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Abstract. In this paper, we provide some inequalities for P-class functions and self-adjoint operators on a
Hilbert space including an operator version of the Jensen’s inequality and the Hermite-Hadamard’s type
inequality. We improve the Hölder-MacCarthy inequality by providing an upper bound. Some refinements
of the Jensen type inequality for P-class functions will be of interest.

1. Introduction and Preliminaries

Let H be a Hilbert space and B(H) be the algebra of all bounded linear operators on H . We say that
an operator A in B(H) is positive and write A ≥ 0 if 〈Ax, x〉 ≥ 0 for all x ∈ H . The spectrum of an operator
A ∈ B(H) is denoted by Sp(A). A function f : I→ R is a P-class function on I if

f (λx + (1 − λ)y) ≤ f (x) + f (y), (1)

where x, y ∈ I and λ ∈ [0, 1]. Some properties of P-class functions can be found in [2, 3]. The set of all
P-class functions contains the set of all convex functions and the set of all nonnegative monotone functions.
Every non-zero P-class function is nonnegative valued. Indeed, choose λ = 0 and fix y0 ∈ I in (1). Hence,

f (y0) ≤ f (x) + f (y0),

where x ∈ I. Thus, f (x) ≥ 0 for all x ∈ I.
Jensen’s inequality for convex functions is one of the most important result in the theory of inequalities

due to the fact that many other famous inequalities are particular cases of this for appropriate choices of the
function involved. Mond and Pečarić established an operator version of the Jensen inequality for a convex
function in [5] (see also [4]) as follows:

Theorem 1.1. Let f : [m,M]→ R be a continuous convex function. If x ∈ H , 〈x, x〉 = 1, then for every self-adjoint
operator C such that mI ≤ C ≤MI,

f (〈Cx, x〉) ≤ 〈 f (C)x, x〉. (2)

for each x ∈ H with 〈x, x〉 = 1.
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As a special case of Theorem 1.1 we have the following Hölder-MacCarthy inequality.

Theorem 1.2. [1, Theorem 2] Let C be a self-adjoint positive operator on a Hilbert spaceH . Then

(i) 〈Crx, x〉 ≥ 〈Cx, x〉r for all r > 1 and x ∈ H with 〈x, x〉 = 1;

(ii) 〈Crx, x〉 ≤ 〈Cx, x〉r for all 0 < r < 1 and x ∈ H with 〈x, x〉 = 1;

(i) If C is invertible, then 〈Crx, x〉 ≥ 〈Cx, x〉r for all r < 0 and x ∈ H with 〈x, x〉 = 1.

In this paper, we show that many general inequalities can be given for P-class functions and self-
adjoint operators on a Hilbert space including an operator version of the Jensen’s inequality and the
Hermite-Hadamard’s type inequality for P-class functions. We improve the Hölder-MacCarthy inequality
by providing an upper bound.

2. Mond and Pečarić inequality for P-class functions and its application

Taking into account Theorem 1.1 and its applications for various concrete examples of convex functions,
it is therefore natural to investigate the corresponding results for the case of P-class functions and its special
cases.

Theorem 2.1. Let C be a self-adjoint operator on the Hilbert space H and assume that Sp(C) ⊆ [m,M] for some
scalars m,M with m < M. If f is a continuous P-class function on [m,M], then

f (〈Cx, x〉) ≤ 2〈 f (C)x, x〉 (3)

for each x ∈ H with ||x|| = 1.

Proof. Since f is P-class,

f (λx + (1 − λ)y) − f (y) ≤ f (x) (4)

for every x, y ∈ [m,M], and λ ∈ (0, 1). Consider

α := min
y∈[m,M]

f (λx + (1 − λ)y) − f (y)
λ(x − y)

. (5)

It follows from (4) that αλ(x − y) ≤ f (x) and so α(x − y) ≤ 1
λ f (x). Notice that l(x) := α(x − y) is a linear

equation and l(x) ≤ 1
λ f (x) for every x ∈ [m,M]. By assumption, m ≤ 1̄ ≤ M where 1̄ = 〈Cx, x〉. Consider the

straight line l′(x) := α(x− 1̄) + f (1̄) passing through the point (1̄, f (1̄)) and parallel to the line l. By continuity
of f , we get

l′(1̄) ≥ f (1̄) − ε (6)

for arbitrary ε > 0. We realize two cases:
(i) Let l′(x) ≤ 1

λ f (x) for every x ∈ [m,M]. Then, l′(C) ≤ 1
λ f (C). Hence,

〈l′(C)x, x〉 ≤
1
λ
〈 f (C)x, x〉. (7)

