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Abstract. The problems considered in this paper are described in polyhedral multi-valued mappings for
higher order(s-th) discrete (PDSIs) and differential inclusions (PDFIs). The present paper focuses on the
necessary and sufficient conditions of optimality for optimization of these problems. By converting the
PDSIs problem into a geometric constraint problem, we formulate the necessary and sufficient conditions
of optimality for a convex minimization problem with linear inequality constraints. Then, in terms of
the Euler-Lagrange type PDSIs and the specially formulated transversality conditions, we are able to
obtain conditions of optimality for the PDSIs. In order to obtain the necessary and sufficient conditions of
optimality for the discrete-approximation problem PDSIs, we reduce this problem to the form of a problem
with higher order discrete inclusions. Finally, by formally passing to the limit, we establish the sufficient
conditions of optimality for the problem with higher order PDFIs. Numerical approach is developed to
solve a polyhedral problem with second order polyhedral discrete inclusions.

1. Introduction

This paper is generally concerned with discrete and differential optimization of polyhedral inclusions. In

our first approach, we study the following problem labeled (PD) for higher order(s-th) polyhedral discrete
inclusions (PDSIs)

T-1

minimize Z flx, 1), (1)
t=s
(PD) subject to
Xpvs € F(xg, Xp41, .-y Xps-1) t=0,1,...,T =5, 2)
Xk = ék, k=0,1,...,S—1,
s—1
F(x,v1,09,...,0s-1) = {vs : Pox + Z P,v, — Qus < dj, 3)
r=1
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where F : (R")” — P(R") is a polyhedral multi-valued mapping, P(R") is a set of all non-empty subsets of
R". In addition, Po, Py, ..., Ps-1 are m X n dimensional matrices with rows P, P},..., P, | (i = 1,2,...,m)
and Q is m X n dimensional matrix with rows Q;, (i = 1,2,...,m). Let d be a m-dimensional column vector
withd;, i=1,2,...,mand 8, k=0,1,...,s — 1 are fixed vectors. Moreover f(,t) : R" = Ris a polyhedral
function, i.e., epi f(-, ) C R"! is a polyhedral set.

The problem is to find a sequence of vectors {%y, ¥y, ..., %1} = {ft}tT:O of problem (1) — (3) that minimizes
T-1
Y. f(xt,t). To this end, we will deduce necessary and sufficient conditions of optimality for the solution
t=s

{%:}]_, to the problem (PD).

In the second part of the paper the problem (PC) given by s-th order polyhedral differential inclusions
(PDFlIs) is studied:

1
minimize J(x() = f Fe(t), Bt + po(x(1), x' (1), ..., X)), (4)
0
(PC) subject to
x9(t) € Fx(t), ' (),...,x50(t)) ae te[0,1], (5)
x®0)=6r, k=0,1,...,s—1. (6)

Here F is a multi-valued mapping, f(-,t) and ¢o : R" — R are polyhedral functions.

It is necessary to find the solution ¥(t) of Cauchy problem (PC) for PDFIs satisfying (5) almost every-
where (a.e.) on [0,1] and the initial conditions (6) which minimize the Bolza functional J(x(:)). A feasible
trajectory x(t), t € [0,1] is an absolutely continuous function together with the s — 1 order derivatives for
which x®)(t) € LI([0,1]). Clearly such a class of functions is Banach space, endowed with different equiva-
lent norms.

Convex optimization has a wide range of applications in many areas, such as combinatorial optimization
and global optimization, where it is used to find bounds on optimal value as well as approximate solutions.
However, it is commonly used in the fields of economy and engineering, electronic process automation,
automatic control systems and optimum design problems in electrical, chemical, mechanical and aerospace
engineering [1], [7], [8], [10], [12], [30]-[35].

In the study of the so-called Von Neumann economic dynamics model, the graph of which is a poly-
hedral cone, is the main application of mathematical methods to economic problems [14]. The emphasis
of studies related to the Von Neumann model has recently been noted that the stochastic version of the
Von Neumann system can be applied successfully to the study of fundamental problems in mathematical
finance. In addition, the problems (PD) and (PC) can be extended to the linear discrete or linear differential
optimal control problem where the control domain is a polyhedral set.

Optimal control theory is considered to be one of the key areas for the application of differential inclu-
sions [2], [4], [6], [9], [13], [28], [29]. Essentially, the optimal control problems with ordinary and partial
differential inclusions consist of intensive areas of development in the applied mathematical theory of
analysis. Note that the reader can consult on the various problems described in the multi-valued mappings
[15]-[27], [29], [? ], [37].

The problem with PDSIs and PDFIs considered in this paper is more complicated due to the higher order
discrete approximation problem associated with s-th order difference operators expressed by binomial co-
efficient. As a result, it is very difficult to establish an adjoint PDSIs and PDFIs. The discretization method
is important in what follows to avoid this difficulty in polyhedral optimization problems with higher order
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derivatives. Optimization of higher order discrete and differential inclusions were first developed by Mah-
mudov [20], [26] and [24]. To the best of our knowledge, there is no paper that considers the conditions
of optimality for these problems but only the qualitative problems of second order differential inclusions.
Most of them have been the subject of different mathematical competitions, for example many of the second
order papers PDFIs concern the existence or viability of the results over the last few years (see [3], [5], [11],
[38] and references therein).

Therefore, this paper discusses a specific type of optimization problem in which the constraints are
defined by the PDSI and PDFI. Conditionally, the paper can be divided into three parts; in the first part, the
optimization of the s-th order PDSIs is investigated; in the second part, the optimization of the s-th order
PDFIs is studied. The third part of the paper deals with the s-th order discrete approximation problem,
which allows us to bridge the gap between PDSI and PDFI problems.

