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Abstract. In this study, some approximates for the finite Wavelet transform of different classes of absolutely
continues mappings are presented using Wavelet transform of unit function. Then, with the help of these
approximates, some other approximates for the finite Mellin and Sumudu transforms are given.

1. Introduction

Integral transform method is one of the frequently used methods in solving ordinary and partial
differential equations in mathematics. Indeed, increasing studies in applied mathematics, mathematical
physics, and engineering have shown the first signal that integral transforms will be one of the important
methods in operational mathematics. The increasing demand for mathematical methods that provide
both theory and application in science and engineering has clearly demonstrated the usefulness and need
for integral transforms. Leaving aside a number of the mathematical and physical applications of integral
transform, the subject of integral transformation still constitutes one of the major areas of interest in scientific
studies and research [3, 9].

The importance of integral transforms lies in providing powerful operational methods for solving initial
value and initial-boundary value problems for linear differential and integral equations. Especially if the
solution in the domain of the partial differential equation is quite time consuming and challenging, the
integral transform equation provides the opportunity to move and solve it in a form where mathematical
operations are much easier. In this way, after finding the solution in transformed form, using the inverse
integral transform method, the solution of the original partial differential equation is obtained. So, the
solution process in a partial differential equation solved using integral transform can be summarized as
transform-solve-inverse transform [16].

In addition to these, in [4-6] and [13-15], some explicit bounds for the finite Hilbert transform are given
utilizing the fundamental integral identity for absolutely continuous mappings. At the same studies, some
numerical experiments for the obtained approximation are also presented.

In general, an integral transform of function f(t) can be defined as following,

b
TKf(s):f K(s, t) f(t)dt,
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where K is a kernel depend on s and ¢. To be advantageous to use such a transformation in any problem,
Fk f(s) should be easier to identify and manipulate than f(t).

Recently, the finite Wavelet transforms have been implemented successfully in the areas of sound
processing, signal analysis, data compression (see, for details, [1, 11] and the references cited therein).
Using the notation of inner product, the wavelet transform of a function f(t) can be expressed as

Wt = =~ [ o (52

where u € R is a translation parameter and the symbol s > 0 represents the scaling or dilating parameter,
which determines the time and frequency resolutions of the scaled base wavelet ¢ ( ) The specific values
of s are inversely proportional to the frequency. The symbol u is the shifting parameter, which translates the
scaled wavelet along the time axis. The symbol ¢*(-) denotes the complex conjugation of the base wavelet
®(-). As an example, if the Morlet wavelet ¢(t) = e2™f!
version will be expressed as

e~@/B is chosen as the base wavelet, its scaled

(P(t_s ) o2h 5 pralt-uP (26

with the parameters f, @ and f all being constants.
In addition to this, Mellin transform occurs in a number of areas of engineering and applied mathematics.
The Mellin integral transform of a sufficiently well-behaved function f(t) is defined as

Mf(E), ) = fo fr-dt.

For more information regarding the Mellin integral transform including its properties and particular cases
we refer the interested reader to e.g. [2, 7, 8].

Recently, Watugala introduced a new transform and called as Sumudu transform which is defined by
the following formula

S{f(t),s} = %j;m f(t)e—t/sdt, s € (—11,T2),

and applied this new transform to the solution of ordinary differential equations and control engineering
problems, see [10, 12].

In this study, motivated by the some approximates for the finite Hilbert transform [4-6], we will show
some approximates for the finite Wavelet transform of different classes of absolutely continues mappings.
Then with the help of these approximates, some other approximates for the finite Mellin and Sumudu
transforms will be given.