By using (6), (7) and linearity of l′, we observe that

f (〈Cx, x〉) − ε ≤ l′(〈Cx, x〉) = 〈l′(C)x, x〉 ≤
1
λ
〈 f (C)x, x〉.
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Since ε is arbitrary, we deduce

f (〈Cx, x〉) ≤
1
λ
〈 f (C)x, x〉. (8)

(ii) There exits some points x ∈ [m,M] such that l′(x) > 1
λ f (x). Let

A := {x ∈ [m, 1̄] : l′(x) >
1
λ

f (x)},

B := {x ∈ [1̄,M] : l′(x) >
1
λ

f (x)}.

Consider xA := max{x : x ∈ A} and xB := min{x : x ∈ B}. Let lA be the line passing through the points (xA, 0)
and (1̄, f (1̄)) and lB the line passing through the points (xB, 0) and (1̄, f (1̄)). Define

L(x) :=
{ lA(x), x ∈ [m, 1̄],

lB(x), x ∈ [1̄,M].

We show that L(x) ≤ 1
λ f (x) for every x ∈ [m,M]. We consider the partition {m, xA, 1̄, xB,M} for the closed

interval [m,M]. Note that lA(x) ≤ 0 for every x ∈ [m, xA] and since f (x) ≥ 0, we reach lA(x) ≤ 1
λ f (x) for every

x ∈ [m, xA]. On the other hand, one clearly has

l′(x) ≤
1
λ

f (x) (9)

for every x ∈ (xA, 1̄], otherwise, there exists x0 ∈ (xA, 1̄] such that l′(x0) > 1
λ f (x0). This infers x0 ∈ A and so

x0 < xA, which is a contradiction. So, by letting x tends to xA from right in (9), one can deduce l′(xA) ≤ 1
λ f (xA).

Moreover, since xA ∈ Ā, l′(xA) ≥ 1
λ f (xA) and hence l′(xA) = 1

λ f (xA). It follows that l′ is the line passing

through the points (xA, 1
λ f (xA)) and (1̄, f (1̄)) and the slope of l′ is α =

f (1̄)− 1
λ f (xA)
1̄−xA

, where the slope of lA is

α′ =
f (1̄)
1̄−xA

. By the inequality (9) we have

lA(x) = α′(x − 1̄) + f (1̄) ≤ α(x − 1̄) + f (1̄) = l′(x) ≤
1
λ

f (x)

for every x ∈ (xA, 1̄]. So, L(x) = lA(x) ≤ 1
λ f (x) for every x ∈ [m, 1̄].

By the same way, one has L(x) = lB(x) ≤ 1
λ f (x) for every x ∈ [1̄,M]. Note that lA(1̄) = lB(1̄) and since f is

continuous,

lA(1̄) ≥ f (1̄) − ε (10)

for arbitrary ε > 0. For the case where sp(C) ⊆ [m, 1̄],

f (〈Cx, x〉) − ε ≤ lA(〈Cx, x〉) = 〈lA(C)x, x〉 ≤
1
λ
〈 f (C)x, x〉.

Moreover, when sp(C) ⊆ [1̄,M], we have

f (〈Cx, x〉) − ε ≤ lA(〈Cx, x〉) = lB(〈Cx, x〉) = 〈lB(C)x, x〉 ≤
1
λ
〈 f (C)x, x〉

and so we obtain (8). According to (8) and for λ = 1
2 we deduce (3). We claim that 1

2 is the best possible for
λ in (8).

(1) Let 0 < λ ≤ 1
2 . So, 1

λ ≥ 2 and consequently by (3), we deduce

f (〈Cx, x〉) ≤ 2〈 f (C)x, x〉 <
1
λ
〈 f (C)x, x〉. (11)
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(2) Let 1
2 < λ < 1 and note that the function 1(t) = 2−t2

α , t ∈ [−1, 1], is a P-class function for every α ≥ 1.