The paper is organized as follows:

In Section 2, by reducing s-th order discrete polyhedral optimization problem (PD) into a problem with
geometric constraints and by applying Farkas Theorem 1.13 [15, p.22], we formulate the necessary and
sufficient conditions of optimality for a convex minimization problem with linear inequality constraints. In
addition, in terms of the Euler-Lagrange polyhedral discrete inclusions (ELPDSIs) and the derived transver-
sality conditions, we conclude conditions of optimality for the s-th order PDSIs.

In Section 3 at first using the discretization method, i.e., s-th order difference operators expressed by bi-
nomial coefficients, we define s-th order discrete-approximation problem (PDA) associated with s-th order
polyhedral optimization problem (PC). Then by applying the Theorem 2.2 to the (PDA) problem and con-
verting this problem to the form of (PD), we derive the necessary and sufficient conditions of optimality for
the s-th order discrete-approximation problem (PDA). Note that the special proven equivalence Theorem
3.1 for subdifferential inclusions, which plays an important role in constructing conditions of optimality for
the (PDA) problem, is necessary for the transition to the (PDA) problem.

In Section 4, by passing the limit procedure as a discrete step tends to be zero, we establish sufficient
conditions of optimality for the PDFIs.

Some interesting application of Theorem 2.2 is described in Section 5. Namely, the necessary and
sufficient conditions of optimality for second order polyhedral discrete inclusions are derived. In particular,
it has been shown that this method can also play an important role in numerical procedures for computing
the numerical solution.

2. Convex Mathematical Programming and The Problem With PDSIs

In this section, based on convex mathematical programming, we study the optimization of the s-th order
PDSIs problem. In what follows, the following lemma plays a key role in the optimization of the s-th order
problem with PDSIs.

Lemma 2.1. Let M; be a polyhedral set that is defined as

et

M; = {w = (xg,...,XxT): Prxisr — QXpys sd}, t=0,...,T—s.

k=0
Then

Kjy, (@) = {w*(t) (X (B ==PA, k=0,1,...,s=1, A; 20, Ay € R, xj, () = Q"Ay,
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s—1
=0, 1%Lt 1 tts, (Y Pl - Qs —d, A)=0, t=0,1,...,T—s},
k=0

where @ = (%o, %1, ..., %) and K]*VL(ZTJ) is the dual cone of tangent directions.

Proof. By the definition of the tangent directions, we obtain
s—1
K, () = {@ : Z P&k + uxerr) — Q(Fers + YXpss) < d for a small p > 0},
k=0

t =0,1,...,T —s, where X;.s € F(Xt,X41,...,X14s-1) is satisfied and follows from this formula that the
following inequalities hold

_

S—

P;l((xtJrk + M§f+k) - Qi(st + yzﬂ-s) < di 7 t= 0/ ey T-s

k=0
as
s—1 s—1
Z Pi%i — Qs <0, i€l(@)=]i: Z Pk — Qs =di, i=1,...,m). %
k=0 k=0

Itis easy to see that the inequalities before (7) hold strongly for small 1, regardless of choosing (x;, X;41, . . ., Xts)
if i is not active indices, i.e., i ¢ I(@). Then, because of the arbitrary nature of x;, [ #¢t,t+1,t+2,..., t +5,
applying the Farkas Theorem 1.13 (see, for example, [15, p.22]) it follows from the inequalities (7) that
w'(t) = (xp (1), x1(B), ..., x5() € KM(ZTJ) if and only if

Gl ==Y PEAL k=01,..,5-1, x, (=) QA A>0, (8)
iel(w) iel(w)

where Pf:, Q:? are transposed vectors of P;(, Qi,k=0,1,...,s—1respectively. Finally, taking )\f. =0fori ¢ (D)
and denoting A; for a vector with A! components, we have the desired result. Only that can be taken into
account here

s=1
<Zpk5€([+k_Q}a+S_d//\t>:0/ t:()/"-/T_S' O

k=0
Now let’s convert the (PD) problem to a convex mathematical problem. Suppose A is partitioned into

submatrices Py, Py, ..., Ps-1,—Q and m X n zero matrices 0 and D is m(T — s + 1) dimensional column vector.
Obviously A is a matrix with a size of m(T —s + 1) x n(T + 1), i.e,,

Py P -~ P; -Q 0 0o - ... 0 d
a=| 0 PP B Q0 e 0
0 cor e e 0 Py P, -+ Py -Q d

In adg:litionM and Ny are defined as follows: M = {w = (xg,...,x7) : Aw < D} and Ny = {w = (xq,...,x71) :
X = Gk},k:O,l,...,s—l.

Then it’s not hard to see that the problem posed by (PD) can be transformed into a convex mathematical
programming problem:
T-1
minimize g(w) = Y f(x,t), w = (x0,x1,...,¥r) € R*TD )
t=s

T-s
subjectto weMNN;,k=0,1,...,5-1, M= ﬂMt.
t=0
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This transformation allows us to rigorously prove that if {¥;}]_; is the optimal solution to the problem (1)-(3),
then w is the solution to the problem (9).

Let Kj,(@) = {w* : (w,w) 2 0, Y w € Ky(@)} is the dual cone to the cone of tangent directions

Ky(@) = {w = (xo,...,x7) : W+ puw € M, p > 0}. Cone of tangent directions Ky, (@), t = 0,...,T — s, are
T-s

polyhedral cones and so by Lemma 1.22 [15, p.23], we have K} (@) = ). K}, (@). By Theorem 3.4 [15, p.99]
£=0

there exist vectors wy € wg (), wy, € K},(@) and (S K;\]k(u?) ,k=0,1,...,s —1such that

s—1 T-s
wy =y w+ Z Wy, W € Ky (@). (10)
k=0 t=0

This means that the @ solution of the problem (9) has a representation (10) and vice versa. Clearly

wy, = (x;o,le, .. .,x;T) € dypg(W) implies that x;t €dif(®,t), t=s,...,T.