2. Some Convergence Analysis
The following theorem provides error bounds for finite Wavelet transform.

Theorem 2.1. Let f : [a,b] — R be such that f' : (a,b) — R is absolutely continuous on (a,b) and ¢(-) is a basis
function for Wavelet transform. Then we have the following bounds:

W, f(a, by, 1) — ) <absu>——ff<t>t—u> g L0 )fu— we (1) ‘
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”f””oo f I

( - ”)‘ dt, if F € Loola, b,

o(5)

IA

_ f| u|@+ /g
2Vs(q + 1)1

IIf”I|1 Iy f'l

dt, if f7 € Lya,bl,p>1, % + % =1,

foN € Ll[ﬂ, b]/

forall t € (a,b), where || - ||, are the usual Lebesque norms in Ly[a,b] (1 <p < o).

Proof. Let start with Wavelet transform of unit function. In other words, for f(t) = 1, we have

1 (" ¢
W(pl(a,b;s,u)zﬁf (p(

Then, obviously

=: Dy(a,b;s, u).

7/ 10~ 70 + gl (1)t

- = f ® - F) ]go( )dt+ F)D,(a, b;s, ).

Wo f(a,b;s, u)

Using the following elementary identity, which can be proved using the integration by parts formula, which

is
B B
f u(v)do = w(ﬁ —a)+ f (OéT-i-ﬁ - v) u’(v)do,

we obtain
L1
= %ﬁb{f,(t);f,( u)+f( x)f”(x)dx}(p(t_Tu)dt,
%@fahf'a)(t—u) (= )f<t—u>
\fff (2 -2) ><p( ) axa.

Then by rearranging the above equations, we can obtain the following identity,

f()f(t_)

Wy f(a,b;s,u) — f(u)®y(a,b;s, u)

Woftais - S0y atis - 22 [ ro-up(5"

\fff ”” f”(x)(p( )dxdt
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Using the properties of modulus, we obtain

1, t— ") (* t
W(pf(u,b;s,u)—f(u)(l)qo(a,b;s,u)—Z—VELf(t)(t—u)(p( S”) éjgﬁ(t—u)¢(_
1

\/gfb(f (”T”—x)f”(x)dx) ( )dt
\[f (’)(t—su)

So if we choose f” € Lo[a, b], we have

t+u
dt.

) £ (x)dx

Woftatis 0 - S0 atis - 21 [ ro-up(5"

£ Mo t+u ) t—u
< — -x dx(p( )dt,
Vs
I lloo fb 2| (1 u)
t—u — )| dt
vl It —ul”|p

Now if we choose f” € L,[a, b] and apply the well-known Holder inequality, we can obtain the following

inequality forp > 1, % + % =1,

¢ ¢ Up | q V4
f (”” —x)f”(x)dx < f |F ()P f L LS
u 2 u u
b Up | At+u)/2 q t g |Ma
< (f If”(x)|r’dx) f (”” —x) dx+f (x— ””) i
a u 2 (t+u)/2 2

" M - t|(q+1 /7

for all u,t € (a,b). Then,

f%)f(t—u)@(t

Wy f(a,b;s,u) — f(u)Dy(a, b;s, u) — Zi/_f F )t —u) ( —u

IF71ly @+ /g gy
2\/_(q+1)1/‘7f| i )

and the second bound of theorem is proved.

dt.
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Finally, we observe that

t
f (”” ) x| < sup [t F(0)dx|,
u x€[u,t] 2 u
b
< |M - t| f f//(x)dx ,
< By,
Consequently,
W £(a,bys, 1) — F(u)®y(a, b;s, u) — f f(t)(t—u) S f (t - u)p
W (7 t—u
Nl |u—t|'(p( - )dt,

thus the theorem is proved. [

1 1 . e .
Corollary 2.2. If we choose ¢(t) = gPV— with the same conditions in Theorem 2.1, we have the following result

/st
T 220 L) - @) + £/ - o)

‘W@f(a/ b/ s, u) -

77 —1\2 2
IIf ||oo[(b (. #) , 1 € Lo, b]
< q”f"”l’ (q+1)/q . 1 1
S — P [u- b—uw) VAL, if e Lyablp>1, - +- =1,
2n(q + o T G g e Llablp > Loy
Wb -a), if £ € Lila,b],
given in [5].

