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Abstract. In this work, we examine the topology of special type of sequences in which each candidate
is a polynomial with its coefficients are of integers taken from a discrete set. The paper develops a
different perspective with regard to the recent progress in the theory of polynomials with bounded integer
coefficients. In the context of discrete control systems, we apply the theory to one dimensional reachability
problem of a convex polyhedra with finite number of controls acting on the system and prove that the
reachable set of the discrete model is dense in the set of real numbers under the suitable finite control set.

1. Introduction

Much attention has recently been attracted to the topological structure of sets of polynomials with

bounded integer coefficients with applications in analysis and theory of numbers [2, 12, 13]. Among these
sets, the one that holds its importance in this context, is the following spectrum

Xm()\)={c0+c1/\+---+ck/\k:cie{O,l,---,m},ke]N},

which has been introduced by Erdés et al in [10] for the case 1 < A < 2 and m = 1. The topology of the
set X,,(1) was examined and results were obtained about the behaviour of differences between consecutive
terms of the set for cases of all transcendental and Pisot numbers (see also [9]). Recall that a Pisot number
is an algebraic integer which is greater than one and all of its conjugates have modulus less than one. There
are huge literature for application of Pisot numbers in theory of numbers, we refer to [2, 13, 14, 16]. Recent

progress was done in [12] where answers were given for perspectives and open problem raised by Erdos et
al in [10]. In [12], the following set of polynomials was considered

Yiu(A) = {co+ 1A+ + cA¥ 1o €10, £1, %2, £m), k € N},

for real number A > 1, and m integer. It was shown that Y,,(1) is dense in R if and only if A < m + 1 and
A is not a Pisot number. It should be noted that Y,,(A) is not dense in R whenever A is a Pisot number(see

2010 Mathematics Subject Classification. Primary 11J17, 93B03; Secondary 11B83, 93C85

Keywords. Reachability, integer part, transcendental number, finite control set, unique expansion.
Received: 02 May 2020; Accepted: 20 August 2020
Communicated by Calogero Vetro

Email addresses: ali.hamidoglu@metu.edu.tr (Ali Hamidoglu), elimhan22@yahoo.com (Elimhan N. Mahmudov)



A. Hamidoglu, E. Mahmudov / Filomat 34:13 (2020), 4575-4587 4576

[14]), or A = m + 1 (see [11]). In addition to that, Y;,(A) has a finite accumulation point in R if and only if
A <m+1and A is not a Pisot number (see [2]).

The present paper is devoted to the study of topological structure of the set X,,(A) for the case m = |A],
i.e., integer part of A and A > 1. Here, we analyse the behaviour of differences of consecutive terms of the
set and obtain related results in the general setting. Moreover, the work is extended to the new class of
X := X|a)(A) as the set of pairwise combination of terms from the set X,,(A) with a transcendental number
y € (0,1) in the following sense

Y :={a;+yaj| ajaj€X fori,j €N}

Here, we study the topology of the set Y and prove our main result that the gap between each consecutive
terms of the set tends to zero. As an application of the main result, we concentrate on the controllability
problem of a convex polyhedra rolling in R. More precisely, the problem is a discrete model of the form

Xp1 = Axp +1, x9=0, (1)

where A > 1 and 7 is ranging from finite control set. Our motivation comes from here that each discrete
points of the system can be represented as polynomial in A with bounded coefficients emerged from the
finite set. In literature, the problem is related to robotics and we refer to the papers [4, 6, 7] for analysing
reachability property of the system under finite control set. Those works are answering the problem
whether it is possible to design a finite control set in such a way that the reachable set of a convex polyhedra
with those controls acting on the system is dense in the space. Several techniques applied to the papers
[18], [26] to obtain denseness criteria of a vehicle’s reachable set in some certain spaces and to the paper
[20] for a model of a robot’s finger in the framework of the theory of expansions in non-integer bases
where the density of its reachability set was studied. In addition, an iterative algorithm was developed
in [5] to interpolate graph signals from only a partial set of samples which results a better performance in
computational efficiency. There are other estimates and iterations technique applied to different types of
discrete systems which were considered in the papers [3, 8, 27]. Moreover, we refer to the paper [1] for
finding sufficient conditions that assure existence and uniqueness of approximate fixed point of a mapping
with best proximity point results.

In the monograph [25] and papers [22-24] consider different problems of optimal control theory with
higher order linear/semilinear discrete and continuous systems. Necessary and sufficient optimality condi-
tions are derived incorporating the Euler-Lagrange and Hamiltonian type inclusions/equations. Moreover,
we refer to the books [15, 19] for several basic notions and results on topology, measure theory and functional
analysis.

