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Abstract. In this paper, we are concerned with a class of system of nonlinear singular fractional differ-
ential equations with integral boundary conditions. More precisely, we establish sufficient conditions for
existence, multiplicity and nonexistence of positive solutions. The results are derived in terms of different
values of the parameters. Our approach relies on the Krasnoselskii’s fixed point theorem. Some examples
are given to illustrate our main results.

1. Introduction

In this paper, we consider the following class of system of boundary value problems


Dαu(t) + µ1a(t) f (t,u(t), v(t)) = 0, in (0, 1), n − 1 < α ≤ n,
Dβv(t) + µ2b(t)1(t,u(t), v(t)) = 0, in (0, 1), m − 1 < β ≤ m,

u(0) = u′(0) = ... = u(n−2)(0) = 0, u(1) = λ1

∫ 1

0 u(s)ds,

v(0) = v′(0) = ... = v(m−2)(0) = 0, v(1) = λ2

∫ 1

0 v(s)ds,

(1)

where Dδ is the standard Reimann-Liouville fractional derivative of order δ > 0, n,m ∈ N, n,m ≥ 3,
0 < λ1 < α, 0 < λ2 < β, µ1 and µ2 are two positive parameters. The functions a, b are continuous
nonnegative on (0, 1) and they are allowed to be singular at t = 0 and/or t = 1. The nonlinearities f , 1 are in
C ([0,1]× [0,+∞)×[0,+∞), [0,+∞)).
Many previous works have studied boundary value problems with integral boundary conditions in the
scalar case, we cite the works [5–7, 22]. Namely, Cabada and Hamdi in [5], gave existence results for the
following boundary value problemDαu(t) + f (t,u(t)) = 0 in (0, 1),

u(0) = u′(0) = 0,u(1) = λ
∫ 1

0 u(s)ds,
(2)
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where 2 < α ≤ 3, 0 < λ < α and f is continuous function.
More recently, in [6], the authors considered the following problemDαu(t) + µ1(t)h(u(t)) = 0 in [0, 1],

u(0) = u′(0) = 0,u(1) = λ
∫ 1

0 u(s)ds,
(3)

depending on the real parameter µ > 0, where 2 < α ≤ 3, h and 1 are nonnegative continuous functions.

Under the condition that 1 ∈ L1([0, 1]) and
∫ 1

1
2
1(t)dt > 0, they derived various existence and multiplicity

results of positive solutions depending on the parameter µ > 0.
On the other hand, as a generalization of boundary value problems of differential equation, many authors

treated these kind of problems, we cite [1, 9, 11, 14–19, 21]. It is worth to remark that the great importance of
such problems came from their applications. In fact, these problems present efficient models for description
of different systems and process in engineering, science, economy, chemical, thermo-elasticity, population
dynamical and so forth, we refer the reader to [20, 22, 26, 31, 32] and the references therein.

In this work, we shall give sufficient conditions for existence, multiplicity and nonexistence of positive
solutions for system (1). The results derived depending on the positive parameters µ1 and µ2. We remark
here that we are essentially inspired by the works [6, 21], we will see that severel of Cabada and Hamdi’s
proofs in [6] carry over to some proof’s here, quite nicely.

The rest of the paper is organized as follows. In the next section we recall some tools and we present
properties of the Green’s function. Moreover we state preliminary lemmas. Section 3 and Section 4 are
devoted to establish existence of one or more positive solutions for (1), respectively. However, Section 5
concerns nonexistence results. The final Section of the paper contains examples to illustrate our results.

2. Preliminaries

In this section, we recall some results and we prove key lemmas that will be used to prove our main
results. We begin with the following background on the fractional calculus. We refer the reader to [26, 31]
for more details.

Definition 2.1. The Riemann-Liouville fractional integral of order
α > 0 for a measurable function f : (0,+∞)→ R is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, t > 0,

where Γ is the Euler Gamma function, provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order
α > 0 for a measurable function f : (0,+∞)→ R is defined as

Dα f (t) =
1

Γ(n − α)
(

d
dt

)n
∫ t

0
(t − s)n−α−1 f (s)ds = (

d
dt

)nIn−α f (t),

provided that the right-hand side is pointwise defined on R+.
Here n = [α] + 1, [α] denotes the integer part of the real number α.

Lemma 2.3. Let α > 0. Let u ∈ C(0, 1) ∩ L1(0, 1). Then

i) DαIαu = u.

ii) For δ > α − 1, Dαtδ =
Γ(δ + 1)

Γ(δ − α + 1)
tδ−α. Moreover, we have Dαtα−i = 0, i = 1, 2, ..,n.
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iii) Dαu(t) = 0 if and only if u(t) = c1tα−1 + c2tα−2 + ... + cntα−n, ci ∈ R, i = 1, 2, ..,n.

iv) Assume that Dαu ∈ C(0, 1) ∩ L1(0, 1), then we have

IαDαu(t) = u(t) + c1tα−1 + c2tα−2 + ... + cntα−n, ci ∈ R, i = 1, 2, ..,n.

Now, we give the explicit expression of the Green’s function for the linear fractional differential equation
associated to the problem (1). More precisely, we assert the following result.

Lemma 2.4. Let n ≥ 3, n − 1 < α ≤ n and λ ∈ (0, α). Let y ∈ C[0, 1]. Then the unique solution of the fractional

differential equation

Dαu(t) + y(t) = 0 in (0, 1), (4)

subject to the boundary conditions

u(0) = ... = u(n−2)(0) = 0,u(1) = λ

∫ 1

0
u(s)ds, (5)

is given by

u(t) =

∫ 1

0
Gα,λ(t, s)y(s)ds,

where for all t,s ∈ [0, 1],

Gα,λ(t, s) =
tα−1(1 − s)α−1(α − λ + λs) − (α − λ)((t − s)+)α−1

(α − λ)Γ(α)
. (6)

Gα,λ (t, s) is called the Green’s function of the boundary value problem (4)-(5). Here, for x ∈ R, x+ = max(x, 0).

Proof. From Lemma 2.3, we have

u(t) = −Iαy(t) + c1tα−1 + c2tα−2 + ... + cntα−n.

Consequently the solution of (4) is

u(t) = −
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds + c1tα−1 + c2tα−2 + ... + cntα−n.