Corollary 2.3. If we take (t) = Vs(ts + u)*~! with the same conditions in Theorem 2.1, we get the following error
bound for the Mellin transform

-1 _M bowpt s e
‘ 01 005 3 [ - T (L S
||f//||oo bs+2 bs+] st as+2 as+1 2LZS o
T \s32 2otV S T TR W) ekt
M o 1 1
< [ |t —u|@* D/ |57 gt f f" € Ly[a,bl,p>1,-+==1,
2(q+1)1/qfu It = ul | } lff p[a ] p » 3
”f//”1 s bs+1 a° as+1 o
2 us s+1 ug s+1) ¥ € Lala,bl.
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Proof. Let start with the substituting ¢(t) = /s(ts + u)*"! in the result of Theorem 2.1, we have

b b ’ b
‘M{f(t),s}—f(u)f ts‘ldt—%f f’(t)(t—u)ts‘ldt—%f(t—u)ts‘ldt

% [ 1=l i, if f” € Loo[a, b],

IA

ey o 1 1
— (Tl —u@ D dE, i F e Lfabl,p>1, -+~ =1,
2+ iy b o el byt

If” Il
2

7 = 1 i, if 7 € Li[a, b],

for all t € (a,b), where || - ||, are the usual Lebesque norms in L,[a,b] (1 < p < o0). And then, by calculating
the above integrals, we have obtained the desired results, thus the proof is completed. [J

1
Corollary 2.4. If we take @(t) = 76_(t+”/ ) with the same conditions in Theorem 2.1, we get the following error
s

bound for the Sumudu transform

b ’
S{f(t), s} = fu)le s — e - % f F O —uye " dt - #[e_“/s(a +s—u)—e (b +s—u)]

”ﬁ%[e‘”“(Zs(a —u) + (a—u)?+25%) —e5(2s(b — u) + (b — u)? + 25%)], if f”” € Loo[a, b),

IA

IIf U 1 1
t— u|@D/aetisgt, ffeLylabl,p>1=+-=1,
s(g+1) 2e(a + 1)1/9 f |t = ul € if f p[a Lp Py

”f’%[e‘b/s(b+s—u) —e™S(a+s—u), if f € Ly[a, b].

Proof. The similar proof can be performed by following the similar step for the proof of Corollary 2.3. [

Theorem 2.5. Let f : [a,b] — R be such that " : (a,b) — R is absolutely continuous on (a,b) and ¢(-) is a basis
function for Wavelet transform. Then we have the following bounds:

Wt = S0, = [ 0= ()= L9 [ ()

" oo b 2 (t—“) '
P dt’ 1 /NGLooarbr
v J te=ullo{— ) o, 0]
IFp[BGg +1,q+ DIYT ) PP S
S t_ 2+1/q ( )dt/ ,NGL /b/ >1/_+_:1’
4+5(q + 1)1 J =t (= Hr ety
|vmf( ( ﬂm, if ' € Ly[a, b],

forall t € (a,b), where || - ||, are the usual Lebesque norms in Ly[a, b] (1 < p < oo) and B(-, -) is beta function.
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Proof. By following the similar procedure to that in previous theorem, we can easily obtain that

Wi f(@,bis, 1) = F)D, (@, b5, ) f £ - S f (t - w)p
- (s =) | o (2 )
using the following integration by parts formula
fa " oydo = @) ;“ 4P g f (0 - @)(B = 0) " (V)do.

