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Abstract. In this paper, we investigate the relative essential spectra of a 3 × 3 block matrix operator
with unbounded entries and with domain consisting of vectors satisfying certain relations between their
components. Our results are formulated in term of relative generalized weak demicompactness and
measure of non-strict-singularity.

1. Introduction

During the last years, e.g. the papers [2, 27] were devoted to the study of the Wolf essential spectrum
of operators represented by a 2 × 2 block matrix acting on a product of Banach spaces. An account of the
research and a wide panorama of methods to investigate the spectrum of the unbounded block operator
matrices are presented by C. Tretter in [28, 29, 30].

In the theory of unbounded block operator matrices, the Frobenius-Schur factorization is a basic tool
to study the spectrum and various spectral properties. This was first recognized by R. Nagel in [20, 21]
and, independently and under slightly different assumptions, later in [2]. In [13], A. Jeribi, N. Moalla and
I. Walha extended the results developed by F. V. Atkinson et al in [2] for a 3 × 3 block matrix operator. In
[5], inspired by the ideas of the paper of [3], A. Ben amar, A. Jeribi and B. Krichen extended the previous
results to a 3 × 3 block operator matrices

L0 =

 A B C
D E F
G H L

 , (1.1)

with domain consisting of vectors satisfying certain relations of the form ΓXx = ΓYy = ΓZz between the
components of its elements.

Definition 1.1. An operator T : D(T) ⊆ X −→ X is said to be demicompact if for every bounded sequence
(xn)n inD(T) such that xn − Txn → x ∈ X, there exists a convergent subsequence of (xn)n.
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In [1, 22], a fundamental role is played by demicompact linear operators to establish some results in Fred-
holm theory. In 2014, B. Krichen [15] gave a generalization of this notion by introducing the class of relative
demicompact linear operators. Recently, W. Chaker, A. Jeribi and B. Krichen [6, 7] continued this study to
investigate the essential spectra of densely defined linear operators. In 2018, B. Krichen and D. O’Regan
developed in [16] some Fredholm and perturbation results involving a new concept, called weakly relative
demicompactness for nonlinear operators. In [17], the same authors studied the relationship between the
class of weakly demicompact linear operators and an axiomatic measures of weak noncompactness of linear
operator. In 2019, I. Ferjani, A. Jeribi and B. Krichen [8], introduced the notion of generalized weak demi-
compactness as a generalization of the class of demicompact, they gave their relationship with Fredholm
and upper semi-Fredholm operators. A characterization by means of upper semi- Browder spectrum, was
also given. Moreover, they ensured the generalized weak demicompactness of the closure of a closable
block matrix operator. In [9], I. Ferjani, A. Jeribi and B. Krichen continued the analysis started in [8] and
extended it to more general classes by introducing the concept of relative generalized weak demicompact-
ness (see Definition 2.6.).

In the present paper, we extend the results of [5] and we focus on the investigation of the closability and
the description of the M-essential spectra where,

M =

 M1 M4 M5
M6 M2 M7
M8 M9 M3

 . (1.2)

We determine the M-essential spectra of the closure of a 3×3 block operator matrices (1.1) without knowing
the M-essential spectra of the operator A but only that of one of its restrictions involving the concept of
relative generalized weak demicompactness. Furthermore, we give some results on this last concept by
means of measure of non-strict-singularity.

This paper is organized as follows: In the next section, we recall some definitions and preliminary results.
Furthermore, we describe the closure of the operator in (1.1) under certain assumptions on its entries. In
section 3, we determine the M-essential spectra of this closure involving the concept of relative generalized
weak demicompactness. In section 4, a characterization by means of measure of non-strict-singularity is
given.

2. Preliminary results

In this section, we will give some notations, definitions and preliminary results that are necessary in the
sequel.

Let X and Y be two Banach spaces and let T be an operator acting from X into Y.We denote byD(T) ⊂ X
its domain and R(T) ⊂ Y its range. We denote by C(X,Y) (resp. L(X,Y)) the set of all closed, densely
defined linear operators (resp. the Banach algebra of all bounded linear operators) from X into Y. The
subset of L(X,Y) of all compact operators is denoted by K (X,Y). For T ∈ C(X,Y), N(T) denotes the Kernel
of T. The nullity, α(T) is defined as the dimension of N(T) and the deficiency, β(T) of T is defined as the
codimension of R(T) in Y. We denote by asc(T) the ascent of T, i.e. the smallest non-negative integer n such
that N(Tn) = N(Tn+1). An operator T ∈ L(X) is said to be weakly compact, if T(M) is relatively weakly
compact for every bounded subset M ⊆ X. The family of weakly compact operators on X, is denoted by
W(X).
The set of upper semi-Fredholm operators from X into Y is defined by

Φ+(X,Y) := {T ∈ C(X,Y) such that α(T) < ∞ and R(T) closed in Y},

the set of lower semi-Fredholm operators from X into Y is defined by

Φ−(X,Y) := {T ∈ C(X,Y) such that β(T) < ∞ and R(T) closed in Y},
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the set of Fredholm operators from X into Y is defined by

Φ(X,Y) := Φ−(X,Y) ∩Φ+(X,Y).

If T ∈ Φ(X,Y), the number i(T) := α(T) − β(T) is called the index of T.
If X = Y, then L(X,Y), C(X,Y), K (X,Y), Φ(X,Y), Φ+(X,Y), and Φ−(X,Y) are replaced by L(X), C(X), K (X),
Φ(X), Φ+(X) and Φ−(X), respectively. If T ∈ C(X), we denote by ρ(T) the resolvent set of T and by σ(T) the
spectrum of T. For x ∈ D(T), the graph norm ‖.‖T of x is defined by ‖x‖T = ‖x‖ + ‖Tx‖.
Let T ∈ C(X). We recall the following essential spectra :

σe1 (T) :=
{
λ ∈ C such that λ − T < Φ+(X)

}
:= C\Φ+T,

σe4 (T) :=
{
λ ∈ C such that λ − T < Φ(X)

}
:= C\ΦT,

σe5 (T) := C\ρ5(T),

where ρ5(T) :=
{
λ ∈ C such that λ ∈ ΦT and i(λ − T) = 0

}
.