Besides the definition of the tangent direction cone Ky, (w) = {w = (xy,...,X7) : Xx = 0} and we have
Ky, (w) = {w =Xy X =0, k}, k=0,1,...,5-1. (11)

The main effort in this section is to formulate the conditions of optimality for the (PD) problem. We give
the following valuable theorem to achieve this goal.

Theorem 2.2. For optimality of the trajectory {%(t)}]_ in the problem (PD) with PDSISs, it is necessary and sufficient
that there are vectors xj, t = 0,..., T — 1 not all equal to zero satisfying the ELPDSIs

s=1
X =k§)P;/\t_k+u; , u; €9f(%,t), t=0,...,T—s5,

Af (%, k) =10}, k=0,1,...,s -1,
X, =QA, 4420, A,=0,7r=12,...,5-1,

s—1
<kz ijzt+k - QZH-S - d ’ /\t> = O/
=0

and transversality conditions

s=1-r

Xy oy = L P:+j)\T_5_j € If(Fr—ssr, T—s+1), r=12,...,5-1,
j=0
xy = 0.
Proof. According to the formula (11) and Proposition 2.1, we can write

wy = (x99, 0,-.-,0), wy =(0,x74,0...,0) ..., wi_; =(0,0,...,X(_4y5_1,0, --. ,0),

w'(t)=(0,...,0,x(t), x;,,(t), ..., x{,,(t),0,...,0), t=0,..., T —s.
Now, using the latter relationship from (10) we have
xpo +%5(0) =0,
xy, +x(0) +x(1) =0, (12)

xzs_l)(s_l) +x,_40)+x_ (D +---+x;_,(s-1)=0,
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Xy =x (=) +x;(t - (s - 1) +x(t-(-2))+---+x(t), t=s,...,T—5, (13)
5—r
Zx}_s"‘r(T_S_j): x;(T—sH’)’ r=12,...,s-1,
j=0
xp(T-s) = 0. (14)

t+s t+s’

(13) and the Proposition 2.1, we deduce the ELPDSIs of theorem

For convenience, by denoting x;, () = x},., t=1,...,T -5, x;t = u; and taking into account the formula

©
iy

X = PAk+uy, u;€df(®,t), xi,, =QA , A20, t=0,...,T-s,
0

>~
1l

under the condition

s—1

< Y Pk - Qe —d, At> 0.
k=0

In addition, by virtue of (12) and setting f(%, k) = 0, Xy =X, k=0,1,...,s-1,A_,=0,r=1,2,...,s—1,
the formula (13) remains true for t =0, 1, ...,s — 1. On the other hand, using the first relationship of (14) we
have

7

P Aty € Of(Frser, T—s+7), r=1,2,...,5-1.

s—1
X7 syr —

j=0

Since df(%r, T) = {0} indicates thatx}. = 0. O

3. Necessary and Sufficient Conditions of Optimality For Higher Order Polyhedral Discrete-Approximation
Problem

Let us introduce, first of all, the following s-th order difference operators

Ax(t) = %(Z(—l)f Clx(t+(s—j)9), t=0,6,...,1-5,
=0

where ¢ is a step on the t-axis, x() is a grid function on [0, 1] and C. = (j) = ]'(ss—‘])' is a binomial coefficient.

Let us explain the main method that we use to obtain the sufficient conditions of optimality for the (PC)
problem. This is a direct method based on discrete approximations. Therefore, the basic idea is to substitute
the continuous problem (PC) with a discrete-approximation problem that can be effectively tested. Then,
by formally passing the limit on the discrete-approximation problem, we formulate sufficient conditions of
optimality for the original problem with s-th order derivatives. As a result, according to the problem (PC),
we associate the following s-th order discrete approximation problem (PDA):

1-s0
minimize Z SF(x(t), £) + @o(x(1 = (s = 1)5), Ax(1 = (5 = 1)0), ..., A 'x(1 = (s = 1)9)),
t=0
subject to
s—1
(PDA) Z PeAfx(t) — QASx(H) <d, t=0,5,...,1—5s0,
k=0

A*x(0) =6, k=0,1,...,5 1. (15)
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The method used in this paper requires some special equivalence theorem, which allows us to bridge
the gap between (PD) and (PC).

Theorem 3.1. Suppose ¢ : (R")°* — Risafunction defined by the relationship ¢p(x,v1,...,0s-1) = @o (x, My, 175_1)

1,721 .
where 1, = 5[ ZO(—l)f(;)U,_]- + (—1)rx], r=12...,5s=-1&%®, ..., ) edomp, x°n,...,n0 ) € domgy.
]:

The following subdifferential inclusions are equivalent:
0 (% 5., 0) €d0(x, 00,00 ))
s—1
() (7 + 25]-*, vy, V. ,v;_l) € 8(p0(x0, 1]?, .. ,1]2_1)
=1

s—(r+1)

where v} = 6’[ ): (’”)z_):ﬂ] r=1,2,...,s-1.