Since u(0) = 0, we find cn = 0. So

u(t) = −Iαy(t) + c1tα−1 + c2tα−2 + ... + cn−1tα−n+1 . (7)

Differentiating (7), we obtain

u′(t) = −
α − 1
Γ(α)

∫ t

0
(t − s)α−2y(s)ds + c1(α − 1)tα−2+... + cn−1(α − n + 1)tα−n,

By u′(0) = 0, we obtain cn−1 = 0. Similarly, we obtain c2 = c3 = ... = cn−2 = 0. Therefore

u(t) = −
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds + c1tα−1. (8)
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Now, the condition u(1) = λ
∫ 1

0 u(s)ds implies that

c1 =

∫ 1

0

(1 − s)α−1

Γ(α)
y(s)ds + λ

∫ 1

0
u(s)ds.

Let A =
∫ 1

0 u(t)dt. Then by (8), we obtain

A = −

∫ 1

0

(1 − s)α−1

αΓ(α)
y(s)ds +

1
α

∫ 1

0

(1 − s)α−1

Γ(α)
y(s)ds +

λ
α

A.

So, we have

A = −
1

α − λ

∫ 1

0

(1 − s)α

Γ(α)
y(s)ds +

1
α − λ

∫ 1

0

(1 − s)α−1

Γ(α)
y(s)ds.

Replacing A in (8), we obtain the following expression of the function u

u(t) = −

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds + tα−1

∫ 1

0

(1 − s)α−1(α + λ(s − 1))
(α − λ)Γ(α)

y(s)ds.

Finally, we deduce

u(t) =

∫ t

0

tα−1(1 − s)α−1(α + λ(s − 1)) − (α − λ)(t − s)α−1

(α − λ)Γ(α)
y(s)ds

+

∫ 1

t

tα−1(1 − s)α−1(α + λ(s − 1))
(α − λ)Γ(α)

y(s)ds

=

∫ 1

0
Gα,λ(t, s)y(s)ds.

This ends the proof.

In order to give some estimations on the function Gα,λ, we introduce the function G0 on [0, 1] × [0, 1]
given by

G0(t, s) =
tα−1(1 − s)α−1

− ((t − s)+)α−1

Γ(α)
. (9)

Lemma 2.5. Let n ∈N, n ≥ 3, n − 1 < α ≤ n. Define the function H(t, s) on [0, 1] × [0, 1] by

H(t, s) =
1

Γ(α)
tα−2(1 − s)α−2 min(t, s)(1 −max(t, s)). (10)

Then the function G0 has the following property

1
α − 1

H(t, s) ≤ G0(t, s) ≤ H(t, s), t, s ∈ [0, 1]. (11)

To show Lemma 2.5, we recall the following standard results.

Lemma 2.6. i) Let η, δ ∈ (0,+∞), a, u ∈ [0, 1]. Then

min(1,
δ
η

)(1 − auδ) ≤ (1 − auη) ≤ max(1,
δ
η

)(1 − auδ).

ii) For t, s ∈ [0, 1], we have

ts ≤min (t, s) ≤ s and (1 − s)(1 − t) ≤ 1−max (t, s) ≤ (1 − s). (12)
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Now we are able to prove Lemma 2.5.

Proof. First, remark that for each t, s ∈ (0, 1),

Γ(α)G0(t, s) = tα−1(1 − s)α−1[1 − (
(t − s)+

t(1 − s)
)α−1].

Thus by applying Lemma 2.6 (i) for η = α − 1, δ = 1, a = 1 and

u = ( (t−s)+

t(1−s) )α−1, we obtain

1
(α − 1)

(1 − (
(t − s)+

t(1 − s)
)) ≤ [1 − (

(t − s)+

t(1 − s)
)α−1] ≤ (1 − (

(t − s)+

t(1 − s)
)).

Then

1
(α − 1)

t(1 − s) − (t − s)+

t(1 − s)
≤ [1 − (

(t − s)+

t(1 − s)
)α−1] ≤

t(1 − s) − (t − s)+

t(1 − s)
.

By using the fact that t(1 − s) − (t − s)+ = min(t, s)(1 −max(t, s)), we conclude that

1
(α−1) H(t, s) ≤ G0(t, s) ≤ H(t, s).

The following properties of the Green’s function play an important role in this paper.

Proposition 2.7. Let n ∈ N, n ≥ 3, n − 1 < α ≤ n, and λ ∈ [0, α). Then the function Gα,λ defined by (6) satisfies
the following properties

i) Gα,λis nonnegative continuous function on [0, 1] × [0, 1]
and
Gα,λ(t, s) > 0, for all t, s ∈ (0, 1).

ii) For all t ∈ [0, 1], s ∈ [0, 1], we have

p(t)Kα(s) ≤ Gα,λ(t, s) ≤ q(t)Kα(s), (13)

where

Kα(s) =
s(1 − s)α−1

Γ(α)
, (14)

and

p(t) =

(
(1 − t)
α − 1

+
λ

α − λ

)
tα−1, q(t) =

((α − λ)t + λ)
(α − λ)

tα−2.

iii) Let θ ∈ (0, 1
2 ), t, s ∈ [0, 1], then we have

min
t∈[θ,1−θ]

Gα,λ(t, s) ≥ γα,λKα(s), (15)

where

γα,λ = (
θ

α − 1
+

λ
α − λ

)θα−1. (16)
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iv) For each t, s ∈ [0, 1], we have

Gα,λ(t, s) ≤ ηα,λKα(s), (17)

where

ηα,λ =
α

(α − λ)
. (18)

Proof. i) It is obvious to see that Gα,λ(t, s) is continuous on [0, 1] × [0, 1]

and Gα,λ(t, s) > 0.

ii) Let t, s ∈ [0, 1], using Lemma 2.6 (ii), we conclude that the functin H(t, s) defined by (10) satisfies

(1 − t)tα−1s(1 − s)α−1
≤ Γ(α)H(t, s) ≤ tα−2s(1 − s)α−1. (19)

Combining (11) and (19), we get

1
(α−1) (1 − t)tα−1s(1 − s)α−1

≤ Γ(α)G0(t, s) ≤ tα−2s(1 − s)α−1. (20)

On the other hand, the function Gα,λ defined by (6) satisfies

(α − λ)Γ(α)Gα,λ(t, s) = (α − λ)Γ(α)G0(t, s) + λs(t(1 − s))α−1.

Thus, using (20), we obtain

(α − λ)(1 − t) + λ(α − 1)
(α − 1)

tα−1s(1 − s)α−1
≤ (α − λ)Γ(α)Gα,λ(t, s) ≤ ((α − λ)t + λ)tα−2s(1 − s)α−1.