Now, we will recall some well known properties of the Fredholm sets.

Definition 2.1. Let X and Y be two Banach spaces and let F ∈ L(X,Y).

(i) The operator F is called a Fredholm perturbation if U + F ∈ Φ(X,Y) whenever U ∈ Φ(X,Y).
(ii) F is called an upper (resp. lower) semi-Fredholm perturbation if U + F ∈ Φ+(X,Y) (resp. U + F ∈

Φ−(X,Y)) whenever U ∈ Φ+(X,Y) (resp. U ∈ Φ−(X,Y)).

We denote by F (X,Y) the set of Fredholm perturbation and by F+(X,Y) (resp. F−(X,Y)) the set of upper
(resp. lower) semi-Fredholm perturbations.

Remark 2.1. Let Φb(X,Y) denote the set Φ(X,Y)∩L(X,Y). If in Definition 2.1 we replace Φ(X,Y) by Φb(X,Y),
we obtain the sets F b(X,Y), F b

+(X,Y) and F b
−

(X,Y).

Definition 2.2. A Banach space X is said to have the Dunford-Pettis property (in short DP property) if every
bounded weakly compact operator T from X into another Banach space Y transforms weakly compact sets
on X into norm-compact sets on Y.

Remark 2.2. If X is Banach space with DP property, then

W(X) ⊂ F (X).

Definition 2.3. Let X and Y be two Banach spaces. An operator S ∈ L(X) is said to be strictly singular if

the restriction of S to any infinite-dimensional subspace of X is not an homeomorphism.

Let S(X,Y) denote the set of strictly singular operators from X to Y.
The concept of strictly singular operators was introduced in the pioneering paper by T. Kato [14] as a
generalization of the notion of compact operators. For a detailed study of the properties of strictly singular
operators we refer to [11, 14]. Note that S(X,Y) is a closed subspace of L(X,Y). In general, strictly singular
operators are not compact and if X = Y,S(X) = S(X,X) is a closed two-sided ideal ofL(X) containingK (X).
Let us recall the definition of Hausdorff measure of noncompactness (see [24]).

Definition 2.4. For a bounded subset Ω of X we consider

q(Ω) = inf{r > 0,Ω can be covred by finite set of open ball of radius r}.

The Hausdorff measure of noncompactness of A ∈ L(X,Y) is defined by

q(A) = q[A(BX)],

where BX denotes the closed unit ball in X, that is, the set of all x ∈ X satisfying ‖x‖ ≤ 1.
It was proved in [18] that

q(A) ≤ ‖A‖,
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q(A) = 0 if and only if A ∈ K (X,Y),

q(A + K) = q(A), for all K ∈ K (X,Y).

Definition 2.5. For A ∈ L(X,Y), set

1M = inf
N⊂M

q(A|N) and 1(A) = sup
M⊂ X

1M(A), (2.1)

where M,N represent infinite dimensional subspaces of X, and A|N denotes the restriction of A to the
subspace N.The semi-norm 1 is a measure of non-strict singularity, it was introduced by Schechter in [26].

We recall the following result established in [23].

Proposition 2.1. For A ∈ L(X,Y),

(i) A ∈ S(X,Y) if, and only if 1(A) = 0.
(ii) A ∈ S(X,Y) if, and only if 1(A + T) = 1(T) for all T ∈ L(X,Y).

(iii) If Z is a Banach space and B ∈ L(Y,Z), then 1(BA) ≤ 1(B)1(A).

Now, we recall the following results founding in [9]:

Definition 2.6. Let X be a Banach space and let A,S ∈ C(X) with D(A) ⊂ D(S). A is called a generalized
weakly S-demicompact operator if there exists a finite subset E of C containing 0 such that:

(i) For all λ ∈ C\E, 1
λA is weakly S-demicompact operator,

(ii) for all λ ∈ C\E, λS − A has a finite ascent, and
(iii) all λ ∈ σS(A)\E, are eigenvalues of finite multiplicity and have no accumulation points except possibly

points of E.

The set E is called a generalized set of A.

Remark 2.3. It should be noted that if, E is a generalized set of A and G is a finite subset of C containing E,
then G is also a generalized set of A.

Theorem 2.1. Let X be a Banach space, T ∈ C(X) and S ∈ L(X) such that 0 ∈ ρ(S), T(D(T)) ⊂ D(T) and
S(D(T)) ⊂ D(T). Then, T is a generalized weakly S-demicompact if, and only if, there exists a finite subset
E ⊂ C containing 0 such that λS − T ∈ Φ+(X) for all λ ∈ C\E.
Theorem 2.2. Let X be a Banach space, T ∈ C(X) and S ∈ L(X) such that 0 ∈ ρ(S), T(D(T)) ⊂ D(T) and
S(D(T)) ⊂ D(T). If µT is a generalized weakly S-demicompact operator for each µ ∈ [0, 1] with a generalized
subset E, then λS − T ∈ Φ(X) and i(λS − T) = i(λS), for all λ ∈ C\E.

In this work we are concerned with the M-essential spectra of operators defined by a 3 × 3 block matrix
operators (1.1), where the entries of the matrix are in general unbounded operators. The operator (1.1) is
defined on (D(A) ∩D∩D(G)) × (D(B) ∩D(E) ∩D(H)) × (D(C) ∩D(F) ∩D(L)) .

Let X, Y, Z and W be Banach spaces. We consider the block matrix operator (1.1) in the space X×Y×Z, that is
the linear operator A acts in X, E in Y and L in Z, B from Y to X.We assume that operators ΓX, ΓY, ΓZ are given,
acting from X, Y, Z, respectively, into W. In what follows, we will consider the following assumptions.