Consider C =
[ −1 0

0 1

]
and x = ( 1

√
2
, 1
√

2
). Then, 1(〈Cx, x〉) = 1(0) = 2

α and 〈1(C)x, x〉 = 1
α . Since 1 is P-class,

by (8), we have 1(〈Cx, x〉) ≤ 1
λ 〈1(C)x, x〉 and so λ ≤ 1

2 which is a contradiction.

Corollary 2.2. Under the hypotheses of Theorem 2.1, if x ∈ H , ||x|| , 1, then

f
( 〈Cx, x〉
〈x, x〉

)
≤

2〈 f (C)x, x〉
〈x, x〉

. (12)

Proof. Let y := x
√
〈x,x〉

and apply Theorem 2.1.

Lemma 2.3. Let f be a continuous P-class function and λ < 0. If f is decreasing, then

f ((1 − λ)x + λy) ≥ f (x) − f (y) (13)

for every x, y ∈ [m,M] with x < y.

Proof. We have (1 − λ)x + λy = x + λ(y − x) ≤ x. Since f is decreasing,

f ((1 − λ)x + λy) ≥ f (x) ≥ f (x) − f (y).

Lemma 2.4. Let f be a continuous P-class function and λ > 1. If f is increasing, then (13) holds.

Proof. We have (1 − λ)x > (1 − λ)y and so (1 − λ)x + λy ≥ y. Since f is increasing, we obtain

f ((1 − λ)x + λy) ≥ f (y) ≥ f (x) ≥ f (x) − f (y).

Theorem 2.5. Let f : [m,M] → R be a continuous decreasing P-class function and let the self-adjoint operator C
satisfies mI ≤ C ≤MI. If 0 < 〈x, x〉 < u, x ∈ H , a ∈ [m,M], and ua−〈Cx,x〉

u−〈x,x〉 ∈ [m,M], then

f
(ua − 〈Cx, x〉

u − 〈x, x〉

)
≥ f (a) −

2〈 f (C)x, x〉
〈x, x〉

. (14)

Proof. Applying Lemma 2.3 with λ = − 〈x,x〉
u−〈x,x〉 < 0, x = a, y = 〈Cx,x〉

〈x,x〉 , and Corollary 2.2, we find that

f
(ua − 〈Cx, x〉

u − 〈x, x〉

)
= f

( u
u − 〈x, x〉

a −
〈x, x〉

u − 〈x, x〉
〈Cx, x〉
〈x, x〉

)
≥ f (a) − f

( 〈Cx, x〉
〈x, x〉

)
≥ f (a) −

2〈 f (C)x, x〉
〈x, x〉

. (15)

Corollary 2.6. Under the hypotheses of Theorem 2.5, if f is increasing, then

f
(ua − 〈Cx, x〉

u − 〈x, x〉

)
≥ f

( 〈Cx, x〉
〈x, x〉

)
− f (a). (16)

Proof. Applying Lemma 2.4 with λ = u
u−〈x,x〉 > 1, x = 〈Cx,x〉

〈x,x〉 , y = a, and Corollary 2.2, we obtain the result.
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Theorem 2.7. Let the conditions of Theorem 2.1 be satisfied. Then

〈 f (C)x, x〉 ≤ f (m) + f (M). (17)

Proof. Let u ∈ [m,M]. Then u = M−u
M−m m + u−m

M−m M. The function f is P-class, so f (u) ≤ f (m) + f (M). The
operator f (m) + f (M) − f (C) is positive, and hence, (17) follows.

Theorem 2.8. Let the conditions of Theorem 2.1 be satisfied. Let J be an interval such that f ([m,M]) ⊂ J. If F(u, v)
is a real function defined on J × J and non–decreasing in u, then

F(2〈 f (C)x, x〉, f (〈Cx, x〉)) ≤ max
t∈[m,M]

F(2( f (m) + f (M)), f (t))

= max
θ∈[0,1]

F(2( f (m) + f (M)), f (θm + (1 − θ)M)). (18)

Proof. According to the non-decreasing character of F and Theorem 2.7, we deduce

F(2〈 f (C)x, x〉, f (〈Cx, x〉)) ≤ F(2( f (m) + f (M)), f (1̄))
≤ max

t∈[m,M]
F(2( f (m) + f (M)), f (t))

since 1̄ = 〈Cx, x〉 ∈ [m,M]. The second form of the right side of (18) follows at once from the change of
variable θ = M−t

M−m , so that t = θm + (1 − θ)M, with 0 ≤ θ ≤ 1.