So, we deduce that

p(t)Kα(s)≤Gα,λ(t, s) ≤q(t)Kα(s).

where

Kα(s) =
s(1 − s)α−1

Γ(α)
,

and

p(t) =

(
(1 − t)
α − 1

+
λ

α − λ

)
tα−1, q(t) =

((α − λ)t + λ)
(α − λ)

tα−2.

(iii) and (iv) are consequences of the inequalities (13).

Remark 2.8. Note that this estimation on Green’s function Gα,λ(t, s) obtained in the previous proposition improve
those obtained in [5] and [6] in the case where 2 < α ≤ 3.

The proofs of ours results are based upon the following Krasnoselskii’s fixed point theorem.

Lemma 2.9. ([26]) Let P be the cone of a real Banach space E and Ω1, Ω2 two bounded open balls of E centered at the
origin with Ω1 ⊂ Ω2. Suppose that T : P ∩ ( Ω2\ Ω1) −→ P is completely continuous operator such that either
(i) ||Tx|| ≥ ||x||, x ∈ P ∩ ∂Ω1 and ||Tx|| ≤ ||x||, x ∈ P ∩ ∂Ω2 , or
(ii) ||Tx|| ≤ ||x||, x ∈ P ∩ ∂Ω1 and ||Tx|| ≥ ||x||, x ∈ P ∩ ∂Ω2.
holds. Then the operator T has at least one fixed point in P ∩ ( Ω2\ Ω1).



R. Bourguiba et al. / Filomat 34:13 (2020), 4453–4472 4459

Now, let E = C([0, 1]) × C([0, 1]), endowed with the norm
||(u, v)|| = ‖u‖+ ‖v‖, where ‖u‖ = supt∈[0,1] |u(t)|. Then E is a Banach space.
Let θ ∈ [0, 1

2 ), and set Jθ = [θ, 1 − θ]. In the sequel we need the following notations

σθα =

∫ 1−θ

θ
a(t)Kα(t)dt and σθβ =

∫ 1−θ

θ
b(t)Kβ(t)dt,

where Kα, Kβ are defined by (14).

Gα = Gα,λ1 and Gβ = Gβ,λ2 ,

where Gα,λ1 , Gβ,λ2 are given by (6). And

γα = γα,λ1 , γβ = γβ,λ2 . (21)

ηα = ηα,λ1 , ηβ = ηβ,λ2 . (22)

γ∗α = γαη
−1
α , γ

∗

β = γβη
−1
β , γ = min(γ∗α, γ

∗

β), (23)

where γα,λ1 , γβ,λ2 , ηα,λ1 and ηβ,λ2 are defined by (16) and (18).
Now, we define the cone Ω in E by

Ω = {(u, v) ∈ E : u(t) ≥ 0, v(t) ≥ 0 on [0, 1], min
t∈Jθ

u(t) ≥ γ∗α ‖u‖ ,min
t∈Jθ

v(t) ≥ γ∗β ‖v‖},

and for r > 0, let

Ωr = {(u, v) ∈ Ω : ‖(u, v)‖ < r}.

Next, we define the operator T : E −→ E as follows

T(u, v)(t) = (T1(u, v)(t),T2(u, v)(t)), t ∈ [0, 1] (24)

where

T1(u, v)(t) = µ1

∫ 1

0
Gα(t, s)a(s) f (s,u(s), v(s))ds,

and

T2(u, v)(t) = µ2

∫ 1

0
Gβ(t, s)b(s)1(s,u(s), v(s))ds.

In the remainder of the paper, we adopt the following hypotheses:

(H1) a, b ∈ C((0, 1), [0 +∞)), a(t), b(t) , 0 on any subinterval of (0, 1) and 0 < σ0
α, σ

0
β < ∞.

(H2) f , 1 ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞)).

(H3) There exist t1, t2 ∈ (0, 1) such that f (t1,u, v) > 0 and 1(t2,u, v) > 0 for each u, v ∈ (0 +∞).

We note that our study on the problem (1) remains to the seek of fixed point of the operator T and this is
due to the following lemma.
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Lemma 2.10. Suppose that (H1)-(H3) hold. Then
(u, v) ∈ C([0, 1]) ×C([0, 1]) is a solution of the boundary value problem (1) if and only if (u, v) ∈ C([0, 1]) ×C([0, 1])
is a solution of the integral equations

u(t) = µ1

∫ 1

0
Gα(t, s)a(s) f (s,u(s), v(s))ds. (25)

v(t) = µ2

∫ 1

0
Gβ(t, s)b(s)1(s,u(s), v(s))ds. (26)

That is (u, v) is a fixed point of the operator T defined by (24).

Proof. The proof is immediate from Lemma 2.4, so we omit it.

We call G(t, s) = (Gα(t, s),Gβ(t, s)) the Green’s function of the problem (1).
Now, we state some lemmas which will be used in the proofs of our main results.

Lemma 2.11. Suppose that conditions (H1) and (H2 ) hold. Then
T : Ω −→ Ω is completely continuous.

Proof. Since Gα, Gβ, f and 1 are nonnegatives continuous functions and using (H1) we conclude that T
: Ω −→ Ω is continuous. Let (u, v) ∈ Ω, then by Proposition 2.7, (15) and (17), we obtain for all t ∈ Jθ,

T1(u, v)(t) ≥ µ1γα

∫ 1

0
Kα(s)a(s) f (s,u(s), v(s))ds

≥ µ1
γα
ηα

∫ 1

0
Gα(τ, s)a(s) f (s,u(s), v(s))

≥ γ∗α max
τ∈[0,1]

{µ1

∫ 1

0
Gα(τ, s)a(s) f (s,u(s), v(s))ds}

= γ∗α||T1(u, v)||.

Similarly, it follows that for all t ∈ Jθ

T2(u, v)(t) ≥ γ∗β||T2(u, v)||.

Then T(Ω) ⊂ Ω. Now, let S be a bounded set of Ω, then there exists a positive constant M > 0 such that
||(u, v)|| ≤M, for all (u, v) ∈ S. Define now

M1 := max
t∈[0,1],u+v≤M

f (t,u, v) and M2 := max
t∈[0,1],u+v≤M

1(t,u, v).

From hypothesis (H1), Proposition 2.7 and (17), we have for all t ∈ [0, 1], u, v ∈ S,

T1(u, v)(t) ≤ µ1ηα

∫ 1

0
Kα(s)a(s) f (s,u(s), v(s))ds

≤ µ1ηαM1σ
0
α.