The paper is organized as follows.

In Section 2, we give preliminaries about some basic concepts, theorem and lemma. In this part, we
mention about Kronecker’s density theorem which simply asserts that given any irrational number &, the
set of fractional part of {if} for i € Z is dense in open interval (0, 1) (see [17]) and provide one application.
Moreover, we consider certain subsets of X and Y, namely sets of all finite sum of even powers of A terms in
X and Y respectively. In addition, y is defined as a transcendental number which is bounded by constants
depending on A for later purposes.

In Section 3, we provide the main results of the paper. Proof techniques applied in this section are
adopted from the papers [9, 10] and without utilizing Pisot number analysis, topological properties of the
sets X and Y are derived and at the end, it is concluded that differences of successive terms of Y approach
to zero. The paper develops a different point of view in regard to the recent progress done in the work [12].

In Section 4, we conclude the paper by mentioning about some perspectives related to the research.
Here, we consider a problem of controllability in robotics. In this part, we analyse the interaction in
between displacements of a convex polyhedra by means of finite controls in one dimensional space. The
movement of a convex polyhedra for each step can be described as the first order recurrence relation. The

paper answers density property of the reachable set of the system for A > A := “T‘@ The case A = 1, is
considered separately and proven that reachable set is dense in R as a consequence of Kronecker’s theorem.
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2. Preliminaries

In this section, we provide some definitions and principles together with theorems. Firstly, we start
with definition of algebraic and transcendental number.

Definition 2.1. An algebraic number is any real number which is a root of a non-zero polynomial in one variable
with rational coefficients. If a number is not algebraic then it is called a transcendental number.

Pigeonhole Principle: for n + 1 different real numbers xy, x1, -+, x,, in closed interval [0, 1]. Then, one can
say that there exists two numbers x;, x; with i # j satisfying

1
e — x| < —.
n

Now, we give Kronecker’s Theorem which relies on estimating any real number by means of given irrational
number (see [17]).

Theorem 2.2. If £ is irrational, then the set of points ({n&} : n € IN) is dense in the interval (0,1).

As an application of Theorem 2.2, we provide the following useful result.

Lemma 2.3. Let & and 1 be rationally independent positive real numbers, i.e., % € II. Then, the set
K:={jn+itli,jeZ),

is dense in R.

The proof of Lemma 2.3 is straightforward. Namely, for given & and 7 be rationally independent
numbers, we know that % € I. Then for any € > 0, we have from Theorem 2.2 that for any real number
TER,

k) - N - M| < €,
non
where k = z and for some M, N € Z. Hence, we conclude that

|T - (( L] + N)r} + M5)| <e. 2)

Observe that both x| + N and M are integers in (2).
Let A > 1 be a real number and for n € IN, we consider the unique (|A] + 1) expansion of n as the
following way

n=co+c((A]+ 1)+ c(LA] + 1% + - + (L] + 1),
where ¢; € {0,1,--- ,[A]}, and set the sequence of the following form
Ap = Co+ 1A+ + AR, 3)

Define the set X as all collection of (3) and let the sequence {B;} be its increasing rearrangement. Lety € (0, 1)

be a transcendental number such that % € I and satisfying the following inequality

>
—_

1 - 1
max{ﬁ,m}< Yy < X (4)
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Define X, as the set of all finite sum of even powers of A terms in X. More precisely,

k
Xe:={Y A%l keNc e (0,1, 1A]).
i=0
Now, define the following set
Y, :={a; + )/0(j| aj,af € X, for i,j € IN}.

Let {C;} and {7;} be the increasing rearrangement of Y, and Y respectively, i.e.,

o< <@+ and T9<T1<Tp--"

Observe that (p = 79 = 0, {; = 71 =y and (; = 7 = 1. Moreover, define the following limits

I(A) =liminf(Ci11 — ¢) and  S(A) = lim sup(tis1 — Ti)-
Lemma 2.4. For any k € N, the following inequalities

k
yAR2 <14 4] (1+7) Z A%

i=0
and

k
A2 Ty A2 4 (A (149) ) A2,
i=0

hold.