(H1) The operator A is densely defined and closable. Then D(A), equipped with the graph norm ‖x‖A =

‖x‖+ ‖Ax‖ can be completed to a Banach space XA which coincides withD(A), the domain of the closure of
A in X.

(H2) D(A) ⊂ D(ΓX) ⊂ XA and ΓX : XA −→ W is a bounded mapping. Denote by ΓX the extension by
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continuity which is a bounded operator from XA into W.

(H3)D(A) ∩N(ΓX) is dense in X and the M1-resolvent set of the restriction A1 := A|D(A)∩N(ΓX) is not empty:
ρM1 (A1) , ∅.

(H4) The operator B is densely defined and for some (and hence for all) µ ∈ ρM1 (A1) the operator (A1 −

µM1)−1(B − µM4) is bounded.

(H5) D(A) ⊂ D(D) ⊂ XA, D(A) ⊂ D(G) ⊂ XA and D and G are a closable operators from XA into Y and XA
into Z, respectively.

Taking into account the assumption (H5) and apply the closed graph theorem, it follows that for λ ∈ ρM1 (A1)
F1(λ) := (D − λM6)(A1 − λM1)−1 and F2(λ) := (G − λM8)(A1 − λM1)−1 are bounded operators from X into Y
and X into Z, respectively.

From Lemma 3.1 in [31],D(A) was decomposed as follows:

D(A) = D(A1) ⊕N(A − µM1)

for every µ ∈ ρM1 (A1) and the restriction of ΓX toN(A− µM1) is injective. Denote the inverse of ΓX|N(A−µM1)

by Kµ := (ΓX|N(A−µM1))−1.

Remark 2.4. Kµ is closable if, and only if, Kλ is closable, in which case we have Kµ − Kλ = (µ − λ)(A1 −

µM1)−1M1Kλ. (H6) For some µ ∈ ρM1 (A1), Kµ is a bounded operator from ΓX(D(A)) into X, its extension by

continuity to ΓX(D(A)) is denoted by Kµ.

In the following, denote S(µ) := E + (D−µM6)[KµΓY − (A1 −µM1)−1(B− µM4)]. The operator S(µ) is defined
on the domain:

Y1 = {y ∈ D(B) ∩D(E) : ΓYy ∈ ΓX(D(A))}.

For µ ∈ ρM1 (A1), denote the restriction of S(µ) to the set Y1 ∩N(ΓY) by S1(µ).

(H7) For some µ ∈ ρM1 (A1), the operator S1(µ) is closed.

Remark 2.5. For every λ, µ ∈ ρM1 (A1) we have

S1(µ) − S1(λ) = (µ − λ)[M6 − F1(µ)M1](A1 − λM1)−1(B − λM4) + (µ − λ)F1(µ)M4. (2.2)

Remark 2.6. According to assumptions (H4) and (H5), we have the operator F1(µ)M1(A1−λM1)−1(B−λM4)
is bounded on its domain, which implies that if S1(µ) is closed for some µ ∈ ρM1 (A1) then it is closed for all
such µ.

For µ ∈ ρM1 (A1) ∩ ρM2 (S1(µ)), the set Y1 can be decomposed as follows:

Y1 = D(S1(µ)) ⊕N(S(µ) − µM2).

As in [3], the inverse of ΓY|N(S(µ)−µM2) is denoted by Jµ := (ΓY|N(S(µ)−µM2))−1,

Jµ : ΓY(Y1) −→ N(S(µ) − µM2) ⊂ Y1.

Remark 2.7. Jµ is closable if, and only if, Jλ is closable. Moreover, Jµ = (S1(µ) − µM2)−1(S1(λ) − λM2)Jλ.

Assume that for some µ ∈ ρM1 (A1), Jµ is bounded from ΓY(Y1) into Y and its extension by continuity to
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ΓY(Y1) is denoted by Jµ.

(H8)D(B) ∩D(E) ⊂ D(ΓY), D(B) ∩D(H) ⊂ D(ΓY), the set Y1 is dense in Y and the restriction of ΓY to Y1 is
bounded as an operator from Y into W. The extension by continuity of ΓY|Y1 to Y is denoted by Γ

0
Y.

(H9) L is densely defined and closed with non empty M3-resolvent set, i.e., ρM3 (L) , ∅.

(H10) For some µ ∈ ρM1 (A1), G2(µ) := (A1 − µM1)−1(C − µM5) is bounded operator.

(H11)D(C) ∩D(F) ∩D(L) ⊂ D(ΓZ), the set

Z1 := {z ∈ D(C) ∩D(F) ∩D(L) : ΓZz ∈ ΓY(Y1)}

is dense in Z and the restriction of ΓZ to Z1 is bounded from Z into W. The extension by continuity of ΓZ|Z1

to Z is denoted by Γ
0
Z.

(H12) For some (and hence for all) µ ∈ ρM1 (A1), F − (D − µM6)(A1 − µM1)−1(C − µM5) is closable and its
closure F − (D − µM6)(A1 − µM1)−1(C − µM5) is bounded.

Remark 2.8. These assumptions are sufficient conditions. The optimality condition is a question which is
a priori still open.

Under these assumptions, we show the closability of the operator in (1.1) and we describe the closure. As
in the 2× 2 case, we will use the tool of the factorization of the 3× 3 matrix with a diagonal matrix of Schur
complements in the middle and invertible factors to the right and to the left (see for example [32]).
We consider the Banach space X × Y × Z and define the operator L0 as follows:

D(L0) =


 x

y
z

 :
x ∈ D(A)
y ∈ D(B) ∩D(E)
z ∈ D(C) ∩D(F) ∩D(L)

, ΓXx = ΓYy = ΓZz

 .
As in the case of a 2 × 2 matrix operator (see [2,29]), we introduce the following operators:

G1(µ) := −KµΓY + (A1 − µM1)−1(B − µM4),
G3(µ) := −JµΓZ + (S1(µ) − µM2)−1(F − (D − µM6)(A1 − µM1)−1(C − µM5)),
Θ(µ) := H + (G − µM8)[KµΓY − (A1 − µM1)−1(B − µM4)],
F3(µ) := Θ(µ)(S1(µ) − µM2)−1,
S2(µ) := L − F2(µ)(C − µM5) + Θ(µ)(JµΓZ − (S1(µ) − µM2)−1(F − F1(µ)(C − µM5))).