Similarly

T2(u, v)(t) ≤ µ2ηβ

∫ 1

0
Kβ(s)b(s)1(s,u(s), v(s))ds

≤ µ2ηβM2σ
0
β.

So, we have
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||T(u, v)|| ≤ µ1ηαM1σ
0
α + µ2ηβM2σ

0
β.

Hence T(S) is uniformly bounded.
Now let us prove that T(S) is equicontinuous on [0, 1]. Using Proposition 2.7, we obtain that Gαis uniformly
continuous on [0, 1] × [0, 1]. Thus for any ε > 0, there exists a constant δ > 0 such that for any t1, t2 ∈ [0, 1]
satisfying |t1 − t2| < δ and for each s ∈ [0, 1],

|Gα(t2, s) − Gα(t1, s)| ≤
ε

2µ1ηαM1σ0
α

.

Then, for u, v ∈ S, we have

|T1(u, v)(t2) − T1(u, v)(t1)| <
ε
2

. (27)

Similarly

|T2(u, v)(t2) − T2(u, v)(t1)| <
ε
2
. (28)

Therefore, by (27) and (28) we obtain

‖ T(u, v)(t2) − T(u, v)(t1) ‖1< ε.

where ||.||1 is the norm on R2 defined by ||(u, v)||1 = |u| + |v|. Thus T(S) is equicontinuous. Consequently
by Ascoli’s theorem, we conclude thatT(S) is relatively compact in E. Therfore T : Ω −→ Ω is completely
continuous. This completes the proof.

Hereinafter, we introduce the following notations

f δ = lim
u+v→δ

{max
t∈[0,1]

f (t,u, v)
u + v

}, (29)

and

fδ = lim
u+v→δ

{min
t∈Jθ

f (t,u, v)
u + v

}. (30)

where δ = 0 or +∞.

Lemma 2.12. If conditions (H1)-(H3) hold. Then, for every R > 0, there exist µ∗1(R) > 0 and µ∗2(R) > 0 such that
for each 0 < µ1 ≤ µ∗1(R) and 0 < µ2 ≤ µ∗2(R) we have

||T(u, v)|| ≤ ||(u, v)||, for all (u, v) ∈ ∂ΩR.

Proof. Fix R > 0 and let (u, v) ∈ Ω with ||(u, v)|| = R. Let

M1 = max
(

t∈[0,1]
u,v)∈[0,R]×[0,R]

f (t,u, v) and M2 = max
(

t∈[0,1]
u,v)∈[0,R]×[0,R]

1(t,u, v).

Notice that from (H3) we get that M1,M2 > 0 for all R > 0 and (H1) implies that σ0
α, σ

0
β > 0. Thus define

µ∗1(R) = R
2ηαM1σ0

α
and µ∗2(R) = R

2ηβM2σ0
β
.

Let 0 < µ1 ≤ µ∗1(R) and 0 < µ2 ≤ µ∗2(R). Then, for all t ∈ [0, 1], we have

T1(u, v)(t) ≤ µ1ηα

∫ 1

0
Kα(s)a(s) f (s,u(s), v(s))ds

≤ µ1ηαM1σ
0
α

≤ µ1ηαM1σ
0
α ≤

R
2

=
1
2
||(u, v)||.
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So, we obtain

||T1(u, v)|| ≤
1
2
||(u, v)||. (31)

Analogously, we prove

||T2(u, v)|| ≤
1
2
||(u, v)||. (32)

Hence, from (31) and (32), we conlude that ||T(u, v)|| ≤ ||(u, v)||, for all (u, v) ∈ ∂ΩR.

Lemma 2.13. Assume that conditions (H1)−(H3) are fullfilled .
If f0 = ∞ or 10 = ∞, then there exists r0(µ1, µ2) > 0 such that for every
0 < r < r0(µ1, µ2) we have

||T(u, v)|| ≥ ||(u, v)||, for all (u, v) ∈ ∂Ωr.

Proof. Let µ1, µ2 > 0. Define A = max{ 1
2µ1γγασθα

, 1
2µ2γγβσθβ

} > 0. In addition assume that f0 = ∞ or 10 = ∞, then

there exists r0 = r0(µ1, µ2) > 0 such that

f (t,u, v) ≥ A(u + v), t ∈ Jθ, 0 < u + v ≤ r0. (33)

or

1(t,u, v) ≥ A(u + v), t ∈ Jθ, 0 < u + v ≤ r0. (34)

First, if f0 = ∞, then (33) holds. Fix 0 < r < r0 and (u, v) ∈ ∂Ωr. Then for all t ∈ Jθ, we have

T1(u, v)(t) ≥ µ1γαA
∫ 1−θ

θ
Kα(s)a(s)(u(s) + v(s))ds

≥ µ1γαA
∫ 1−θ

θ
Kα(s)a(s)(γ∗α||u|| ‖ +γ∗β||v||)ds

≥ µ1γγασ
θ
αA||(u, v)||.

So, we obtain

||T1(u, v)|| ≥
||(u, v)||

2
.

Thus

||T(u, v)|| ≥ ||(u, v)||.

Now, we suppose that 10 = ∞, then (34) holds. By the same manner we prove that

||T(u, v)|| ≥ ||(u, v)||,

which ends the proof.

Remark 2.14. Note that condition f0 and 10 need only to be satisfied on subinterval Jθ of [0, 1] rather the entire
interval as is often required with this type of assumption.
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Lemma 2.15. Suppose that conditions (H1)−(H3) hold. If f 0 = 0 and 10 = 0 then there exists r0(µ1, µ2) > 0 such
that 0 < r < r0(µ1, µ2) we have

||T(u, v)|| ≤ ||(u, v)||, for all (u, v) ∈ ∂Ωr.

Proof. Since f 0 = 0 and 10 = 0, then for ε = min{ 1
2µ1ηασ0

α
, 1

2µ2ηβσ0
β
} > 0 there exists r0(µ1, µ2) > 0 such that

f (t,u, v) ≤ ε(u + v), and 1(t,u, v) ≤ ε(u + v), ∀t ∈ [0, 1], 0 < u + v ≤ r0(µ1, µ2). Fix 0 < r < r0(µ1, µ2) and let
(u, v) ∈ ∂Ωr. Then for all t ∈ [0, 1], we have

T1(u, v)(t) ≤ µ1ηα

∫ 1

0
Kα(s)a(s) f (s,u(s), v(s))ds

≤ µ1ηαε

∫ 1

0
Kα(s)a(s)(u(s) + v(s))ds

≤ µ1ηασ
0
αε(||u|| + ||v||)

Thus,

||T1(u, v)|| ≤
1
2
||(u, v)||.