Proof. Clearly d.¢(zo) is a convex closed set and forzp = (x°,7Y,...,2° ) € ri(dom¢) is bounded. Let’s denote
vo = (%1%, n9,...,n°,), by the classical definition of subdifferential sets we get

2.00) = {(F51- -/ 5or) 1 9(2) - 9la0) = (Fx= %) + (317,01 = o8)

4o+ < Uy q,Vs1 — US_1>, Yz =(x,01,...,0s21) € R, zg € dom¢ }, (16)

ap0(w0) = { (¥ 01", 021) - o) = @olo) = (2 =)

s—1 jl

—+
<J’61
j=1 zO

( ) Vji— v?_i) + (—1)j(x - xo))> NV yeR" }

The last relation for a(po(yo) implies,

* * * * (_1)] *
B(PO(]/O) = {(x ;01 5. "Us—l) : (Po(y) — (PO(]/O) > <x + 6] 'U]‘ L, X — x0>
=1
v D[+, o IS 2
+<Z 5itl j U]+1 ;01— U1> +< 52 j U]+2 , U2 Z)2>
j=0 =0

NS <Z (- 1) (]+s 2)U]+s 5 s Us—2 —US_2>

oi+s—2

Rewriting this inequality, we have

' 1)’

&(po(yo) = {(x*,vl*,...,v;_l) : (po(y) - (po(yo) > <x + Z =0/, x — x0>
s—1 js—(r+1) 1 j .
+r§1< gb (5]+3 (]+ )V s Or = 09>, Yy € R } (17)
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On the basis of (16) and (17), it can be claimed that

j (r+1)
. (1) NN () _
X =x"+ L 3] vi’, Z o\ Uity s r=1,2,...,s—1. (18)
= j=0

Now, starting with the last equation, by sequentially substituting in (18), we derive

s—1 s—(r+1) iy
X'=xX+) 7, U,*:(Sr[ Z (] ) )5:+]~], r=12,...,s—1. O
=] 0\

Theorem 3.2. For optimality of the trajectory {%(t)}|_, in the problem (PDA), it is necessary and sufficient that there
is an adjoint trajectory of vectors {x*(t)}_, simultaneously not all equal to zero satisfying the approximate ELPDSIs

s5—1
(1) (=1FASX(t) € Z(—l)kP;AkA(t — k8) + If (&(D), 1),
k=0

s=1
@) <Z PAE(E) — QASK(E) — d A(t)> —0, AB)20, t=sb...,1-s5
k=0
and transversality condition

@) (£18201&) € Opo( 1 = (5= 1), AT = (6= 1O), ..., A75(1 = (5= o)),

s—k
& = (=1 AT (1 = (s — k)5) + 2(—1)7P;Af-1/\(1 —(j+s-Kk0), k=1,2,...,5
j=1

Proof. We use the result of Theorem 2.2 to formulate conditions of optimality for problem (15), that’s why
we transform this problem into a (PD) form problem:

1-s0

minimize Y 8f(x(t), 1) + (po(fca —(5=1)8), AX1 = (s = 1)), ..., A% = (s 1)5)),

subject to
s—1 s=1 k
| Y 1t p - -1 Qfen + [Z(—nk”( 1)5s-kpk " (—1)5(i)Q]x(t +0)
k=0 k=1

+[z‘(—1)k(§)és‘kPk—(—1)5(;)Q]x(t+26)+ [Z 1)k+s+1( )55 “p,

k=s—1

+(551)Q]x(f+(5—1)6)—Qx(t+sé) <6°d, t=0,0,...,1-s0,

k

x(ké):Z(l;)éij, k=0,1,...,s—1. (19)

=0
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Let {X(t)}, t = 0,6,...,1 be the optimal solution to the problem (19). It is not hard to see that the adjoint
discrete inclusions for s-th order polyhedral problems have the forms

s—1 * s—1 *
xX'(t) e [Z(—nkas-kpk - (—1)5Q] At + [Z(—l)kﬂ(’l()és-kpk + (—1)5(i)Q] At = 6)
k=0 k=1

s—1 * %
+[ Z(—l)k(’;)és-kpk - (—1)5(;)Q]A(t S 26) 4t [5135_1 + SQ]/\(t (s — 1)) + SO (x(1), 1),
k=2

£=0,5,...,1-6 x'(t+s0)=QAt), A(H) >0, (20)

s-1 s—1
< | Y1 tp - 1rQfR + [Z(—Dk*l(’;)éskpk ¥ (—1)5(i)Q]i(t +0)
k=1

k=0

s—1
+[ Z(—l)k(’;)és-kpk - (—1)5(;)Q]x(t £ 26) 4+ [5135_1 ; sQ]B?(t + (s = 1)5)
k=2

—Qx(t +s0)—06°d , /\(t)> =0. (21)
Rewriting the inclusion (20), we have

(¢ + (1@ AW - (—DS(j)Q*A(t - 6)+ (—1)5(;)Q*A(t = 20) 4+ (<)QME - (= 1)0)

s—1

s—1
e [Z(—nkés-kp;]A(t) + [Z(—1)k+1(’1‘)55-’<1>;])\(t — ) -+ 0P A(E = (5 — 1)0) + 0O F(R(E), D).
k=0 k=1

Recall that x*(t + s0) = Q*A(t), then we deduce from the last inclusion that

(x'(®) + (=1 (¢ +50) (—1)s(i)x"(t +(s—1)5) + (—1)5(;)x*(t +6(s = 2)) + - + (=)' (¢t +0)

€ SPHA) + 671 = At) + A(t = 6) [Py + 5 2[A(t) — 24t - 6) + A(t — 20) | P,

o O (1AM + (—1)5(5 ] 1)/\(t ~5) - (—1)5(S ) 1)A(t — 26)

+o At = (5= DO)|P:_, + I (D), 1).
Dividing the left hand side and the right hand side of this inclusion by &° (here 5 1x*(t), 1 A(t) are again
denoted by x*(f) and A(f) respectively), we obtain

s—1
(1P A°Y(f) € Z(—l)kP;Ak/\(t — ko) + Af (X(t), t).

k=0
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Similarly, the equation (21) implies
s=1
<Z PARE(E) — QASK(E) — d /\(t)> —0, A() 20, t=55,...,1—so.
k=0

Then, by virtue of Theorem 2.2, the transversality conditions of problem (19) are derived:

5—2 -1

x*(l—(s—l)é)—Z[Z 1)k+f+1( )55 P (- 1)5‘f(1i].)Q*]A(1—(S+J')6)

=0 k=1+j

€ 8Af(F(1—(s—1)5),1— (s — 1)d),

k . .
x(1 - 28) - Z[ Z (- 1)k+f+5(5 . j)(ss—kp;+(—1)1—J(5_;+],)Q*]A(1—(s+])5)

j=0 “k=s-2+j
€ 5af(x(1—25),1-20),

x'(1=06) = [6P;; +sQ'|A(1-56) € 8Of(E(1-0),1-0),

x'(1) € 56df(%(1),1). (22)
Now, remembering that under the conditions (22) x*(f + s0) = Q*A(t), we deduce

s=2 _ s—1

[Z( 1)k+f+1( )55 Py -+ oy

j=0 "k=1+j

. s—2 o s )
x(1—(s—1)5)—;(—1) 7(1+],)x 1- o) -
€ SAF(E(1 - (s —1)8),1— (s - 1)5),

. 5—3 o s . ‘ s—=3 _ s—1 . . '
x(l—(s—2)6)+;(—l) ](2+],)x (1-j5) - [ (1) ,( )5 kp: ]/\(1 (s + )6)

j=0 “k=2+j
€ 8If(F(1— (s —2)5),1— (s —2)5),

1 1 -1

x*(l—zé)—Z(—l)l—f(s s )x (1-j6)— Z[ Z 1)k+f+5( ])55-kp,§]

=0 j=0
A1 = (s + j)d) € 89f(R(1 —20),1 - 26),
X'(1=8) = 6P A(l —s8) —sx*(1) € 6af(%(1—0),1-0),

x'(1) € 6df(x(1),1). (23)
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Note that the function @y in the problem (19) should be defined as follows
Po(E(1 = (5 = 1)8), AZ(1 — (s = 1)), ..., A'%(1 = (s — 1)5))
= ¢(x1 - (s = 1)5), X1 - (s-2)9),...,%(1))
- 6( AR = (s = 1)), 1 = (s = 1)8) + F(E(1 = (s = 2)0), 1= (s = 2)8) +--- + f(%(1), 1))

and then the transversality conditions (23) have the following forms

(x*(l—(s—l)é)—i(—l)s‘j( s )x (1-jo)— i[i 1)k+f+1( )55 kp*]A(1—(s+]))
j=0 j=0 "k=1+

5—3 -3 -1

(1 (s - 2)0) + Z(—l)s‘j(zi],)x*(l — j6) - Z[ ( 1)k+f( )53 Py -+ oy
j=0 =0 k=2+

s (1= 8) = 0P AL —s0) — sx*(1) , x*(l))

€ Ip(¥(1 - (s - 1)8), (1 - (s -2)9) ..., %(1)).
Dividing both sides of this inclusion again by 6°"!, we have

et 5—2 1

(-5 Lev j)x*u—jé)—Z[Z (K a6+ g,

j=0 j=0 " k=1+

s—2 s—3 -1
551_1 Z(—l)s-f(zi j)x*(l —jé)—Z[ Z >"+J( )51 "P*]A(l (s +19),
j=0 j=0 " k=2+
X(1=0)—sx'(1) P A0 =s0) x*(l))

[ 551 8552 4 551

€ Ip(¥(1 - (s - 1)8), H(1 - (s-2)9) ..., ¥(1)).

By applying the Theorem 3.1 and using the combinatorial identity, we can express the last inclusion in the
subdifferential term ¢o:

s—1

((—1)1+5A5-1x*(1 —(s=1)0) + Z(—1)1P;Af—u(1 —(j+s-1)5),
j=1
5—2
(=1)°A%2x*(1 — (s — 2)0) + Z(—l)fP;Af’lA(l —(j+5-2)d),
j=1

s, =AY (1 - 8) = PyA(1 - 30), x*(l))

€ dpo((1 = (s = 1)8), AK(1 = (s-1)5), ..., AT%(1 - (s - 1)5)).

The transversality condition of the problem (19) can be rewritten as follows

(&1, &2, &) € dpo(R(1 = (s = 1)0), AK(L = (5= 1)D), ..., A%(1 - (s - 1)9)),
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s—k
&= (CD)FATRY (1 - (s — k)O) + Z(—l)f'P;Af’l/\(l —(j+s-k9o), k=1,2,...,s
j=1
The proof of theorem has been concluded. ]

4. Sufficient Conditions of Optimality For Higher Order PDFIs

In this section, the sufficient conditions of optimality for the original problem (PC) are formulated. Here
we use the result of Theorem 3.2 dedicated to the optimization of the s-th order PDSIs. Namely, by passing
to the limit under the terms of Theorem 3.2, we derive the sufficient conditions of optimality for PDFIs.

Theorem 4.1. Let x(t) be a feasible trajectory lying interior to domF. Therefore, for optimality of X(t),t € [0,1] in
problem (PC) with s-th order PDFIs, it is sufficient that there exists an absolutely continuous function x*(t) satisfying
the following Euler-Lagrange form PDFI almost everywhere

&Ex(b)

@ (1) =7~ Z( 1)kpk dk +af( ®),1), ae tel0,1],

X'(t) = Q°A),

d*x(t) dsx(t)
®) <Zpk oo, /\(t)>=0, ge tel01],

and the transversality conditions

© (1,92, ) € dpo(2(1), F'(1),..., X)), where s = x'(1),

_pye EX) i dTAD)
Y= ()7 — = Z( DI =12 s

Proof. By definition of subdifferential for all feasible solutions, we rewrite the inclusion (1) and the transver-
sality condition (c) in the form, respectively

s5—1

() dA)
), = F30),0 2 (-1 5 kZ_;‘( D' P ah) - 2(0), (24)

o(x(1), X' (1), ..., ¥ (1)) = o(%(1), ¥'(1), ..., #V(M)) 2 (1, x(1) = %(D)) + (Y2, X' (1) - ¥ (1))