Remark 2.9.

(i) If Θ(µ) is closable for some µ ∈ ρM1 (A1), then it is closable for all such µ.
(ii) If for some µ ∈ ρM1 (A1) ∩ ρM2 (S1(µ)) the operator S2(µ) is closable, then it is closable for all such µ.

The closure of S2(µ) is denoted by S2(µ). Then we have

S2(µ) = S2(λ) + (λ − µ)[F2(µ)M1 −M8]
[
F3(µ)F1(λ)G2(µ) − G2(λ)

]
+(F3(µ) − F3(λ))(S1(λ) − λM2)G3(λ) + (µ − λ)F2(µ)M4G3(µ). (2.3)

Further, we consider the following operators

G̃1(µ) := −KµΓ
0
Y + (A1 − µM1)−1(B − µM4).
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G̃2(µ) := (A1 − λM1)−1(C − µM5).

G̃3(µ) := −JµΓ
0
Z + (S1(µ) − µM2)−1(F − (D − µM6)(A1 − µM1)−1(C − µM5)).

Now, we give the following result.

Theorem 2.3. Under assumptions (H1)-(H12), the operator L0 is closable if and only if S2(µ) is closable for
some µ ∈ ρM1 (A1) ∩ ρM2 (S1(µ)). In this case the closure L of L0 is given by

L = µM +Gl(µ)


A1 − µM1 0 0

0 S1(µ) − µM2 0
0 0 S2(µ) − µM3

Gr(µ),

where

Gl(µ) :=

 I 0 0
F1(µ) I 0
F2(µ) F3(µ) I

 and Gr(µ) :=

 I G̃1(µ) G̃2(µ)
0 I G̃3(µ)
0 0 I

 .
Now, rewrite the Frobenius-Schur factorization:

αL = αµM +Gl(µ)


αµM1 − αA1 0 0

0 αµM2 − αS1(µ) 0
0 0 αµM3 − αS2(µ)

Gr(µ).

Let λ ∈ C, we have

λM − αL = Gl(µ)


λM1 − αA1 0 0

0 λM2 − αS1(µ) 0
0 0 λM3 − αS2(µ)

Gr(µ) − (λ − αµ)R(µ)

:= Gl(µ)Vα(λ)Gr(µ) − (λ − αµ)R(µ). (2.4)

Where

R(µ) :=

 0 M1G̃1(µ) −M4 M1G̃2(µ) −M5

F1(µ)M1 −M6 F1(µ)M1G̃1(µ) U(µ)
F2(µ)M1 −M8 W(µ) T(µ)

 ,
with

U(µ) = F1(µ)M1G̃2(µ) + M2G̃3(µ) −M7,

W(µ) = F2(µ)M1G̃1(µ) + F3(µ)M2 −M9,

T(µ) = F2(µ)M1G̃2(µ) + F3(µ)M2G̃3(µ).

3. Generalized weak M-demicompactness for 3 × 3 matrix operators

Having obtained the closure L of the operator L0, in this section we will determine the generalized
weak demicompactness of this operator and its M-essential spectra.

In all what follows, we will consider the following invertible matrix operator

M =

 M1 M4 M5
M6 M2 M7
M8 M9 M3

 , (3.1)
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such that 0 ∈ ρ(M1) ∩ ρ(M2) ∩ ρ(M3).

As a first step we start by a result for a particular representation of L0.

Theorem 3.1. Let A ∈ L(X), B ∈ L(Y) and C ∈ L(Z). Let consider the matrix operator M ∈ L(X × Y × Z)
with the representation (3.1) and the 3 × 3 matrix operator

LC :=

 A D E
0 B F
0 0 C

 ,
where D ∈ L(Y,X), E ∈ L(Z,X), F ∈ L(Z,Y).
Assume that M6 ∈ F (X,Y), M8 ∈ F (X,Z) and M9 ∈ F (Y,Z) and that σM2 (B), σM3 (C) be a finite subsets of C.
Then, A is a generalized weakly M1-demicompact, B is a generalized weakly M2-demicompact and C is a
generalized weakly M3-demicompact operators if, and only if, LC is a generalized weakly M-demicompact
operator.

Proof. Let λ ∈ C. Clearly, we have

λM − LC =

 λM1 − A λM4 −D λM5 − E
λM6 λM2 − B λM7 − F
λM8 λM9 λM3 − C


=

 0 0 0
λM6 0 0
λM8 λM9 0

 +

 λM1 − A λM4 −D λM5 − E
0 λM2 − B λM7 − F
0 0 λM3 − C

 . (3.2)

Since A is generalized weakly M1-demicompact, B is generalized weakly M2-demicompact and C is gener-
alized weakly M3-demicompact, then there exist three finite subsets E1, E2 and E3 ofC containing 0 such that
λM1−A ∈ Φ+(X) for all λ ∈ C\E1 and λM2−B ∈ Φ+(Y) for all λ ∈ C\E2, and λM3−C ∈ Φ+(Z) for all λ ∈ C\E3.
From Remark 2.3, it follows that A is generalized weakly M1-demicompact, B is generalized weakly M2-
demicompact and C is generalized weakly M3-demicompact with a generalized set E = E1 ∪ E2 ∪ E3. This
allows us to get λM1 − A ∈ Φ+(X), λM2 − B ∈ Φ+(Y) and λM3 − C ∈ Φ+(Z) for all λ ∈ C\E. Now, when
applying Lemma 6.6.1 in [12] and using the fact that M6 ∈ F (X,Y), M8 ∈ F (X,Z) and M9 ∈ F (Y,Z), we get
λM − LC ∈ Φ+(X × Y × Z) for all λ ∈ C\E, and for every D ∈ L(Y,X), E ∈ L(Z,X), F ∈ L(Z,Y). Hence, from
Theorem 2.1, LC is generalized weakly M-demicompact with a generalized set E.
To prove the converse, assume that LC is a generalized weakly M-demicompact operator then, from The-
orem 2.1, there exists a finite subset E of C containing 0 such that λM − LC is an upper semi-Fredholm
operator, for all λ ∈ C\(E ∪ σM2 (B) ∪ σM3 (C)).
From Equation (3.2), we have