By the same manner, we obtain

||T2(u, v)|| ≤
1
2
||(u, v)||.

Then it follows that

||T(u, v)|| ≤ ||(u, v)||.

Which ends the proof.

Lemma 2.16. Assume that (H1)-(H3) are satisfied. If we have f∞ = ∞ or 1∞ = ∞, then there exists R0(µ1, µ2) > 0
such that for every R ≥ R0(µ1, µ2) we have

||T(u, v)|| ≥ ||(u, v)||, for all (u, v) ∈ ∂ΩR.

Proof. Let

M = max{
1

µ1γγασθα
,

1
µ2γγβσθβ

} > 0.

Assume that f∞ = ∞ or 1∞ = ∞, then there exists R1 = R1(µ1, µ2) > 0 such that f (t,u, v) ≥ M(u +
v) or 1(t,u, v) ≥M(u + v), ∀t ∈ Jθ , u + v > R1.
Now, define R0(µ1, µ2) = 1

γR1 and let R ≥ R0(µ1, µ2). First, if f∞ = ∞, then for any (u, v) ∈ ∂ΩR, we get
f (t,u(t), v(t)) ≥M(u(t) + v(t)), ∀t ∈ Jθ. It follows that, for (u, v) ∈ ∂ΩR, t ∈ Jθ,

T1(u, v)(t) ≥ µ1γαM
∫ 1−θ

θ
a(s)Kα(s)(u(s) + v(s))ds

≥ µ1γαM
∫ 1−θ

θ
a(s)Kα(s)(γ∗α||u|| + γ

∗

β||v||)ds

≥ µ1γγασ
θ
αM||(u, v)||

≥ ||(u, v)||.
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Then

||T1(u, v)|| ≥ ||(u, v)||.

Therfore

||T(u, v)|| ≥ ||(u, v)||,∀ (u, v) ∈ ∂ΩR. (35)

Now, suppose that 1∞ = ∞, then for any (u, v) ∈ ∂ΩR we have for every t ∈ Jθ 1(t,u(t), v(t)) ≥M(u(t) + v(t)),
By the same manner, we obtain for t ∈ Jθ

T2(u, v)(t) ≥ µ2γβM
∫ 1−θ

θ
b(s)Kβ(s)1(s,u(s), v(s))ds

≥ µ2γγβσ
θ
βM||(u, v)|| ≥ ||(u, v)||.

So

||T(u, v)|| ≥ ||(u, v)||,∀ (u, v) ∈ ∂ΩR. (36)

Hence, from (35) or (36), we obtain

||T(u, v)|| ≥ ||(u, v)||,∀(u, v) ∈ ∂ΩR.

Lemma 2.17. Suppose that conditions (H1)-(H3) hold. Assume that
f∞ = 0 and 1∞ = 0, then there exists R0(µ1, µ2) > 0 such that for every R ≥ R0(µ1, µ2) we have

||T(u, v)|| ≤ ||(u, v)||, for all (u, v) ∈ ∂ΩR.

Proof. Since f∞ = 1∞ = 0, then for ε = min( 1
2µ1ηασ0

α
, 1

2µ2ηβσ0
β
) > 0, there exists R1=R1(µ1, µ2) > 0 such that

f (t,u, v) ≤ ε(u + v) and 1(t,u, v) ≤ ε(u + v) for each (u + v) ≥ R1.

Let

M1 = max
(

t∈[0,1]
u,v)∈[0,R1]×[0,R1]

f (t,u, v) and M2 = max
(

t∈[0,1]
u,v)∈[0,R1]×[0,R1]

1(t,u, v)

Let R0(µ1, µ2) > max{2R1, µ1ηασ0
αM1( 1

2 − µ1σ0
αηαε)−1, µ2ηβσ0

βM2( 1
2 − µ2σ0

βηβε)−1
}. Fix R ≥ R0(µ1, µ2) and let

(u, v) ∈ ∂ΩR. Let t ∈ [0, 1], then we have

T1(u, v)(t) ≤ µ1ηα

∫ 1

0
Kα(s)a(s) f (s,u(s), v(s))ds

≤ µ1ηαM1σ
0
α + µ1ηαε

∫ 1

0
Kα(s)a(s)(u(s) + v(s))ds

≤ µ1ηαM1σ
0
α + µ1ηασ

0
αε(||u|| + ||v||)

≤ R0(
1
2
− µ1σ

0
αηαε) + µ1ηασ

0
αεR0 =

1
2
||(u, v)||.

So, we have

||T1(u, v)|| ≤
1
2
||(u, v)||.
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Similary, we prove

||T2(u, v)|| ≤
1
2
||(u, v)||.

Thus, we obtain

||T(u, v)|| ≤ ||(u, v)||,∀(u, v) ∈ ∂ΩR.

This completes the proof.

Lemma 2.18. Suppose that conditions (H1)-(H2) hold. If f∞, 1∞ ∈ (0,∞), then there exist µ∗1, µ
∗

2 > 0 and R0 > 0
such that for each R > R0 and for each µ1 > µ∗1, µ2 > µ∗2 we have

||T(u, v)|| ≥ ||(u, v)||,∀(u, v) ∈ ∂ΩR.

Proof. Suppose that f∞, 1∞ ∈ (0,∞). Then for ε = min( f∞
2 ,
1∞

2 ) there exists R0 > 0 such that for each t ∈ Jθ,
u + v ≥ R0, we have
f (t,u, v) ≥ ( f∞ − ε)(u + v) and 1(t,u, v) ≥ ( 1∞ − ε)(u + v).
Define

µ∗1 = 1
2γγασθα( f∞−ε)

> 0 and µ∗2 = 1
2γγβσθβ ( 1∞−ε)

> 0.

Let µ1 > µ∗1 and µ2 > µ∗2. Fix R > R0
γ and let (u, v) ∈ ∂ΩR, t ∈ Jθ, then we have

T1(u, v)(t) ≥ µ1γα

∫ 1−θ

θ
Kα(s)a(s)( f∞ − ε)(u(s) + v(s))ds

≥ µ1γγασ
θ
α( f∞ − ε)||(u, v)||

≥
||(u, v)||

2
.