In the same way (or more simply just by replacing F by −F in the above theorem) we can prove the
following:

Corollary 2.9. Under the same hypotheses as Theorem 2.8, except that F is non–increasing in its first variable, we
have

F(2〈 f (C)x, x〉, f (〈Cx, x〉)) ≥ min
t∈[m,M]

F(2( f (m) + f (M), f (t)))

= min
θ∈[0,1]

F(2( f (m) + f (M)), f (θm + (1 − θ)M)).

Corollary 2.10. Let the conditions of Theorem 2.1 be satisfied. Then,

(i) 2〈 f (C)x, x〉 ≤ λ f (〈Cx, x〉) for some λ > 0,

(ii) 2〈 f (C)x, x〉 ≤ λ + f (〈Cx, x〉) for some λ ∈ R.

Proof. (i) Consider F(u, v) = u
v , ϕ(t) =

2( f (m)+ f (M))
f (t) , and J = (0,∞). So, F is non-decreasing on its first variable

and by Theorem 2.8 we have

2〈 f (C)x, x〉
f (〈Cx, x〉)

≤ max
t∈[m,M]

ϕ(t) =
2( f (m) + f (M))
mint∈[m,M] f (t)

.

The function ϕ essentially attains its maximum value when the function f attains its minimum value on
[m,M] by continuity of f . Hence, by letting λ =

2( f (m)+ f (M))
mint∈[m,M] f (t) , we find the result.

(ii) Consider F(u, v) = u − v, ϕ(t) = 2( f (m) + f (M)) − f (t), and J = R. So, F is non-decreasing on its first
variable and Theorem 2.8 leads

2〈 f (C)x, x〉 − f (〈Cx, x〉) ≤ max
t∈[m,M]

ϕ(t) = 2( f (m) + f (M)) − min
t∈[m,M]

f (t).

The function f attains its minimum value by continuity of f . Hence, it suffices to let λ = 2( f (m) + f (M)) −
mint∈[m,M] f (t).
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Combining Theorem 2.1 and Corollary 2.10 we identify the following result.

Corollary 2.11. Let the conditions of Theorem 2.1 be satisfied. Then

(i) 2
λ 〈 f (C)x, x〉 ≤ f (〈Cx, x〉) ≤ 2〈 f (C)x, x〉 for some λ > 0,

(ii) 0 ≤ 2〈 f (C)x, x〉 − f (〈Cx, x〉) ≤ λ for some λ ∈ R.

For instance, when f (t) = tr, 0 < r < 1 and t ∈ [m,M], we obtain

0 ≤ 2〈Crx, x〉 − 〈Cx, x〉r ≤ 2Mr + mr

and when f (t) = ln t, t ∈ [m,M] ⊆ [1,∞), f is P-class and we have

ln m
ln M + ln m

〈ln(C)x, x〉 ≤ ln(〈Cx, x〉) ≤ 2〈ln(C)x, x〉,

0 ≤ 2〈ln(C)x, x〉 − ln(〈Cx, x〉) ≤ 2 ln(M) + ln(m).

As a consequence of the definition of a P-class function one can verify that if f is a continuous increasing
P-class function and 1 is a convex function, then f ◦1 is a P-class function. Remember that f is homogeneous,
whenever, f (λA) = λ f (A) for λ > 0. We have the following simple corollary.

Corollary 2.12. Let the conditions of Theorem 2.1 be satisfied and let f be a non-decreasing function and n ≥ 1.

(i) If f is homogeneous, then f n(〈Cx, x〉) ≤ 2n
〈 f n(C)x, x〉.

(ii) If f is subadditive, then f n is P-class and f n(〈Cx, x〉) ≤ 2〈 f n(C)x, x〉.