(o1, X67D(1) = 2D+ {x'(1), x6D(1) - D)) (25)
Let’s transform the right hand side of the inequality (24) as follows
* dk/\ dSx*
(02 - Lo w0 -50) = (0L x0 - x0)
adA() -
Z( DM PO~ 3(0)). (26)

Obviously, for a feasible solution x(-) and A(t) > 0, ¢ € [0, 1] it can be written

s5—=1

dxit 0
k:OPk d’;k), D) < (Q== +d, A®).
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By using the theorem’s second condition (b), we have

s—1 k=
Pkd *E) =<Q

k 7
k:o dt

F5(H)
dr

+d, Ah)).

Then taking into account that x*(t) = Q*A(t) from the last two relations, we derive that

1 d¥(x(t) - %)) d5(x(t) — %(t)
<Z:Pk(T , /\(t)> < < ( - ) (t)>

k=0

Then, the relations (26) and (27) imply that

dr@) sl d i
(2 - T en T x0 -0) > (0S5 50 - 00)

S _ &= s—1 k _ &
. <d(x(t;ts 0)) x0)+ ; (caprp 20 d (x(t) — %(t))

d*A(t)
ko dr

dAw

Denoting );(t) = Z( DP— == K ggk=i

=12,..., s — 1, in view of the following equation

&w—ﬂm

)

s—1
— (1) + Z (PG,
k=1

§7 A1 gy A AR GOREQ)
all Lo et — )]

i=1 k=i

the relation (28) can be rewritten as follows

s—1

s k
(oY 0 w0 - s0) = (D o - x0)
k=0
d(x(t) - %(t)) -1 d=(x(t) - %(1))

A= X0 +Zdt[9(> ——)|

Finally, from the inequalities (24) and (29), we conclude that

#(x() - 50
Flalt) ) - fxt), 0 = (1) ﬂf)ao—fa»—<—ﬁia;f—lfa»

df-l (x(t) - x(1))

dpi-1 >]

Q..l:‘_‘

-4l

i=1

s—1
g MO =5O) + T (PAD, —— )

4545

(27)

(28)

(29)

(30)

Recall that x(-), #(-) are feasible solutions (x(k)(O) =x00) = 6, k=0,1,...,5 — 1), then integrating the

inequality (30), we have

1 (t) — x(t)
Lﬂ(ﬂﬂ&ﬂ—f@@iwﬁ>1ﬁK(Dsd;)x@—im> @ifgri—zxwﬂm
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= 1 47 (x(1) - (1))

Let us denote the expression in the square brackets on the right hand side of (31) by W

- #(x(t) ()
w= (D - ) - (% 20)

and transform it. The first term of W can be converted as follows
JAx (1) - _d Sds‘lx*(t) - s 1ds‘lx*(t) , _,
(D=5 a - 20) = 21— 5720 = 2O) | + (D' —F=, ¥ () -7 () (32)

and the second term of W can be rewritten in the following form

&(x(t) - %)) a7 () -x1) A, BB -20) g
< Aass r X (t)> = EK drs—1 r X (t)> B EK A2 4 J:jt >]

d a3 x(t)_f(t)) d? *(£) . <X(t) x(t)) 452 ()
AEEOSO) prwy g O-50) e,y

e (o - 560, TED]+ a0, T50),

Thus by subtracting (32) and (33) we derive

(33)

() d ds*(x(f)—f(ﬂ),x*(t» d<d5‘2(x(f>—f(f>) 0]

d S
E<(_1) ds1 ;X6 —x (t)>_E< ds—1 T dts-2 T

PR GO () BN A -50) g
_E< des—3 ! ;ﬂ > +(=D)™ [( dr ’ dtsx—z >]

Then we need to calculate the following integral,

- 1 (x(1) — %(1) @2 (x(1) = 2(1)) gy
f wit = (-1 :fl) (1)—5(1))—(%»6*(1)%( (xdts—zx )fdxd§1)>

@3(x(1) - x(1)) 21 d(x(1) - X(1)) g2¢(1
~ (dt53 ) ;ﬂ( )>+"'+(_1)s+1< ( dt ) dtiz( )>' (34)

By using (34) from the inequality (31) we deduce

1 1 & (x(1) - %(1)
[ (.0~ s, 0)ar = (2D ) -5) - (%m))

0

42~ 50) g, | .+(_1)s+1<d(xﬂ>—f<1>) &2 (1)
dt Todp?

+ dts2 ©dt )+

d(x(1) - 71 2(x(1) -1 d2(x(1) - %(1)
+<QZ(1), w> + <Q3(1)’ w> Foeet <Q571(1), %>

)+ (@), x(1) - F(D))
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As a result of rewriting this inequality that we have

1
JA(1) _
f Flx(t), B) = fR(1), £))dt = ((-1) S (), x(1) - ¥(1))
0

d2x*(1
+<(_1)s+1 dts_z()

dx (1)
+ <T +

d=3x*(1)

+ (1), ¥ (1) =T (D)) + (1) s+ (), (1) = %'(1))

Qu1(1), #72(1) =2 (1)) - (x(1), x7(1) - F (1)),

Therefore, taking into account the expression €);(1),i=1,2,...,5 — 1 we can write

1
ds—l *
[ (st - st o > -y XD+ Z( p A0 ) - w)
0

ds 2%
(e L T a2, v -2w)

d*3x(1 d=3A(1
+<(_1)S+2 dtf_:g ) Z( 1)k+3pk yr= g )1 ( )_}7/(1)>

dx*(1
+< xd( ) + P A1), x57D(1) - X 2)(1)> <x*(l), x&D(1) —55(5_1)(1)>. (35)

Finally by summing up the inequalities (25) and (35), we derive that

1 1
fo Fx(t), Hdt + @o(x(1),x'(1),...,xD(1) > fo F@E), Hdt + @o(x(1), % (1), ..., XD(1)).