λM − LC = H +

 λM1 − A λM4 −D λM5 − E
0 λM2 − B λM7 − F
0 0 λM3 − C

 ,
whereH =

 0 0 0
λM6 0 0
λM8 λM9 0

 .
Now, we put the following factorization

λM − LC = H +NBCA,

whereN =

 I (λM4 −D)(λM2 − B)−1 (λM5 − E)(λM3 − C)−1

0 I (λM7 − F)(λM3 − C)−1

0 0 I

 ,
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A =

 λM1 − A 0 0
0 I 0
0 0 I

 , B =

 I 0 0
0 λM2 − B 0
0 0 I

 , and C =

 I 0 0
0 I 0
0 0 λM3 − C

 .
Taking into account that λM− LC ∈ Φ+(X×Y×Z) and using the fact thatH ∈ F (X×Y×Z), it follows from
Theorem 5.32 in [25] and Lemma 6.6.2 in [12], that λM1−A, λM2−B and λM3−C, are upper semi-Fredholm
operators, for all λ ∈ C\(E ∪ σM2 (B) ∪ σM3 (C)).
Consequently, in view of Theorem 2.1, A is a generalized weakly M1-demicompact operator, B is a general-
ized weakly M2-demicompact operator and C is a generalized weakly M3-demicompact operator. �

Now, we are in position to state the following result.

Theorem 3.2. Let X, Y and Z be Banach spaces and M ∈ L(X × Y × Z) with the representation (3.1).
Assume that the operator L0 defined in Equation (1.1) satisfies (H1)-(H12) and let L be its closure. Let µ ∈
ρM1 (A1)∩ ρM2 (S1(µ)) and λ ∈ C. If for t ∈ [0, 1], the operators tA1 is a generalized weakly M1-demicompact,
tS1(µ) is a generalized weakly M2-demicompact, tS2(µ) is a generalized weakly M3-demicompact and
R(µ) ∈ F+(X × Y × Z), then αL is generalized weakly M-demicompact for all α ∈ [0, 1].

Proof. Let µ ∈ ρM1 (A1) ∩ ρM2 (S1(µ)), α ∈ [0, 1] and λ ∈ C. According to Equation (2.4), we have

λM − αL = Gl(µ)Vα(λ)Gr(µ) − (λ − αµ)R(µ).

SinceαA1 is a generalized weakly M1-demicompact operator, αS1(µ) is a generalized weakly M2-demicompact
operator and αS2(µ) is a generalized weakly M3-demicompact operator then, in view of Theorem 2.1,
there exist three finite subsets E1, E2 and E3 of C containing 0 such that λM1 − αA1 ∈ Φ+(X) for all
λ ∈ C\E1, λM2 − αS1(µ) ∈ Φ+(Y) for all λ ∈ C\E2 and λM3 − αS2(µ) ∈ Φ+(Z) for all λ ∈ C\E3. From
Remark 2.3, it follows that also αA1 is generalized weakly M1-demicompact, αS1(µ) is generalized weakly
M2-demicompact and αS2(µ) is generalized weakly M3-demicompact with a generalized set E = E1∪E2∪E3.

Again from Theorem 2.1, we get λM1 − αA1 ∈ Φ+(X), λM2 − αS1(µ) ∈ Φ+(Y) and λM3 − αS2(µ) ∈ Φ+(Z) for
all λ ∈ C\E. Now, when applying Lemma 6.6.1 in [12], we obtain Vα(λ) ∈ Φ+(X × Y × Z) for all λ ∈ C\E.
Taking into account the fact that R(µ) ∈ F+(X × Y × Z) and the boundedness of the operators Gl(µ), Gr(µ)
and theirs inverses, we deduce that λM−αL ∈ Φ+(X×Y×Z) for all λ ∈ C\E.Hence, from Theorem 2.1, αL
is a generalized weakly M-demicompact operator with a generalized set E. �

Remark 3.1.
(i) When we take α = 1, we get a same result of Corollary 4.1 in [9].

(ii) It should be noticed that Theorem 3.2 remains true if we assume that X,Y and Z have the Dunford-
Pettis property and R(µ) ∈ W(X × Y × Z).

Through the next theorem, we will give a characterization of the M-essential spectra involving the concept
of generalized weak demicompactness. Before that, we prove the following stability lemma.

Lemma 3.1. Let µ ∈ ρM1 (A1) ∩ ρM2 (S1(µ)). If the sets Φb(Y,X), Φb(Z,X) and Φb(Z,Y) are not empty, and if

F1(µ) ∈ F b(X,Y), F2(µ) ∈ F b(X,Z) and F3(µ) ∈ F b(Y,Z), then σe5 (S1(µ)) and σe5 (S2(µ)) do not depend on the
choice of µ.