In the next corollary, we obtain the Hermite-Hadamard’s type inequality for P-class functions.

Corollary 2.13. Let the conditions of Theorem 2.1 be satisfied and let p and q be nonnegative numbers, with p+q > 0,
for which

〈Cx, x〉 =
pm + qM

p + q
.

Then

1
2

f
(pm + qM

p + q

)
≤ 〈 f (C)x, x〉 ≤ f (m) + f (M).

Proof. By virtue of Theorem 2.1 and 2.7 we reach

f
(pm + qM

p + q

)
= f (〈Cx, x〉) ≤ 2〈 f (C)x, x〉) ≤ 2( f (m) + f (M)).

We can improve the Hölder-MacCarthy inequality by providing an upper bound. We use the fact that
the function tr, 0 < r < 1, is P-class, in addition to being concave.

Lemma 2.14. Let α, β > 0 and 0 < r < 1. Then, (α + β)r
≤ αr + βr.

Proof. Define fr(t) = (1 + t)r
− tr, t > 0 and note that f ′r (t) < 0. So, fr is decreasing and the result follows from

the fact that fr(αβ ) ≤ fr(0).

Corollary 2.15. Let C be a self-adjoint positive operator on a Hilbert spaceH . Then
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(i) for all 0 < r < 1 and x ∈ H with ||x|| = 1,

〈Crx, x〉 ≤ 〈Cx, x〉r ≤ 2〈Crx, x〉, (19)

(ii) for all r > 1 and x ∈ H with ||x|| = 1,

〈Cx, x〉r ≤ 〈Crx, x〉 ≤ 2r
〈Cx, x〉r. (20)

Proof. (i) The first inequality is Hölder-MacCarthy inequality for the case where 0 < r < 1. Let 0 < a < b
and 0 < λ < 1. In view of Lemma 2.14 we get

(λa + (1 − λ)b)r
≤ (λa)r + ((1 − λ)b)r

≤ ar + br.

This ensures the function tr is P-class and hence using Theorem 2.1 we reach the second inequality.
(ii) By applying 1

r < 1 in part (i) we have

〈C1/rx, x〉 ≤ 〈Cx, x〉1/r ≤ 2〈C1/rx, x〉. (21)

Replacing Cr with C in (21) we deduce

〈Cx, x〉 ≤ 〈Crx, x〉1/r ≤ 2〈Cx, x〉,

which implies the result.

Let wi, xi be positive numbers with
∑n

i=1 wi = 1. Then the weighted power means are defined by

M[r]
n (x; w) =

( n∑
i=1

wixr
i

)1/r
, r , 0

and

M[0]
n (x; w) =

n∏
i=1

xwi
i

is called weighted geometric mean and denoted by Gw. It is well-known that if s ≤ r, then

M[s]
n (x; w) ≤M[r]

n (x; w). (22)

The weighted arithmetic mean of a non-empty sequence of data {x1, x2, ..., xn} and corresponding non-
negative weights {w1,w2, ...,wn}with

∑n
i=1 wi = 1 is defined by

Aw =

n∑
i=1

wixi

and the weighted harmonic mean of them is defined by

Hw =
( n∑

i=1

wix−1
i

)−1
.

The arithmetic-geometric-harmonic mean inequality is a well-known inequality as follows:

Hw ≤ Gw ≤ Aw.

According to improved Hölder-MacCarthy inequality we identify the following relation between the
weighted arithmetic mean and the weighted power mean.
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Corollary 2.16. Let wi, xi be positive numbers with
∑n

i=1 wi = 1. Then

(i) for all 0 < r < 1,
M[r]

n (x; w) ≤ Aw ≤ 21/rM[r]
n (x; w),

(ii) for all r > 1,
Aw ≤M[r]

n (x; w) ≤ 2Aw.

Proof. (i) Consider

C =


x1 · · · 0
...

. . .
...

0 · · · xn

 and x =


√

w1
...
√

wn

 .
Clearly, we have 〈Cx, x〉r = (

∑n
i=1 wixi)r and 〈Crx, x〉 =

∑n
i=1 wixr

i . In view of (19), we obtain the desired result.
(ii) By considering C and x as above and applying (20) we get the result.