As aresult of all feasible solutions x(t), J(x(-)) = J(¥(-)) = 0 and therefore %(t) is the optimal trajectory. O

Corollary 4.2. Consider the Bolza problem with cost functional (4) and differential inclusion (5) with the following
boundary value conditions

®0)eGe, x®P1)eHr, k=0,1,...,s—1,

where Gy and Hy. are polyhedral sets. Then for the optimality of the trajectory x(t) in the Bolza problem the transversality
conditions at points 0 and 1 should be as follows:

Fix(0) & W nY () N .
@ (-1 = ©, Z 1)*1p; dti_(j ) GKGH(x(] Y0), j=1,2...,s-1,
i=j

x'(0) € K5, (2¢71(0)),

s—1

d=iA1
(e) ;( 1)z+1p;* 7 ( ) KH, 1(3?] 1)(1)) i=12,...,5-1,
-x"(1) e Ky, (f(s—l)(l)),
((—1)”

€ dpo(%(1), ¥(1), ..., ZD()).

*1x*(1)
dtsfl

d2x°(1)
a2

d-3x(1) _dx (1)
a3 T A

(=1 , (=) x'(1)
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Proof. Integrating inequality (30) we have

! sy d*(x(t) - %(t)
f (fGx(), 1) = Fx(t), 1))dt = f [((-1)5’1 ;Cts(t),x(t)—f(t)>—<%,x"(t)>]dt

51 d(x(1) - x(l) 51 d=1(x(0) - X(0))

+Z Qi(1) T Zl‘ T> (36)

=1

Similarly, by denoting the expression in square brackets on the right hand side of (36) by V¥,
we calculate the following integral

o A1 (x(1) — x(1) @2 (x(1) = 2(1)) gy
f wit = (-1 11() (1)—5(1))—(%/?6*(1)%( (xdts—2x )fdxd§1)>

d3(x(1) - 2(1)) g2y d(x(1) — (1)) go-2, o1 n ~
_< (xdts_3 x )/ d ;ct2(1)> +ot (_1)S+1< (x - x )/ d dtzc_2(1)> B (_1)s<%,x(0) _ x(0)>

d°~1(x(0) — %(0) d*2(x(0) — %(0)) dx*(0 d*=3(x(0) — %(0)) 2x*(0
+< ( Aar-1 )’x*(0)> _< ( Ass—2 )’ xdi )> +< ( dts—3 )’ ;tz( )>

d(x(0) - %(0)) 20, (37)

(g dts2
By using the formula (37) and by rewriting the inequality (36), we deduce
1

- &1 (x(1) - %)
| (o) s, e = (27 (T 2D w0y ) - (%,m))

0

V) - 50) grq), R <d(x(l)—fC(l)) )
dt ©oode?

+< dts2 ©dt > -

—(—1)s(ds;fjl(0),x(0) ~X0) + <ds—1(x;(t)s); ’Z(O)),x*(o» B <ds_2(x$3_; f(o))l dx;§0)>
¥ (_1)5<d(x(0)d; ), ds;fﬁ% (D), x(1) - F(V) + (2, ) — f<1>)>
e+ {0 (), W) —{21(0), x(0) - 3(0)) - (2 (0), —d(x(o)d; y(0))>
{010 ds_z(x;(:s)-; %0) )
and by writing the definition of Q;(), i = 1,2,...,5 - 1, in this inequality, we have
fl (fxt), t) = f(E(D), 1))dt > ds 1" 1(1 Z( 1)1p: d"d;kASl), (1) - 5?(1)>
0

@) N e B
+{(-1) 1W+;(_l)k P , Y1) -T(1)
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+ <d";§1) + Py A(D), x72(1) = TE2(1) = ('(1), 270(1) -7 D(D))
ds— 1.+ dk 1 ~
(-1 ;f)+Z}1Wﬁud3;)ﬂm—ﬂm>

20 (0) O d27(0
_<(_1)S+1 dt'::_z( ) + Z(_l)k+2pz dtk—g ), xl(o) _ }:‘7(0)>
k=2

..... <w+

= FPLA0), D0 -3 0)) + (x'(0), x7D(0) =X D(0)). (38)

For all feasible solutions, the transversality condition (¢) can be written in the form
Po(x(1),x'(1),..., x5 D(D)) - po(%(1), ¥ (D), ..., #(1D))

a1x*(1)
a1

d=2x*(1)
dts—z

> (1) , x(1) = £(D) + ((-1)° , X (1) - 2(1))

oD

R OR W) + (@), ¥V - 2D (D)). (39)

Then, by adding the inequalities (38) and (39) we derive

1
f Fe(t), B) = (), B)dt + po(x(1), %' (1), ..., X)) - go(%(1), ¥ (1), .., #(1))
0

Zuﬁ%dw% Zquﬁﬁ%<><m

. - - s4'x(0) e @A) ~
+ (P AQ), 2572(1) - XAD)) - ((-1) e ;( 1+1p; i , x(0) - ¥(0))

<( 1 s+1ds 2X*(O) Z( 1 k+2 p *d A(O) ( ) (0)>

drs—2 kdth’

dx*(0)
..... < —

+ P A0), x672(0) =T (0)) + (x'(0) , 7V (0) - %1(0)). (40)