Similary, we get

T2(u, v)(t) ≥
||(u, v)||

2
.

Thus

||T(u, v)|| ≥ ||(u, v)||, ∀(u, v) ∈ ∂ΩR.

Which ends the proof.

By the same manner we prove the following lemma.

Lemma 2.19. Suppose that conditions (H1)-(H2) hold. Assume that f0, 10 ∈ (0,∞). Then there exist µ∗1, µ
∗

2 > 0 and
r0 > 0 such that for each 0 < r < r0 and for each µ1 > µ∗1, µ2 > µ∗2, we have

||T(u, v)|| ≥ ||(u, v)||, ∀(u, v) ∈ ∂Ωr.
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3. Existence of positive solution

This section is devoted to give existence of postitive solution for the nonlinear boundary value system
(1). By a positive solution of problem (1), we mean a pair of functions (u, v) ∈ C([0, 1])× C([0, 1]) satisfying
(1) with u(t), v(t) ≥ 0 for all t ∈ [0, 1] and u(t), v(t) > 0 for all t ∈ (0, 1).

Theorem 3.1. Suppose that conditions (H1)−(H3) hold. In addition, suppose that { f0 = ∞, f∞ = 1∞ = 0} or
{10 = ∞, f∞ = 1∞ = 0}, then for every µ1, µ2 > 0, the system (1) has at least one positive solution.

Proof. First, suppose that { f0 = ∞, f∞ = 1∞ = 0}.
Choose R > max( r0(µ1, µ2),R0(µ1, µ2)), where r0(µ1, µ2) and R0(µ1, µ2) are given by Lemmas 2.13, 2.17
respectively. So we obtain

||T(u, v)|| ≥ ||(u, v)||, (u, v) ∈ ∂Ωr, (37)

and

||T(u, v)|| ≤ ||(u, v)||, (u, v) ∈ ∂ΩR. (38)

Thus Lemma 2.9 implies that the operator T has a fixed point in ΩR\Ωr. So by Lemma 2.10, the system (1)
has at least one nonnegative solution (u, v) ∈ Ω.
We suppose now that {10 = ∞, f∞ = 1∞ = 0}, then by the same manner, we deduce that the problem (1) has
at least one nonnegative solution
(u, v) ∈ Ω.

Now, we shall prove that (u, v) is positive solution of problem (1) that is u(t) > 0 and v(t) > 0 for each
t ∈ (0, 1). Assume, on contrary, that there exists t∗ ∈ (0, 1) such that u(t∗) = 0 or v(t∗) = 0. Suppose that
u(t∗) = 0. Lemma 2.10 implies that

u(t∗) = µ1

∫ 1

0
Gα(t∗, s)a(s) f (s,u(s), v(s))ds.

Since the function Gα, a and f are nonnegative and continuous, we obtain

Gα(t∗, s)a(s) f (s,u(s), v(s)) = 0 a.e.(s).

From hypothesis (H1) and the fact that Gα is positive on (0, 1) × (0, 1) we deduce that

f (s,u(s), v(s)) = 0 a.e.(s). (39)

Further, from hypothesis (H3) and the continuity of the function f , we claim the existence of subset I ⊂ (0, 1)
with m(I) > 0, where m is the Lebesgue measure on (0, 1) such that f (t,u, v) > 0 on I, which contradict (39).
The proof is complete.

Theorem 3.2. Suppose that conditions (H1)−(H3) hold. In addition suppose that { f 0 = 10 = 0, f∞ = ∞} or
{ f 0 = 10 = 0, 1∞ = ∞}, then for every µ1, µ2 > 0, the system (1) has at least one positive solution.

Proof. We assume that { f 0 = 10 = 0, f∞ = ∞}, then for 0 < r < r0(µ1, µ2) and R > max{r0,R0(µ1, µ2)}, where
r0(µ1, µ2) and R0(µ1, µ2) are given by Lemmas 2.15 and 2.16 respectively, we have

||T(u, v)|| ≤ ||(u, v)||, for (u, v) ∈ ∂Ωr,

and

||T(u, v)|| ≥ ||(u, v)||, for (u, v) ∈ ∂ΩR.

Thus, Lemma 2.10 implies the existence of a nonnegative solution for problem (1). Now, if { f 0 = 10 =
0, 1∞ = ∞}, then by a similar approach, we conclude that problem (1) has at least one nonnegative solution
(u, v) ∈ Ω. The positivity of (u, v) is shown as in proof of the previous Theorem.
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Remark 3.3. We note here that Theorem (3.1) and Theorem (3.2) are generalisations of Theorem (3.2) stated in the
work [5] concerning the scalar boundary value problem (2).

Theorem 3.4. If conditions (H1)−(H3) hold. Suppose also that one of the following conditions { f0 = ∞ or 10 = ∞}
or { f∞ = ∞ or 1∞ = ∞} is satisfied. Then there exist µ∗1, µ

∗

2 > 0 such that for each 0 < µ1 < µ∗1 and 0 < µ2 < µ∗2, the
system (1) has at least one positive solution.

Proof. Choose R > 0. From Lemma 2.12, there exist µ∗1, µ
∗

2 > 0 such that for 0 < µ1 < µ∗1 and 0 < µ2 < µ∗2, we
obtain

||T(u, v)|| ≤ ||(u, v)||, for all (u, v) ∈ ∂ΩR.

If the first condition holds, that is we have { f0 = ∞ or 10 = ∞}, then by Lemma 2.13, there exits r0(µ1, µ2) > 0
such that for 0 < r1 < min{R2 , r0(µ1, µ2)}, we have

||T(u, v)|| ≥ ||(u, v)||, for all (u, v) ∈ ∂Ωr1 .

Now, if we have { f∞ = ∞ or 1∞ = ∞}, then from Lemma 2.16, there exits R0(µ1, µ2) > 0 such that for
r2 > max{ R0(µ1, µ2), 2R}we have

||T(u, v)|| ≥ ||(u, v)||, for all (u, v) ∈ ∂Ωr2 .

Therefore Lemma 2.9 implies that the operator T has a fixed point in ΩR\Ωr1 or Ωr2\ΩR whether the first
assertion or the second one is satisfied, respectively. Thus by Lemma 2.10, the system (1) admits at least
one positive solution for all 0 < µ1 < µ∗1 and 0 < µ2 < µ∗2.