Some refinements of the arithmetic-geometric-harmonic mean inequality are of interest.

Remark 2.17. Let wi, xi be positive numbers with
∑n

i=1 wi = 1.
(i) For all 0 < r < 1,

2−1/rM[−r]
n (x; w) ≤ Hw ≤M[−r]

n (x; w)

≤ Gw ≤M[r]
n (x; w) ≤ Aw ≤ 21/rM[r]

n (x; w).

Replacing x−1
i with xi in Corollary 2.16(i) and applying the monotonically decreasing function t−1 to both sides of the

inequalities we get the first and second inequalities. The third and forth inequalities obtain by (22). We deduce the
last two inequalities by Corollary 2.16(i).

(ii) For all r > 1,
1
2

Hw ≤M[−r]
n (x; w) ≤ Hw ≤ Gw ≤ Aw ≤M[r]

n (x; w) ≤ 2Aw.

Similar to that of part (i) and Corollary 2.16(ii) we reach the first and second inequalities. The third and forth
inequalities are well-known inequalities. The last two inequalities are obtained in Corollary 2.16(ii).

3. Multiple operator versions and its application

In this section, we investigate a multiple operator version of Theorem 2.1 and the corresponding
applications for the P-class functions.

Theorem 3.1. Let Ci be self-adjoint operators with Sp(Ci) ⊆ [m,M] for some scalars m < M and xi ∈ H , i ∈ {1, ...,n}
with

∑n
i=1 ||xi||

2 = 1. If f is a P-class function on [m,M], then

f
( n∑

i=1

〈Cixi, xi〉
)
≤ 2

n∑
i=1

〈 f (Ci)xi, xi〉.

Proof. We consider

C̃ =


C1 · · · 0
...

. . .
...

0 · · · Cn

 and x̃ =


x1
...
xn

 .
By a simple verification we get Sp(C̃) ⊆ [m,M] and ||x̃|| = 1. On the other hands,

f (〈C̃x̃, x̃〉) = f
( n∑

i=1

〈Cixi, xi〉
)
,
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〈 f (C̃)x̃, x̃〉 =

n∑
i=1

〈 f (Ci)xi, xi〉.

According to Theorem 2.1 we have f (〈C̃x̃, x̃〉) ≤ 2〈 f (C̃)x̃, x̃〉 and so we deduce the desired result.

The following particular case is of interest.

Corollary 3.2. Let Ci be self-adjoint operators with Sp(Ci) ⊆ [m,M], i ∈ {1, ...,n} for some scalars m < M. If f is a
P-class function on [m,M] and pi ≥ 0 with

∑n
i=1 pi = 1, then

f
( n∑

i=1

pi〈Cix, x〉
)
≤ 2

n∑
i=1

pi〈 f (Ci)x, x〉

for every x ∈ H with ||x|| = 1.

Proof. It follows from Theorem 3.1 by choosing xi =
√

pix, i ∈ {1, ...,n}, where x ∈ H with ||x|| = 1.

The following corollary is also of interest.

Corollary 3.3. Let f be a P-class function on [m,M], Ci self-adjoint operators with Sp(Ci) ⊆ [m,M], i ∈ {1, ...,n}
and pi ≥ 0 with

∑n
i=1 pi = 1. Assume that I ( {1, ...,n} and Ic = {1, ...,n}\I, pI =

∑
i∈I pi, pIc = 1 −

∑
i∈I pi. Then for

any x ∈ H with ||x|| = 1,

f
( n∑

i=1

pi〈Cix, x〉
)
≤ Ω1( f , I) ≤ Ω2( f , I)

≤ 2
n∑

i=1

〈 f (Ci)x, x〉,

where

Ω1( f , I) = f
(∑

i∈I

pi

pI
〈Cix, x〉

)
+ f

( pi

pIc

∑
i∈Ic

pi〈Cix, x〉
)

Ω2( f , I) = 2
∑
i∈I

pi

pI
〈 f (Ci)x, x〉 + 2

∑
i∈Ic

pi

pIc
〈 f (Ci)x, x〉.