Proof. Using Equation ( 2.2), assumption (H4), [4,Theorem 3.1] and [10,Theorem 3.2 (ii)], we infer that
σe5 (S1(µ)) = σe5 (S1(λ)). Hence σe5 (S1(µ)) does not depend on µ. Clearly, [F3(µ)F1(µ) − G2(λ)] ∈ F b(Z) and

(F3(µ)−F3(λ))(S1(λ)−λM2)[JλΓ
0
Z − (S1(λ)−λM2)−1(F − (D − λM6)(A1 − λM1)−1(C − λM5)] ∈ F b(Z), so in the

same way we can deduce from Equation (2.3) and [4, Theorem 3.1] that σe5 (S2(µ)) = σe5 (S2(λ)). �

Now, we give the following result.
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Theorem 3.3. Let X, Y and Z be Banach spaces and M ∈ L(X × Y × Z) with the representation (3.1). As-
sume that the operator L0 defined in Equation (1.1) satisfies (H1)-(H12) with closure L and let E be a finite
subset of C containing 0. If for some µ ∈ ρM1 (A1) ∩ ρM2 (S1(µ)), we have F1(µ) ∈ F b(X,Y), F2(µ) ∈ F b(X,Z),
F3(µ) ∈ F b(Y,Z) then,
(i) if the operators A1 is a generalized weakly M1-demicompact, S1(µ) is a generalized weakly M2-
demicompact and S2(µ) is a generalized weakly M3-demicompact with a generalized set E and R(µ) ∈
F+(X × Y × Z), then

σe1,M (L)\E = [σe1,M1
(A1) ∪ σe1,M2

(S1(µ)) ∪ σe1,M3
(S2(µ))]\E.

(ii) If for t ∈ [0, 1], the operators tA1 is a generalized weakly M1-demicompact, tS1(µ) is a generalized
weakly M2-demicompact and tS2(µ) is a generalized weakly M3-demicompact with a generalized set E and
R(µ) ∈ F (X × Y × Z), then

σei,M (L)\E = [σei,M1
(A1) ∪ σei,M2

(S1(µ)) ∪ σei,M3
(S2(µ))]\E, where i ∈ {4, 5}.

Proof. (i) Since A1 is generalized weakly M1-demicompact, S1(µ) is generalized weakly M2-demicompact
and S2(µ) is generalized weakly M3-demicompact with a generalized set E and R(µ) ∈ F+(X × Y × Z),
it follows from Theorem 3.2 that, the matrix operator L is generalized weakly M-demicompact with a
generalized set E. Hence, from Theorem 2.1, we get λM − L is an upper semi-Fredholm operator for all
λ ∈ C\E.
Let λ ∈ C\E, according to Equation (2.4), we have

λM − L = Gl(µ)V(λ)Gr(µ) − (λ − µ)R(µ).

Using the fact that R(µ) ∈ F+(X × Y × Z), we infer that λM − L ∈ Φ+(X × Y × Z) if, and only if, the
operator Gl(µ)V(λ)Gr(µ) is such too. Now, since Gl(µ) and Gr(µ) are invertible and have bounded inverses,
hence λM − L ∈ Φ+(X × Y × Z) if, and only if, V(λ) ∈ Φ+(X × Y × Z) which is equivalent to λM1 − A1 ∈

Φ+(X), λM2 − S1(µ) ∈ Φ+(Y) and λM3 − S2(µ) ∈ Φ+(Z). Thus, in view of Lemma 3.1, we have

σe1,M (L)\E = [σe1,M1
(A1) ∪ σe1,M2

(S1(µ)) ∪ σe1,M3
(S2(µ))]\E.

(ii) Since tA1 is generalized weakly M1-demicompact, tS1(µ) is generalized weakly M2-demicompact and
tS2(µ) is generalized weakly M3-demicompact for t ∈ [0, 1] andR(µ) ∈ F (X×Y×Z), it follows from Theorem
3.2 that, the matrix operator tL is generalized weakly M-demicompact with a generalized set E for t ∈ [0, 1].
Hence, from Theorem 2.2, we have λM − L ∈ Φ(X × Y × Z) and i(λM − L) = i(λM) for all λ ∈ C\E.
Now, a similar reasoning as (i) allows us to conclude that

σei,M (L)\E = [σei,M1
(A1) ∪ σei,M2

(S1(µ)) ∪ σei,M3
(S2(µ))]\E, where i ∈ {4, 5}.

�

Before moving to the next section, we give an example of generalized weakly S-demicompact matrix
operator:

Example 3.1. Let l2 be a Banach space with its norm. We define the following operators on l2 by

A1x = (x1,
1
2

x2,
1
3

x3, · · · )

A2x = (x2,
1
2

x3,
1
3

x4, · · · )

A3x = (0, x1, 0, x3, 0, x5, · · · )
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A4x = (0, x1, 0,
1
3

x2, 0,
1
5

x3, · · · ).

The operators Ai are compact, for all i = 1, · · · , 4.
Let U and V be the forward and the backward unilateral shifts defined by

V(x1, x2, x3, · · · ) = (x2, x3, x4, · · · ) and U(x1, x2, x3, · · · ) = (0, x1, x2, · · · ).

Now, let (αn)n be a sequence of numbers such that αn > 0 for all n ∈ Z. For x ∈ l2(Z) define the weighted
bilateral shift B ∈ L(l2(Z)) by

B(· · · , x−1, x0, x1, · · · ) = (· · · , α−2x−2, α−1x−1, α0x0, · · · ).

In terms of the standard basis in l2(Z) that is Ben = αnen+1. The operator B is invertible with inverse C
defined by Cen = 1

αn
en−1.

Further, we consider the operator A ∈ L(l2(N)) defined by

A((xn)n≥0) := (λnxn)n≥0),

where (λn)n is a bounded real sequence.
For λ < σp(A), the operator Ã((xn)n≥0) := ( xn

λn−λ
)n≥0 is invertible with inverse (A − λI).

Let the operator T : l2 → l2 be the backward weighted shift defined by

Te0 = 0 and Ten+1 = τnen n ≥ 0,

where {en}
∞

n=0 is the canonical orthonormal basis of l2 and the weight sequence {τn}
∞

n=0 is given by

{
1
2
,

1
24 ,

1
2
,

1
216 ,

1
2
,

1
24 ,

1
2
,

1
264 ,

1
2
,

1
24 , · · · },

then T is quasinilpotent and hence Riesz operator.
Now, we introduce the following matrix operators defined on X × X × X, where X = l2(Z).