So if we choose f” € L[4, b], we have

jl\;gfﬂb(t—u)(p(t

Wi fla, b;5, 1) — F(1)®y(a, b;5, 1) f £ -

( )

IIf I|oo it

f (e = B)(u — )] dx
e (* af (t-u
12ﬁtﬂu | )

1

Now if we choose "’ € L,[a, b] and apply well-known Holder inequality, we can state for p > 1, % + E =1,

dt.

that

1/p 1/q

f = D =D dx|

A

—B(u —x)) f (x)dx

l//(x)lpdx

IA

I llplu — tF*9[B(g + 1, + 1)]'/7,

forallu,t € (a,b). Then,

b
%f(a,b;s,u)—f(u)%(cz,b;s,u)—%ﬁ f Froe - wp (=) f (t w0

If"p[Bg +1,q+ DT {2+
235(q + DV -

t—u
o ()|

and the second bound of theorem is proved.
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Finally, we observe that

t t
f (x =t —x) f"(x)dx| < max|(x—t)u—x) f 7 (x)dx|,
% x€[u,t] U
b
< (1/[ ; t)z L f///(x)dx ,
a2
< Dy,

Consequently,

b _ ’ b _
M@ﬂmha@—f@ﬂ%@ﬁm&ﬁ—;%if f@U—um%£;E%#—£%gJ“U—W@G:ﬂ)ﬂ

If " [

2
s a(u |

and the theorem is proved. [

1 1
Corollary 2.6. If we choose ¢(t) = gPV— with the same conditions in Theorem 2.5 we have the following result
s

st

T3 2 L if) - f@ + o -

‘W(pf(a,b;s,u)— 71 ”

if f"" € Loo[a, b],

1271 12 a

anM[w—m2+( a+bf]
— |

qllf”"Il,[B(g +1,q + 1)]/ | L
< w—a)?Vi 4 (b—u)2), if f elyabl,p>1 -+-=1,
ey CRUast GRS AR PR L S A
LF" Il | (b — a)? +b\? |
f877 ! [( 4&) + (u— a 7 ) :|, yt‘f/u c Ll[ﬂ,b],
given in [5].

Corollary 2.7. If we take p(t) = V/s(ts + u)*~! with the same conditions in Theorem 2.5 we get the following error
bound for the Mellin transform

v —a

S

f’(u) bs+1 ub® Ss+1 +uas)

M 1 ’ ’ s—ld
fUf(#), s} = f(w) +§fuf(t)(t—u)t i e s
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||f"||oo bs+2 bs+1 2bs as+2 as+1 Zas s
2 \svz2 25vi TV s P v S) YT eklat)
" TB(g + 1, +1 1/q 1 ,
< Hf ||P[ (q 3 )] fh |t _ u|2+1/q 'ts—lldt’ iffu c Lp[a, b], p > 1, I 1,
4(g + 1)l/a n g
||f”||1 ps+2 ps+l st as+2 a1 Zas ’
- -~ —ut— " b].
4 \s+2 sr1 TS st T y) ffehladl

Proof. The similar proof can be performed by following the similar step for the proof of Corollary 2.3. [

Corollary 2.8. If we take @(t) = Le‘(””/ S) with the same conditions in Theorem 2.5 we get the following error
ry ¢ V5 8 g

bound for the Sumudu transform

IA

b ’
‘S{f(t),s} -t == o [ p e - L e s s - e s - )
”f1”2||00 [e—a/S(Zs(u —u)+(a— u)Z + 252) _ e—b/s(ZS(b —u)+ (- u)? +252)], if f" € Leola, b,
17 B(G + 1,q + DI i o
: 4q + 1)/ [ = wpa oo, if f € Lyla, b],
1 1
1, -+-=1.
P> p i q
U fetry@s? 4 2500 - 1)+ b = ) = s(-e)25% 2@~ 1) + (@ = wP)],if £ € L, b1

Proof. The similar proof can be performed by following the similar step for the proof of Corollary 2.3. [

3. Concluding Remarks

All in all, the finite Wavelet transform plays a significant role in scientific and engineering computing.

In order to find some new approximations of the finite Wavelet transform, different classes of absolutely
continues functions for finite Wavelet transform have been studied with the help of some fundamental
identities. Then using these approximates, some other approximates for the finite Mellin and Sumudu
transforms are presented.
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