Proof. By rearranging the terms in f
(∑n

i=1 pi〈Cix, x〉
)

we reach

f
( n∑

i=1

pi〈Cix, x〉
)

= f
(
pI(

1
pI

∑
i∈pI

pi〈Cix, x〉) + pIc (
1

pIc

∑
i∈Ic

pi〈Cix, x〉)
)

≤ f
( 1
pI

∑
i∈I

pi〈Cix, x〉
)

+ f
( 1
pIc

∑
i∈Ic

pi〈Cix, x〉
)

= Ω1( f , I).
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On the other hand, Corollary 3.2 infers

Ω1( f , I) = f
(∑

i∈I

pi

pI
〈Cix, x〉

)
+ f

(∑
i∈Ic

pi

pIc
〈Cix, x〉

)
≤ 2

∑
i∈I

pi

pI
〈 f (Ci)x, x〉 + 2

∑
i∈Ic

pi

pIc
〈 f (Ci)x, x〉)

= Ω2( f , I)

≤ 2
∑
i∈I

〈 f (Ci)x, x〉 + 2
∑
i∈Ic

〈 f (Ci)x, x〉

= 2
n∑

i=1

〈 f (Ci)x, x〉.

Corollary 3.4. Let f be a non-decreasing P-class function on [m,M] and let Ci, pi ≥ 0, I, Ic, pI, and pIc be as in
Corollary 3.3. Then

f
(∣∣∣∣∣∣∣∣ n∑

i=1

piCi

∣∣∣∣∣∣∣∣) ≤ f
(∣∣∣∣∣∣∣∣∑

i∈I

pi

pI
Ci

∣∣∣∣∣∣∣∣) + f
(∣∣∣∣∣∣∣∣∑

i∈Ic

pi

pIc
Ci

∣∣∣∣∣∣∣∣)
≤ 2

∣∣∣∣∣∣∣∣∑
i∈I

pi

pI
f (Ci)

∣∣∣∣∣∣∣∣ + 2
∣∣∣∣∣∣∣∣∑

i∈Ic

pi

pIc
f (Ci)

∣∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣∣ n∑
i=1

f (Ci)
∣∣∣∣∣∣∣∣.

Proof. We have

f
(∣∣∣∣∣∣∣∣ n∑

i=1

piCi

∣∣∣∣∣∣∣∣) = f
(∣∣∣∣∣∣∣∣∑

i∈I

piCi +
∑
i∈Ic

piCi

∣∣∣∣∣∣∣∣)
≤ f

(∣∣∣∣∣∣∣∣∑
i∈I

piCi

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∑

i∈Ic

piCi

∣∣∣∣∣∣∣∣)
= f

(
pI

∣∣∣∣∣∣∣∣ 1
pI

∑
i∈I

piCi

∣∣∣∣∣∣∣∣ + pIc

∣∣∣∣∣∣∣∣ 1
pIc

∑
i∈Ic

piCi

∣∣∣∣∣∣∣∣)
≤ f

( 1
pI

∣∣∣∣∣∣∣∣∑
i∈I

piCi

∣∣∣∣∣∣∣∣) + f
( 1
pIc

∣∣∣∣∣∣∣∣∑
i∈Ic

piCi

∣∣∣∣∣∣∣∣).
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On the other hand and by virtue of Corollary 3.2 we get

f
( 1
pI

∣∣∣∣∣∣∣∣∑
i∈I

piCi

∣∣∣∣∣∣∣∣) + f
( 1
pIc

∣∣∣∣∣∣∣∣∑
i∈Ic

piCi

∣∣∣∣∣∣∣∣)
= f

( 1
pI

sup
||x||=1
〈

∑
i∈I

piCix, x〉
)

+ f
( 1
pIc

sup
||x||=1
〈

∑
i∈Ic

piCix, x〉
)

= sup
||x||=1

f
( 1
pI
〈

∑
i∈I

piCix, x〉
)

+ sup
||x||=1

f
( 1
pIc
〈

∑
i∈Ic

piCix, x〉
)

≤ 2 sup
||x||=1

∑
i∈I

pi

pI
〈 f (Ci)x, x〉 + 2 sup

||x||=1

∑
i∈Ic

pi

pIc
〈 f (Ci)x, x〉

= 2
∣∣∣∣∣∣∣∣∑

i∈I

pi

pI
f (Ci)