L =

 ÃT A1 A2
A3 U 0
A4 0 V

 and M =

 Ã 0 0
0 B 0
0 0 C


Let λ ∈ C, we write

λM−L = Aλ − B,

whereAλ =

 λÃ − ÃT 0 0
0 λB −U 0
0 0 λC − V

 and B =

 0 A1 A2
A3 0 0
A4 0 0

 .
Since T is a Riesz operator, we infer that λI−T ∈ Φ+(X) for all λ ∈ C\{0}which implies that Ã(λI−T) ∈ Φ+(X)
for all λ ∈ C\{0}.
Now, since U and V are Fredholm operators, it follows that U and V are upper semi-Fredholm operators.
Thus, we obtain λB − U ∈ Φ+(X) and λC − V ∈ Φ+(X) for all λ ∈ C. Then, Aλ is an upper semi-Fredholm
operator, for all λ ∈ C\{0}.
Consequently, in view of Theorem 2.1, we infer that U is a generalized weakly B-demicompact, ÃT is a
generalized weakly Ã-demicompact and V is a generalized weakly C-demicompact operators with a gen-
eralized set E = {0}.
Consequently, taking into account the fact thatB ∈ K (X×X×X) and by applying Theorem 3.2, we conclude
that L is a generalized weaklyM-demicompact operator with a generalized set E = {0}.
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4. Generalized weak M-demicompactness for block operators matrices by means of measure of non-
strict-singularity

We recall the following result which describes the closure of the operator L0.

Theorem 4.1. Under assumptions (H1)-(H12), the operator L0 is closable if and only if S2(µ) is closable for
some µ ∈ ρM1 (A1) ∩ ρM2 (S1(µ)). In this case the closure L of L0 is given by

L = µM +Gl(µ)


A1 − µM1 0 0

0 S1(µ) − µM2 0
0 0 S2(µ) − µM3

Gr(µ).

For n ∈N, let

In(X) =
{
K ∈ L(X) satisfying 1((KB)n) < 1 for all B ∈ L(X)

}
,

where 1(.) is a measure of non-strict-singularity, given in (2.1). We have the following inclusion

S(X) ⊂ In(X).

Theorem 4.2. [19] Let A ∈ Φ(X), then for all K ∈ In(X), we have A + K ∈ Φ(X) and i(A + K) = i(A).
Remark 4.1.

(i) If K ∈ In(X) and A ∈ L(X), then KA ∈ In(X).

(ii) If K ∈ In(X) and S ∈ S(X), then K + S ∈ In(X).

Let 1(.) be a measure of non-strict-singularity, given in (2.1).

Lemma 4.1. For all bounded operator

T =

 T1 T2 T3
T4 T5 T6
T7 T8 T9

 ,
on X × Y × Z, we consider

G(T ) = max
(
1(T1) + 1(T2) + 1(T3), 1(T4) + 1(T5) + 1(T6), 1(T7) + 1(T8) + 1(T9)

)
.

Then G defines a measure of non-strict-singularity on the space X × Y × Z.

Proof. In the first step, we will check that G is a semi-norm on X × Y × Z.

(i) Let T =

 T1 T2 T3
T4 T5 T6
T7 T8 T9

 and S =

 S1 S2 S3
S4 S5 S6
S7 S8 S9

 ∈ L(X × Y × Z).
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Then, we get

G(T + S) = max{1(T1 + S1) + 1(T2 + S2) + 1(T3 + S3);
1(T4 + S4) + 1(T5 + S5) + 1(T6 + S6);
1(T7 + S7) + 1(T8 + S8) + 1(T9 + S9)}

≤ max{1(T1) + 1(S1) + 1(T2) + 1(S2) + 1(T3) + 1(S3);
1(T4) + 1(S4) + 1(T5) + 1(S5) + 1(T6) + 1(S6);
1(T7) + 1(S7) + 1(T8) + 1(S8) + 1(T9) + 1(S9)}

≤ max{1(T1) + 1(T2) + 1(T3) + 1(S1) + 1(S2) + 1(S3);
1(T4) + 1(T5) + 1(T6) + 1(S4) + 1(S5) + 1(S6);
1(T7) + 1(T8) + 1(T9) + 1(S7) + 1(S8) + 1(S9)}

≤ max{1(T1) + 1(T2) + 1(T3); 1(T4) + 1(T5) + 1(T6); 1(T7) + 1(T8) + 1(T9)}
+ max{1(S1) + 1(S2) + 1(S3); 1(S4) + 1(S5) + 1(S6); 1(S7) + 1(S8) + 1(S9)}.

Hence, we conclude that
G(T + S) ≤ G(T ) + G(S).

(ii) Let λ ∈ C and T =

 T1 T2 T3
T4 T5 T6
T7 T8 T9


G(λT ) = max{1(λT1) + 1(λT2) + 1(λT3); 1(λT4) + 1(λT5) + 1(λT6);

1(λT7) + 1(λT8) + 1(λT9)}
= max{|λ|[1(T1) + 1(T2) + 1(T3)]; |λ|[1(T4) + 1(T5) + 1(T6)];
|λ|[1(T7) + 1(T8) + 1(T9)]}

= |λ|max{1(T1) + 1(T2) + 1(T3); 1(T4) + 1(T5) + 1(T6); 1(T7) + 1(T8) + 1(T9)}
= |λ|G(T ).

So, Combining together (i) and (ii), we get G is a semi-norm.
Furthermore, we have G(T ) = 0 if, and only if,

max{1(T1) + 1(T2) + 1(T3); 1(T4) + 1(T5) + 1(T6); 1(T7) + 1(T8) + 1(T9)} = 0,

which equivalent to

1(T1) + 1(T2) + 1(T3) = 0, 1(T4) + 1(T5) + 1(T6) = 0 and 1(T7) + 1(T8) + 1(T9) = 0.