Theorem 3.5. Assume that conditions (H1)−(H2) are fullfilled.
If { f∞, 1∞ ∈ (0,∞), f 0 = 10 = 0} then there exist µ∗1, µ

∗

2 > 0 such that for each µ1 > µ∗1 and µ2 > µ∗2, the system (1)
has at least one positive solution.

Proof. Let µ1 > µ∗1, µ2 > µ∗2, R > R0, where µ∗1, µ
∗

2 and R0 are given by Lemma 2.18. Then we have

||T(u, v)|| ≥ ||(u, v)||,∀(u, v) ∈ ∂ΩR. (40)

On the other hand, let r < min{R0, r0((µ1, µ2)}where r0(µ1, µ2) is defined by Lemma 2.15, then we obtain

||T(u, v)|| ≤ ||(u, v)||, for all (u, v) ∈ ∂Ωr. (41)

Therfore, by applying Lemma 2.9 to (40) and (41), the system (1) has a positive solution for µ1 > µ∗1 and
µ2 > µ∗2.

Theorem 3.6. Assume that conditions (H1)−(H2) are fullfilled.
If { f∞ = 1∞ = 0, f0, 10 ∈ (0,∞)}, then there exist µ∗1, µ

∗

2 > 0 such that for each µ1 > µ∗1 and µ2 > µ∗2, the system (1)
has at least one positive solution.

Proof. Using Lemma 2.19 combined with Lemma 2.18, by the same manner as the proof of Theorem 3.5, we
prove that problem (1) has at least one positive solution for every µ1 > µ∗1 and µ2 > µ∗2.

4. Multiplicity results

In this Section, we state two existence results.

Theorem 4.1. Suppose that conditions (H1)− (H3) hold. In addition, suppose that { f0 = ∞ or 10 = ∞} and { f∞ = ∞
or 1∞ = ∞ }, then there exist µ∗1, µ

∗

2 > 0 such that for each 0 < µ1 < µ∗1 and 0 < µ2 < µ∗2, the problem (1) has two
positive solutions.



R. Bourguiba et al. / Filomat 34:13 (2020), 4453–4472 4468

Proof. Choose two numbers R2 > R1 > 0. By Lemma 2.12, there exist µ∗1 > 0 and µ∗2 > 0 such that 0 < µ1 < µ∗1,
0 < µ2 < µ∗2 we have

||T(u, v)|| ≤ ||(u, v)||, for (u, v) ∈ ∂ΩRi , i = 1, 2. (42)

Since f0 = ∞ or 10 = ∞, then by Lemma 2.13, we can choose 0 < r < min{R1
2 , r0(µ1, µ2)} such that

||T(u, v)|| ≥ ||(u, v)||, for (u, v) ∈ ∂Ωr.

Moreover, since { f∞ = ∞ or 1∞ = ∞ }, by Lemma 2.16 we can choose R > max{2R2,R0(µ1, µ2)} such that

||T(u, v)|| ≥ ||(u, v)||, for (u, v) ∈ ∂ΩR.

Then, from Lemma 2.9, T has two fixed points (u1, v1) and (u2, v2) such that (u1, v1) ∈ ΩR1\Ωr and (u2, v2) ∈
ΩR\ΩR2 . Thus (u1, v1) and (u2, v2) are the desired distinct positive solutions of system (1) for 0 < µ1 < µ∗1

and 0 < µ2 < µ∗2 satisfying

r ≤ ||(u1, v1)|| ≤ R1 < R2 ≤ ||(u2, v2)|| ≤ R.

This complets the proof.

Theorem 4.2. Suppose that conditions (H1)−(H3) hold. In addition, suppose that { f 0 = 10 = 0, f∞ = 1∞ = 0}, then
there exist µ∗1, µ

∗

2 > 0 such that for each 0 < µ1 < µ∗1 and 0 < µ2 < µ∗2, the problem (1) has two positive solutions.

Proof. By combining Lemma 2.17 and Lemma 2.15, we follow the result of Theorem (4.2) by the same
manner as the proof of Theorem (4.1), so we omit it.

5. Nonexistence of positive solutions

We give in this Section nonexistence results for the system (1).

Theorem 5.1. Suppose that conditions (H1)−(H3) are fulfilled. In addition assume that f∞, f 0, 1∞, 10
∈ (0,∞),

then there exist µ∗1, µ
∗

2 > 0 such that problem (1) has no positive solution for all 0 < µ1 < µ∗1 and 0 < µ2 < µ∗2.

Proof. Suppose the contrary that is the problem (1) admits a positive solution. Since f∞, f 0
∈ (0,∞), then

there exist ε1, ε2, l1, l2 such that
l1 < l2 and for each t ∈ [0, 1] we have

f (t,u, v) ≤ ε1l1, 0 ≤ u + v ≤ l1.

and

f (t,u, v) ≤ ε2l2, u + v ≥ l2.

Let

L1 = max{l1, l2, max
t∈[0,1]

l1≤u+v≤l2

f (t,u, v)
u + v

}.

Thus, we obtain

f (t,u, v) ≤ L1(u + v), ∀u, v ≥ 0.

By the same manner, there exists L2 > 0 such that

1(t,u, v) ≤ L2(u + v), ∀u, v ≥ 0.
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Define µ∗1 = 1
2ηασ0

αL1
and µ∗2 = 1

2ηβσ0
βL2
. Let µ1 ∈ (0, µ∗1) and µ2 ∈ (0, µ∗2). Then, by using Lemma 2.10, we get

(u, v) = (T1(u, v),T2(u, v)).

So

u(t) ≤ µ1ηασ
0
αL1(||u|| + ||v||)

< µ∗1ηασ
0
αL1||(u, v)||

=
||(u, v)||

2
.

Similarly, we obtain

v(t) <
||(u, v)||

2
.

Therfore, we get ||(u, v)|| < ||(u, v)||, which is a contradiction. The proof is complete.

Theorem 5.2. If (H1)−(H3) hold. If { f0 > 0, f∞ > 0} or {10 > 0, 1∞ > 0} then there exists µ1 > 0 or µ2 > 0 such
that problem (1) has no positive solution for all µ1 > µ0 or µ2 > µ0.

Proof. Suppose that { f0 > 0, f∞ > 0}, then there exists L1 > 0 such that f (t,u, v) ≥ L1(u + v) for all u ≥ 0, v ≥ 0.
Define

µ0 =
1

γγαL1σθα
.

