prove two following assertions:

(i) S (X) |Ωa is equicontinous on Ωa,
(ii) for every t ∈ Ωa, the set

{
S (x) |Ωa (t) : x ∈ X

}
is relatively compact in Fsa .

From the assumption (A3), we see that 1 (Ωa × F) is relatively compact in Fsa . Therefore, ∃β > 0 such that∥∥∥1 (v, x)
∥∥∥

sa
≤ β for all (v, x) ∈ Ωa × F. (38)

Fix δ ∈
(
0, εβ

)
, for every x ∈ X and (t, t′) ∈ Ωa ×Ωa satisfying |t − t′| < δ, then, we have

∥∥∥S (x) |Ωa (t) − S (x) |Ωa (t′)
∥∥∥

sa
≤

max{t,t′}∫
min{t,t′}

∥∥∥1 (v, x (v))
∥∥∥

sa
dv ≤ |t − t′| β < ε.

Hence, S (X) |Ωa is equicontinous on Ωa.
Assume that n ∈N satisfying n > a. Let

Ga = coFsa
[
1 (Ωa × F)

]
∪

{
θFsa

}
,

then Ga is compact in Fsa . We have

{
S (x) |Ωa (t) : x ∈ X

}
⊂


t∫
0

1 (v, x (v)) dv : x ∈ X

 ⊂ tGa.

It follows that
{
S (x) |Ωa (t) : x ∈ X

}
is relatively compact in Fsa . By the results just proved, Theorem Ascoli

now shows that S (X) |Ωa is relatively compact in
(
Xa, qa

)
.

Finally, we shall prove that S (X) is relatively compact in
(
X, p, τ

)
. Indeed, given any

{
yn

}
n ⊂ S (X), we

can assume that the set
{
yn : n ∈N

}
is infinite. For a = 1, since S (X) |Ω1 relatively compact in

(
X1, q1

)
, there

exits a subsequence
{
y1

n

}
n=1,2,...

of
{
yn

}
n such that y1

n|Ω1

q1
→ x1 (x1 ∈ X1). By induction, we can assume that

there exist
{
y1

n

}
n
,
{
y2

n

}
n
, ...,

{
y j

n

}
n
, .... satisfying the following conditions:

(a)
{
yk

n

}
n

is a subsequence of
{
yk−1

n

}
n

and

(b)
{
yk

n|Ωk

}
n

qk
→ xk (xk ∈ Xk), k ∈N∗.

Assume that i, j ∈N∗ satisfying j ≥ i. Then we have

qi

(
xi − x j

)
≤ qi

(
xi − y j

n

)
+ qi

(
y j

n − x j

)
≤ qi

(
xi − y j

n

)
+ q j

(
y j

n − x j

) n→∞
→ 0.
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This give xi = x j|Ωi . The function x : Ω → F defined by x (t) = xi (t) if t ∈ Ωi. We now consider the
sequence

{
yn

n
}
n . For every a ∈ N∗, then,

{
yn

n
}
n≥a is subsequence of

{
ya

n
}
n . Since qa

(
ya

n − x
)
→ 0, it shows that

qa
(
yn

n − x
)
→ 0. Hence,

{
yn

n
} τ
→ x. �

We are now in position to prove the following theorem.

Theorem 10. Assume that the conditions (A1)-(A3) hold, then the equation (21) has a positive solution.

Proof. We will prove that T + S has a fixed point in X by using Theorem 4. Let Qn : K→ K be defined by

[Qn] = di1

( (kaa)n

n!

)
a=1,2,...

 (n ∈N∗). (39)

We will verify the conditions of Theorem 4. For any
(
ϕa, ξ

)
∈ Γ × K, we have

∞∑
n=1

Qnϕa (ξ) =

∞∑
n=1

(kaa)n

n!
ξ < ∞,

hence that the condition (2a) holds. By Lemma 7 we see that the condition (2c) holds.
For any given

(
ϕa, ε

)
∈ Γ × (0,∞) (a ∈ N∗) and x, y, z ∈ X, by the Lemma 6, there exists a sequence

{δ (a,n)}n ⊂ (0,∞) such that∥∥∥(Tn
z x − Tn

z y
)

(t)
∥∥∥

sa
≤

(lat)n

n!
qa

(
x − y

)
∀t ∈ Ω whenever ϕap

(
x − y

)
< δ (a,n) . (40)

Since limn→∞
(laa)n

n! = 0, there exists r ∈ N∗ such that (laa)r

r! < 1
3 . Let δ = min

{
ε
2 , δ (a, r)

}
. Since (40) we deduce

that

ϕap
(
Tr

zx − Tr
zy

)
< ε.

whenever ϕap
(
x − y

)
< δ+ ε.This shows that the condition (2b) holds. The others assumptions of Theorem

4 are verified easy by Lemma 5, Lemma 8 and Lemma 9. �
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