Proof. Firstly, we prove the inequality (8). By using (4),

k k

1+L/\J(1+y)iZO‘/\2i>1+(L/\J+¥)IZO‘/\2"
k
=1+(1+L/\J—%)ZA”

i=0
1\ 1
4 2 _ 2%+1 L 2%+2
>1+(A A);A =1+A = > yA%,
Namely, we obtain the first inequality. For the second one, we use (4), i.e.,

k k

1+yLAJA2k+2+LAJ(1+y)ZA2f>1+%A%%(LAHA;)ZA”’
i=0 =0
> 1 4 A2H2 _ ) 2%k +(A— %)i/\zi > )22,

i=0

Hence, we have the second inequality. [

4578

(6)

(7)
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Lemma 2.5. For A > A, the following inequality

/\2n+2 > LAJ Z /\2i,
i=0

holds for all n € IN.

Proof. Since A > A, we have that A> — A — 1 > 0. Here, we would prove that for any n € N,
/\2n+1 > Z /\21', (10)
i=0

holds by induction. At first,
AR-A1-1>0 = AP-A1?-1>0 = A°-A2-1>0.

Hence, we have that A3 > A2 +1, i.e,, itis true for n = 1. Assume that (10) is true for n. Here, we observe that
1+ /\2 4ot AZH + A2n+2 < A2n+1 + /\2n+2 < A2n+3

which implies the case for n + 1. Therefore, we have (10) by induction.
As a result,

/\2n+1 > i /\21' — A2n+2 > I_AJ Zn‘ AZi.
i=0 i=0

O

3. Main Results

Theorem 3.1. For each n € IN, the following inequality

ﬁn+1 - ﬁn < 1/
holds.

Proof. To prove the theorem, we use induction by n. Here, for case n = 1, recall that fp = 0 and 51 =1, i.e,,
B1 — Bo = 1 which is true.

For induction hypothesis, assume that it is true for case n, i.e., fis1 — i < 1fori=1,2,--- ,n. We prove
that it is true for the case n + 1, i.e., B2 — fn+1 < L.

Let i1 =&o+ &1A + - + &A%, for & € {0,1,--- , | A]}. Here, & is either | A] or different from [A].

If we have the case & # |A], then & would be in {0,1,---,[A] — 1}, i.e.,, Bu+1 + 1 € X. This implies that
ﬁn+1 < ,Bn+2 < ﬁn+1 + 1 which means ﬁn+2 - ,BrH—l <L

Now, assume that &y = [A]. Let k be the largest integer such that §y = & = --- = & = [A]. Then,
&1 €1{0,1,--- Al -1}, ie,,

S
Bust = LAL(L+ Ao+ 28 4 Ea At 4 ) gl (11)
i=k+2

Notice from (11) that ,+1 + A1 € X. Hence, if one can have cg, ¢, ,¢cx € {0,1,- -+, |A]} such that

AMA+A++A)<cg+cidA++AF + A < T+ AJA+A+---+ 45, (12)
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holds, then one can have the following
S
Brsa S Co+CIA + -+ AR + A 4 Z EAT <1+ Bust,
i=k+1

which proves the case 1 + 1. Therefore, it suffices to prove the existence of such {¢;}5_; satisfying (12).
Note firstly that ([A] +1—A)(1 + A + -+ + AF) > 0 which implies

AT+ A+ A+ + A, (13)
From (13), if we have A**! > [A] (1 + A + - - - + AF), then we obtain (12) by simply choosing cg = -+ = ¢, = 0.

Otherwise, assume that A**1 < [A|(1+A+---+AF). Let B, = [AJ (1 + A +- -+ + AF) which is a term in X. Here,
n < n + 1 and the next term would be of the form

Bys1 = o+ 1A + -+ AR + AR

forsomeco, ¢y, ,cx €1{0,1,- -+, [A]}. Since there would be no term of X in between 8, and 8,11, we conclude
that

XN By — A, By — ARy = 0. (14)

Observe that ¢y + c14 + -+ + ¢A* € X and B, — A¥*1 + 1 < B,,. Therefore, by using the induction hypothesis
together with (14), one can have the following

By— A <co+ad+ oAk <p - AT+, (15)
which concludes the proof of (12). [J

Theorem 3.2. For each n € IN, the following inequality

Cn+1 _Cn < 1

holds.

Proof. We apply proof by induction. Here, for case n = 1 recall that (o =0and {3 = y,ie, G -Co =y <1
which is true.

For induction hypothesis, assume that it is true for case n, ie., i1 — G < 1fori =1,2,---,n. We
prove that it is true for the case n + 1, i.e., Cuao — Cue1 < 1. Let Cupn = & + E1A% + -+ + &A%, where
Eieli+jylijef0,1,---,[A]}}. Asitis examined in Theorem 3.1, either &y # (1 + y) [A]or & = (1 +y) [A].