Taking into account the other transversality conditions we have
1 1
[ oot 4 ox) 2 @, x) > [ A0, 0+ putaa), ¥ @) F D),
0 0

this means that for all feasible solutions x(t), J(x(:)) — J(¥(-)) = 0 and therefore %(t) is the optimal trajectory. O

By using the results obtained in this section, we are able to formulate sufficient conditions of optimality
for the continuous problem (4)-(6) given by second order (s = 2) polyhedral differential inclusions.
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Corollary 4.3. [22] For trajectory %(t) , t € [0, 1], lying interior to domF to be optimal in Bolza problem with second
order (s = 2) polyhedral differential inclusion (PC), it is sufficient that there is an absolutely continuous function x*(t)
satisfying the following Euler-Lagrange differential inclusion almost everywhere

dA(t)

LA .
€ PO/\(t) - Pl?

x'(t) = Q°A(t), A(t) =0,
.. . dx(t) d>x(t)
(i) {Poi(t) + Pr—= - Q—5
and transversality condition

+ df(%(t),t), ae. te]0,1],

—d, A(H) =0, aete[0,1],

(iii) ( - dx;il) —PiA(1), (1)) € dgpo(%(1), ¥'(1)).

5. Numerical Application

This section describes some of the interesting applications of the Theorem 2.2. It should be noted that
according to Theorem 2.2, the numerical solution of the second order polyhedral discrete problem can be
calculated. Let T =15, f(xr,T) = xt, f(x:,t) =0, =2,3,...,14 be given for this purpose. Let’s look at the
following example:

Example 5.1.

15

minimize Z flx, 1)

t=2
X420 € F(xs,x041) , t=0,1,...,13, (41)
Xo = 0, X1 = 1,

1 -0.1 1 0

where F(x,v1) = {vz | -2 [x+] =02 |og—| -1 [v2<| O } is a polyhedral multi-valued mapping. In fact,
1 -0.3 1 0

the graphF of F is a cone.

T
We assume that the objective function has a form ), f(xr, T) in the problem (41) with second-order polyhe-
t=2
dral discrete inclusions where f(xr, T) is not identically zero, i.e., f(xr, T) # 0. This means that x7. # 0 and
then the transversality condition for T consists of the following inclusion x’. € df (%, T).

For optimality of the trajectory {%},°, of polyhedral discrete inclusions in the second order discrete
polyhedral optimization problem (41), it is necessary and sufficient that there are vectors x;, t = 0,...,15
not all equal to zero satisfying the Euler-Lagrange discrete inclusion

x: = PB/\[ + P;At_l + Ll: , M: S Bf(fc,g, t),
Xj=QA, Ar20,t=0,...,13, df(X,0) = df(%1,1) = {0}, A1 =0,

1 -0.1 1

(| -2 [m+] 02 |#a—| -1 |%12, &) =0, (42)

1 -0.3 1

and transversality conditions
xh - P;Alg, € 8f(3?14, 14),
x;s (S af(flg,, 15)
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Here Py = (1 —21), P = (-01 -02 -03)and Q" = (1 —1 1) are transposed matrices. Since f is
continuously differentiable function, we have

x; = PyAs+ PiAr, t=0,1,...,13,
and transversality condition
Xh - P;Alg; = O,
x5 =1

By sequentially resolving these equations, it is not difficult to calculate A; (t = 0,...,13)and x; (t = 0,...,15).
We have

1 0 0.98 0 0.9204
/\13 = 0 y AlZ = 01 y /\11 = 0 y /\10 = 0298 y /\9 = 0 y
0 0 0 0 0

0 0.7828 0 0.4919 0
Ae=10688], A, =| 0 |, A¢=[14543|, As=| 0 |, Ay =[29579],

0 0 0 0 0

0 0 0 0
Az =[0.0996|, A, =[59357|, Ay =[1.3864|, Ao =|12.1488].

0 0 0 0

The values of the adjoint variables {x;}}°, which are calculated and the optimal trajectory {%;}}°, obtained by

using these values are given in Table 1. In addition, the graphical representation of the optimal trajectory
{%/})2, is given in detail in Figure 1.

t I? | T Tt

15 1 0 0

14 -0.1 1 1

13 0,98 2 0.2

12 -0,298 3 2.04
11 0.9204 4 0,808
10 -0,68804 5 14,2416
9 0.78279 6 2.46432
8 -1.45435 7 3.99516
7 0.49192 8 5.72767
6 -2,95791 9 3,4224
5 -0,09966 10 12,13982
4 -5,93575 11 220841
3 -1,38647 12 24,72133
2 -12,1488 13 -0.26371
1 -5,2027 14 49,3899
0 -24,2976 15 -5,2027

Table 1: The values of adjoint variables {x:}}zo and the values of optimal trajectory {ft}}zo
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Tt
50
45

40

Figure 1: The exact graph of {J?t}}so fort=0,...,15.

6. Conclusions

This paper presents a new method of discretization to solve the optimization problem described by
multi-valued polyhedral mappings for discrete and differential inclusions of higher order that are often
used to describe different processes in science and engineering. The problem of higher-order discrete-
approximation inclusions is investigated according to the proposed discretization approach. This approach
plays a much larger role in the derivation of discrete and differential inclusions of higher-order adjoints.
Equivalence theorems for subdifferential inclusions are basic tools for the analysis of conditions of opti-
mality for discrete and discrete-approximation problems. Therefore, necessary and sufficient conditions of
optimality are deduced for such problems. Finally, the numerical approach is presented with a second order
polyhedral discrete inclusion to solve the optimal control problem. Besides, it is clear that the investigation
of the conditions of optimality for problems with polyhedral discrete and differential inclusions will make a
significant contribution to modern development of the optimal control theory with polyhedral differential
inclusions. Thus, we can conclude that the proposed method is effective in solving various optimization
problems with higher order discrete and differential inclusions.
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