∣∣∣∣∣∣∣∣ + 2
∣∣∣∣∣∣∣∣∑

i∈Ic

pi

pIc
f (Ci)

∣∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣∣∑
i∈I

f (Ci)
∣∣∣∣∣∣∣∣ + 2

∣∣∣∣∣∣∣∣∑
i∈Ic

f (Ci)
∣∣∣∣∣∣∣∣

= 2
∣∣∣∣∣∣∣∣ n∑

i=1

f (Ci)
∣∣∣∣∣∣∣∣.

Remark 3.5. Let Ci, pi ≥ 0, I, Ic, pI, and pIc be as in Corollary 3.3. Then
(i) For 0 < r < 1,∣∣∣∣∣∣∣∣ n∑

i=1

piCi

∣∣∣∣∣∣∣∣r ≤ ∣∣∣∣∣∣∣∣∑
i∈I

pi

pI
Ci

∣∣∣∣∣∣∣∣r +
∣∣∣∣∣∣∣∣∑

i∈Ic

pi

pIc
Ci

∣∣∣∣∣∣∣∣r
≤ 2

∣∣∣∣∣∣∣∣∑
i∈I

pi

pI
Cr

i

∣∣∣∣∣∣∣∣ + 2
∣∣∣∣∣∣∣∣∑

i∈Ic

pi

pIc
Cr

i

∣∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣∣ n∑
i=1

Cr
i

∣∣∣∣∣∣∣∣.
(ii) For r > 1, and applying part (i) for 1

r < 1 and replacing Cr
i with Ci we conclude

∣∣∣∣∣∣∣∣ n∑
i=1

piCr
i

∣∣∣∣∣∣∣∣ ≤ (∣∣∣∣∣∣∣∣∑
i∈I

pi

pI
Cr

i

∣∣∣∣∣∣∣∣ 1
r

+
∣∣∣∣∣∣∣∣∑

i∈Ic

pi

pIc
Cr

i

∣∣∣∣∣∣∣∣ 1
r
)r

≤ 2r
(∣∣∣∣∣∣∣∣∑

i∈I

pi

pI
Ci

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∑

i∈Ic

pi

pIc
Ci

∣∣∣∣∣∣∣∣)r

≤

(
2
∣∣∣∣∣∣∣∣ n∑

i=1

Ci

∣∣∣∣∣∣∣∣)r
.

Theorem 3.6. Let the conditions of Theorem 3.1 be satisfied. Then

n∑
i=1

〈 f (Ci)xi, xi〉 ≤ f (m) + f (M). (23)

Proof. Consider C̃ and x̃ as in the proof of Theorem 3.1 and apply Theorem 2.7.
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Theorem 3.7. Let the conditions of Theorem 3.1 be satisfied. Let J be an interval such that f ([m,M]) ⊂ J. If F(u, v)
is a real function defined on J × J and non–decreasing in u, then

F
(
2

n∑
i=1

〈 f (Ci)xi, xi〉, f
( n∑

i=1

〈Cixi, xi〉
))
≤ max

t∈[m,M]
F(2( f (m) + f (M)), f (t)). (24)

Proof. Consider C̃ and x̃ as in the proof of Theorem 3.1 and apply Theorem 2.8.

Corollary 3.8. Let the conditions of Theorem 3.1 be satisfied. Then

(i) the inequality

2
n∑

i=1

〈 f (Ci)xi, xi〉 ≤ λ f (〈
n∑

i=1

Cixi, xi〉) (25)

holds for some λ > 0,

(ii) the inequality

2
n∑

i=1

〈 f (Ci)xi, xi〉 ≤ λ + f (〈
n∑

i=1

Cixi, xi〉) (26)

holds for some λ ∈ R.

Proof. Consider C̃ and x̃ as in the proof of Theorem 3.1.
(i) Apply Corollary 2.10 (i) and note that λ =

2( f (m)+ f (M))
mint∈[m,M] f (t) .

(ii) Apply Corollary 2.10 (ii) and note that λ = 2( f (m) + f (M)) −mint∈[m,M] f (t).
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