For the first case, one can say either C,+1 +1 € Y, or (41 + ) € Y, or both of them holds. Hence, we have
either

Cn+2 < Cn+1 +1 or Cn+2 < Cn+1 + YV,

which proves the case for n + 1.
For the second case, we assume that &y = (1+ ) [A]. Let k be the largest integer such that §p = &; =+ =
& = (1 + ) A]. More precisely,

k s
Con = LA (147) Y A%+ Ead?2 4 ) g™,
i=0

i=k+2

Here, we examine two cases separately.
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Case 1. Let us assume that &g =i+ |A]y, wherei € {0,1,---,[A]}. It can be seen from assumption on
k that i # |A], which implies C,41 + A%*2 € Y,. More precisely,

k
Gt = AL (147) Y A% = LA pA%2 4 %42 ey, (16)
i=0
If we have
k .
A2 A A% 1 A (14+y) ) A2, (17)

i=0
then, from Lemma 2.4, we conclude that
k .
Gra < Gt = WAL (1+7) Y A% = [AIyA%*2 4 A%92 <14 G
i=0
However, if (17) is not satisfied, i.e.,
k .
A2k+2 < L/\J)//\Zk+2 + L/\J (1 +)/)Z/\21’
i=0

then define C, = [A]yAZ*2 + [ A] (1 + y) Y¥ , A% which is an element of Y,, and of course v < 1 + 1. The next
term is (41, and it would be in the following form

Coe1 = Co + A% + -+ AT+ 222,
forsomecy, €{i+jyli,je{0,1,---,[Al}}and m =0,1,--- , k. Consider the open interval
I, = (G = A%2, Gy = 2752,
forsomec; € {i+jy|i,j€{0,1,---,|Al}}. Note that
(€, Gr) N Y = 0. (18)
Moreover, (4) and (18) imply I, N'Y, = 0. Since, C, — A2 41 < ¢, we apply induction hypothesis that
G = AT <o+ A+ + AP <, - AP 41,
which concludes
Cuv2 < Guwt = Gy + 0o + A + -+ A+ A2 <1 4 G

Case 2. In this case, we suppose that {4 =i+ jy, wherei € {0,1,--- ,[Al}and j € {0,1,---, (LA] = 1)}.
Therefore, (41 + YAZ*2 € Y,. Namely,

k
Cuar — LA (1 +7) Z A2 yAR2 ey, (19)
i=0
If we have
k .
YA S (2] (1+7) Y A%, (20)

i=0
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then from Lemma (2.4), we conclude that

k
Ern < S = A1 +7) Y A% 49222 <14 &,

i=0
However, if (17) is not satisfied, i.e.,
k .
YAE2 < A)(147) Y A%
i=0

Let us define C; = [A] (1 + )/) YX , A% which is an element of Y,, and clearly u < 7 + 1. By using (4), the next
term would be in the following form

Cy+1 =0+ 51)\2 +--+ fk)\zk + ]//\2k+2,
for some ¢, € {i+jy|i,j€{0,1,---,[Al}}and m =0,1,-- -, k. Define the following open interval
I/J — (Cy _ yA2k+2, Cerl _ ,}//\2k+2)_

From (Cy, Cu+1) N Ye = 0 and (4), we have [, N'Y, = (. As it is discussed previously, by utilizing induction
hypothesis, we obtain

Cu— YA <o+ OA* + -+ GA <y —yA* 2 41,
which concludes
Cn+2 < Cuy1 — C{,t + 6o + gl/\Z + e+ kaZk + )//\2k+2 <1+ Cusa-

Hence, for both possible cases, we prove that the hypothesis is true for the case n + 1. As a result, we obtain
that (41 — C, < 1forn e IN.
O

Theorem 3.3. For A > A, the following
I(A)=0,
satisfies.

Proof. For n € IN, we consider the following close interval of the form
Tn=[0,A+ P ATA+ A%+ -+ A1), (1)

Coefficients of each powers of A can be any value from {0,1,--- ,|A]}, i.e., there are | A| + 1 different possible
values. Hence, the set J,, N Y, contains (|A] + 1)***?> number of {;’s. Here, we consider two cases: whether
A is a transcendental or an algebraic number.