Let µ1 > µ0 and suppose that (1) has a positive solution (u, v) then, by Lemma 2.10, (u, v) satisfy (25) and
(26). Thus (u, v) is necessary in the cone Ω. From Proposition 2.7 (iii), we have for each t ∈ Jθ

u(t) > µ1γα

∫ 1−θ

θ
Kα(s)a(s) f (s,u(s), v(s))ds

> µ1γαL1

∫ 1−θ

θ
Kα(s)a(s)(u(s) + v(s))ds

> µ1γαL1σ
θ
α(γ∗α||u|| + γ

∗

β||v||)

> µ0γαL1σ
θ
αγ||(u, v)|| = ||(u, v)||.

Thus

||u|| > ||(u, v)||.

Which is a contradiction. Now, suppose that {10 > 0, 1∞ > 0}, then there exists L2 > 0 such that
1(t,u, v) ≥ L2(u + v) for all u ≥ 0, v ≥ 0. Define

µ0 =
1

γγβL2σθβ
.

Let µ2 > µ0, by the same manner, we obtain

||v|| > ||(u, v)||.

Which is a contradiction.
Consequently, we conclude that there exists µ0 > 0 such that the system (1) has no positive solution if either
µ1 > µ0 or µ2 > µ0.



R. Bourguiba et al. / Filomat 34:13 (2020), 4453–4472 4470

6. Examples

In this section, we present some examples in order to illustrate our results. We remark that in the
following examples, it is immediate to verify that conditions (H1), (H2) and (H3) hold.

Example 6.1. We consider the following nonlinear fractional differential equations
D

5
2 u(t) + µ1

1
t(1−t) (u(t))

2
3 = 0, in (0, 1),

D
5
2 v(t) + µ2

1
t(1−t) (v(t))

2
3 = 0, in (0, 1),

u(0) = u′(0) = 0, u(1) = 2
∫ 1

0 u(s)ds,

v(0) = v′(0) = 0, v(1) = 2
∫ 1

0 v(s)ds.

(43)

Let f (t,u, v) = u
2
3 , 1(t,u, v) = v

2
3 , a(t) = b(t) = 1

t(1−t) , λ1 = λ2 = λ = 2. By direct calculation, we obtain f0 = ∞

and f∞ = 0. From Theorem 3.1, we deduce that problem (43) has at least one positive solution for every µ1, µ2 > 0.
In particular for µ1 = µ2 = µ, the problem (43) admits a positive solution. Consequently, the following boundary
value problem D

5
2 u(t) + µ 1

t(1−t) (u(t))
2
3 = 0 in (0, 1),

u(0) = u′(0) = 0,u(1) = 2
∫ 1

0 u(s)ds,
(44)

admits at least one positive solution for each µ > 0.
We remark here that problem (44) can not be treated by Theorem (3.2) in [6] concerning problem (3). This due to the
fact that the conditions on 1(t) = 1

t(1−t) are not required.

Example 6.2. Consider the following boundary value problem
D

5
2 u(t) + µ1

1
t(1−t) ((1 + t2) exp(

√
u + v)) = 0, in (0, 1),

D
7
3 v(t) + µ2

1
t ((2 + t)

√
u + v cos2(u + v)) = 0, in (0, 1),

u(0) = u′(0) = 0, u(1) = 3
2

∫ 1

0 u(s)ds,

v(0) = v′(0) = 0, v(1) = 1
2

∫ 1

0 v(s)ds.

(45)

Setα = 5
2 , β = 7

3 , a(t) = 1
t(1−t) , b(t) = 1

t . Let f (t,u, v) = (1+t2) exp(
√

u + v) and 1(t,u, v) = (2+t)
√

u + v cos2(u+v).
So, we get f0 = ∞ and 10 = ∞, then we can apply the first assertion of Theorem 3.4. Let R = 1. Then, by Lemma
2.12, we get µ∗1(1) ≈ 9. 695 2 × 10−2, µ∗2(1) ≈ 1. 485 5. According the proof of Theorem 3.4, we get 0 < ||(u, v)|| ≤ 1.
So, problem (45) admits a positive solution for 0 < µ1 < 0.096952 and 0 < µ2 < 1.4855.

Example 6.3. Consider the following boundary value problem
D

7
3 u(t) + µ1

1
1−t (1 + t2) exp(u + v) = 0, in (0, 1),

D
5
2 v(t) + µ2

1
t(1−t) ((u + v)2 + ln(2 + (u + v)) = 0, in (0, 1),

u(0) = u′(0) = 0, u(1) = 2
∫ 1

0 u(s)ds,

v(0) = v′(0) = 0, v(1) =
∫ 1

0 v(s)ds.

(46)

Let f (t,u, v) = (1 + t2) exp(u + v), 1(t,u, v) = (u + v)2 + ln(2 + u + v), a(t) = 1
1−t and b(t) = 1

t(1−t) . By direct
calculation, we obtain f0 = f∞ = ∞, 10 = 1∞ = ∞. From proof of Theorem 4.1 and using the same notations we
choose R1 = 1

2 and R2 = 1. A simple calculs yields to µ∗1 = 0.024334, µ∗2 = 0.017904. So Theorem 4.1 ensures the
existence of two solutions (u1,v1) and (u2,v2) of problem (1) for every 0 < µ1 < µ∗1 and 0 < µ2 < µ∗2, such that

0 ≤ ||(u1, v1)|| ≤
1
2
< 1 ≤ ||(u2, v2)||.
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Example 6.4. Consider the following boundary value problem


D

7
3 u(t) + µ1

1
t2 (2t + 1)(u + v) = 0, in (0, 1),

D
5
2 v(t) + µ2

1
√

t
(u + v + ln(1 + u + v)) = 0, in (0, 1),

u(0) = u′(0) = 0, u(1) = 2
∫ 1

0 u(s)ds,

v(0) = v′(0) = 0, v(1) =
∫ 1

0 v(s)ds,

(47)

Let α = 7
3 , β = 5

2 , a(t) = 1
t2 , b(t) = 1

√
t
. Let f (t,u, v) = (2t + 1)(u + v) and 1(t,u, v) = (u + v + ln(1 + u + v)), we

verify that f 0 = f∞ = 3, 1∞ = 1 and 10 = 2, then we can apply Theorem 5.1.
A simple calculation shows that µ∗1 = 0.198 44 and µ∗2 = 1. 527 9. Then for 0 < µ1 < 0.198 44 and 0 < µ2 < 1. 527 9
problem (47) has no positive solution.
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