Case 1. Assume that A is a transcendental number. Then, there are (|A] + 1)?**? different elements of

A
the set J,, N Y,. This comes from the fact that ; € I and a transcendental number cannot be expressed as a
root of polynomial with integer coefficients. In addition to that, for given any € > 0, it is possible to find a

large m € IN such that

L+ AJA+ A2 4+ A7) < (1 + [A)P™2 - 1), (22)
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Here, we obtain that (| 4] + 1)?"*2 — 1 number of intervals with length € cover J,, and there are (|A] + 1)2"+2
number of different {;’s in J,,. Therefore, from pigeonhole principle, one interval contains at least two
different values from J,,, i.e., this is true for arbitrary small €, implies 7 (1) = 0.

Case 2. Let A be an algebraic number. In this part, we prove that for any k € IN, A cannot be the root of
following polynomial of even powers

P(x) :=co + 1% + -+ - +
forc; € {0,%1,---, %= [A]} whenever A > A.

Assume the contrary, i.e., if such k € IN exists, then we have that A = —¢p 4
without loss of generality that cx > 0, by using Lemma 2.5, we obtain

AZ=2 — ... — ¢y. Suppose

k-1
A% > A% 5 (1] Z N> e A2
i=0

which contradicts with A being the root of P(x). This observation shows us that there would be no common
terms of Y, in J,,. More precisely, there would be (| A ]| + 1)#"*2 terms which cannot coincide in the set J,, N Y.
As it is discussed before, by applying same procedure, we obtain that 7 (1) =0. [

Theorem 3.4. The following
lim inf(Bi.1 - ) =0,
satisfies for all transcendental A > 1.

The proof of Theorem 3.4 is very similar to the proof of Theorem 3.3, so it is omitted.

Lemma 3.5. For A > A and given any € > 0, one can find a subsequence {z,} of C,, such that the following two
conditions are satisfied

(i) Yiezi €Y, wherel C N.
(i) € < zgpy1 — 2ok < (1 + [A])2%€ for k € N.

Proof. We give a proof by induction. Firstly, we prove that both cases hold for n = 1, i.e., find z1,z0 € Y,
such that both conditions satisfy. From Theorem 3.3, we have that 7(A) = 0 which means for an arbitrary
€ > 0, it is possible to find k € IN such that 0 < (41 — (¢ < €. More precisely, we have

0< ﬁ5k+1 - ﬁsk + V(:Brkﬂ - ﬁfk) <€

where Ciyq = ﬁshl + Vﬁrku and ; = ﬁsk + yﬁfk'
If Bs,,, and f;, share the same term A% for somen € IN, with coefficient vi.q, v € (0,1, , [A]} respectively.
Without loss of generality, assume that vy,1 < vk, then we establish new terms as

3Sk+1 = ﬁ5k+1 - VkHAzn and ﬁASk = ﬁSk - Vk+1/\2n' (23)

It should be noted that there may be more terms A" such that both g, and f,, share, but doing the
same process as it is done in (23), we can still have that ., + fs, € X, which means both terms share
no common terms A”. Same observation is valid for §,,,, and f,, i.e., one can have f,,,, and f, such that
Broo = Pre = Bros — B, and ., + fr, € X,. Hence, our new constructed terms would be the following

Ck+1 = gskﬂ + %BAVkH and Ck = ﬁsk + yﬁrk

satisfying both Ces1 +C € Yoand 0 < puq — & < €. Let m € N be the least even number satisfying the
following relation

A" (Car — C) < € < A" 2(Gear — i) (24)
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Multiplying (24) by A?, gives the following
€ <A™ (lpur = &) < Ae < (LAl +1)%e.

Now let z; = A"*2(,; and zo = A"*2{,, then we establish the first two terms satisfying both conditions.
Now, let us assume that it is true for the case n, i.e., there exist zg, z1,- - ,22,-1 such that both conditions
(1) and (i) hold. We prove that the case is true for n + 1, i.e., we construct zy; and zy; in such a way
that these together with zy,z1,--- , 22,1 satisfy (i) and (ii). Let p be the highest even power of A in z; for
i=0,1,---,2n — 1. Here, one can find n € IN such that

€
0< C1)+1 _Cq < ﬁ/

where Cy11 = fu,., + VB, and C; = Bu, + Pu,- If Bu,,, and p,, share the same term A2 for some n € N, with
coefficients v, ;41 € {0,1,- -+, | A]} respectively and satisfying v,+1 < v, then simply choosing

ﬁunﬂ = ﬁurﬁ-l - V’]"'l/\zn and ﬁurl = ﬂuq - V’]+1/\2nl

PN

we have that ﬁAuw + ﬁu,, € X,. Similarly, one can build ﬁAww and ﬁw” such that Buwya — Bw, = wa = Pu, and
ﬁww + ﬁw” € X,. Hence, we construct the following terms

CT]+1 = ﬁuuﬂ + Vﬁw1]+1 and C’] = ﬁuq + ‘yﬁwq’

. N N . €
which satisfy (41 +Cy € Yeand 0 < Gy — Gy < FUE Let £ € IN be an even number such that
€

AP < A€+2(Cl]+l - ér]) =

MGy =Gy < i,, < A2 (Cha = G < (AL + 1)2%.

A

Now, we choose our next candidates as zo,41 = )\f’*“zé,ﬁl and zp, = )\”*“25,,, which together with
20,21, , Zon—1 Satisfy both conditions (i) and (ii). Hence, the proof is completed by induction. [

Lemma 3.6. For A > A and given any € > 0, it is possible to find a finite subsequence {pi}fzo of {Cy} such that the
following two conditions hold

(i) po<p1<---<pg and pg—po>A.
(ii) ‘Oi—pi_1<(1+|_)u)2(—: for i=1,---,k.

A
Proof. Let e > 0 given and k > —=. Now, we consider the sequence {z;}*! defined in Lemma 3.5 and adopt

€
the following construction for {p;}*_

Po = zo;  and Pi = Pi-1 + Z2i-1 — Zoi—p for i=1,2,--- k. (25)
From first condition of Lemma 3.5, we obtain that p; € Y, for i = 0,--- ,k. Moreover, from the second
condition of Lemma 3.5, we have both cases (i) and (i7). O
Theorem 3.7. The following

S(A) =0,
holds for A > A.
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Proof. For given an arbitrary € > 0, construct the finite subsequence { pi}fzo of {C,} defined in Lemma 3.6.
Namely, we have

pPo<p1<--<pr with pj—pi_1 < (1+|A])% and Pk — Po > A.
Define the set of the following form
Y, := AY, = {AGu}nen.

which is the collection of all odd powers of A, and so, Y, N Y, = 0. Moreover, from Theorem 3.2, it can be
concluded that for any interval of length A contains at least one element from the set Y,,. Now, we consider
the following open intervals

L := (z, T + (L + [A])%€) € (0, ). (26)
for T > pg + A, and show that I; N'Y # 0. By using above argument, one can find at least one element

velt—po—A,t—polNY,. (27)
Here, v consists of only odd powers and from (27), we have that

V+po<T=<V+pg

which means the set I; would contain at least one number of the form v + p; for some i = 0,1,--- , k. Since,
v+p; € Yforalli, wehave, N Y # 0.
As a result, we obtain that

S < (1 +14)%,

for arbitrary € > 0. Hence, we have S(A) = 0.
|

4. An Application

In this part, we consider the discrete model (1) with its controls taking from the set 7. Here, the aim is
to build a finite control set 7 in such a way that the robot can reach nearly all points in the space. Let us
design the following two sets

C/\ = {0/ il/ iz/ - I_AJ} and CA,)/ = {Z + ]7/ | l/] € C/\}r (28)
and reachable set for the model (1) with control set 7
RO, 1) ={ )" cilei e 7,n e N (29)
i=0

Firstly, let us consider the case A = 1 for the model (1). If 17 is ranging in the set C;, then the reachable
set R(0,C1) of (1) would be the set of integers which is not dense in R. As a result of Lemma 2.3, for
n € I = {+p, +q} where p, q are rationally independent numbers, we have that the reachable set R(0, I) of
(1) is dense in R. Therefore, for density, the control set can be designed as I = {+p, +4q} for the case A = 1.

For case A > 1, we provide the following result for density.

Theorem 4.1. The reachable set R(0,C, ) of (1) is dense in R for A > A.
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Proof. Let v € R be a real number and by applying division algorithm, we would have its A expansion as

S
v= Z ciAl +7,, wherecieCyand0<r, <1.
i=0

For r, = 0, we have that v € R(0,C, ). Let us assume that 0 <, < 1.

From Theorem 3.7, for € = % > 0, where p is a large integer satisfying p > s, it is possible to find k € N
such that

Tk —Tee1 € for 1,101 €Y.

As a result,

s s
V= Z C,'Al +7, = Z Ci/\l + /\ka - Ap’[k_1.
i=0 i=0

where coefficients of right hand side belong to the set C,,, which is an element of R(0,C, ). Since, v is
arbitrary here, we conclude that the reachable set R(0,C,,) of (1) is dense in R. [J
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