Thus, we obtain 1(Ti) = 0 for all i ∈ {1, · · · 9}. As 1 is a measure of non-strict-singularity, then it yields from
the fact that 1(Ti) = 0, that Ti are strictly singular operators on their respective spaces for all 1 ≤ i ≤ 9.
Hence, we conclude from Proposition 2.1, that T is strictly singular operator on X × Y × Z. Consequently,
we get G(T ) = 0 if, and only if, T is strictly singular operator.
As a conclusion, we have G is a measure of non-strict-singularity on X × Y × Z. �

In all that follows we will make the following assumption

(A) :


1(LG̃i(µ)HG̃ j(µ)K) < 1

36 1(Fi(µ)HF j(µ)K) < 1
36

1(LG̃i(µ)HF j(µ)K) < 1
36 1(Fi(µ)HG̃ j(µ)K) < 1

36

for some µ ∈ ρM1 (A1) and all bounded operators L, H and K,

where i, j ∈ {1, 2, 3}.

Remark 4.2.
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(i) Note that if G̃i(µ) and F j(µ) are strictly singular operators, then hypothesis (A) is satisfied.
(ii) If the hypothesis

1(Fi(µ)HG̃ j(µ)K) <
1

36
. (4.1)

holds for all bounded operators H and K, then Fi(µ)G̃ j(µ) is strictly singular. Indeed, since Equation
(4.1) is valid for all bounded operators H and K,we can consider K = nIZ,n ∈N∗ (resp. IY) and H = IY
(resp. IX), we obtain

1(Fi(µ)G̃ j(µ)) <
1

36n
.

So,
1
(
Fi(µ)G̃ j(µ)

)
= 0

and this implies that Fi(µ)G̃ j(µ) is strictly singular.

Theorem 4.3. Let the matrix operator L0 satisfy conditions (H1)-(H12) and the matrix operator M ∈

L(X × Y × Z) with the representation (3.1) such that Mi are compact operators, for all i ∈ {4, · · · , 9}. Assume
that the hypothesis (A) is satisfied. Let µ ∈ ρM1 (A1) ∩ ρM2 (S1(µ)) and E be a finite subset of C containing 0.
If the operators tA1 is generalized weakly M1-demicompact, tS1(µ) is generalized weakly M2-demicompact
and tS2(µ) is generalized weakly M3-demicompact for all t ∈ [0, 1] with a generalized set E, then L is a
generalized weakly M-demicompact operator.

Proof. Let µ ∈ ρM1 (A1)∩ ρM2 (S1(µ)) be such that hypothesis (A) is satisfied and set λ be a complex number.
It follows from Equation (2.4) that

λM − L = Gl(µ)V(λ)Gr(µ) − (λ − µ)R(µ),

where

R(µ) :=

 0 M1G̃1(µ) −M4 M1G̃2(µ) −M5

F1(µ)M1 −M6 F1(µ)M1G̃1(µ) U(µ)
F2(µ)M1 −M8 W(µ) T(µ)

 .
Let

K =

 K1 K2 K3
K4 K5 K6
K7 K8 K9

 ,
be a bounded operator on X × Y × Z. Then

 0 M1G̃1(µ) M1G̃2(µ)
F1(µ)M1 0 M2G̃3(µ)
F2(µ)M1 F3(µ)M2 0

K


2

=

 a1 a2 a3
a4 a5 a6
a7 a8 a9

 ,

where



a1 = (M1G̃1(µ)K4 + M1G̃2(µ)K7)2 + [M1G̃1(µ)K5F1(µ)M1K1 + M1G̃1(µ)K5M2G̃3(µ)K7

+M1G̃2(µ)K8F1(µ)M1K1 + M1G̃2(µ)K8M2G̃3(µ)K7] + [M1G̃1(µ)K6F2(µ)M1K1

+M1G̃1(µ)K6F3(µ)M2K4 + M1G̃2(µ)K9F2(µ)M1K1 + M1G̃2(µ)K9F3(µ)M2K4]
a4 = [F1(µ)M1K1M1G̃1(µ)K4 + F1(µ)M1K1M1G̃2(µ)K7 + M2G̃3(µ)K7M1G̃1(µ)K4

+M2G̃3(µ)K7M1G̃2(µ)K7] + [F1(µ)M1K2F1(µ)M1K1 + F1(µ)M1K2M2G̃3(µ)K7

+M2G̃3(µ)K8F1(µ)M1K1 + M2G̃3(µ)K8M2G̃3(µ)K7] + [F1(µ)M1K3F2(µ)M1K1

+F1(µ)M1K3F3(µ)M2K4 + M2G̃3(µ)K9F2(µ)M1K1 + M2G̃3(µ)K9F3(µ)M2K4]
a7 = [F2(µ)M1K1M1G̃1(µ)K4 + F2(µ)M1K1M1G̃2(µ)K7 + F3(µ)M2K4M1G̃1(µ)K4

+F3(µ)M2K4M1G̃2(µ)K7] + [F2(µ)M1K2F1(µ)M1K1 + F2(µ)M1K2M2G̃3(µ)K7

+F3(µ)M2K5F1(µ)M1K1 + F3(µ)M2K5M2G̃3(µ)K7] + [F2(µ)M1K3F2(µ)M1K1
+F2(µ)M1K3F3(µ)M2K4 + F3(µ)M2K6F2(µ)M1K1 + F3(µ)M2K6F3(µ)M2K4]
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a2 = [M1G̃1(µ)K4M1G̃1(µ)K1 + M1G̃1(µ)K4M1G̃2(µ)K8 + M1G̃2(µ)K7M1G̃1(µ)K1

+M1G̃2(µ)K7M1G̃2(µ)K8] + [M1G̃1(µ)K5F1(µ)M1K2 + M1G̃1(µ)K5M2G̃3(µ)K8

+M1G̃2(µ)K8F1(µ)M1K2 + M1G̃2(µ)K8M2G̃3(µ)K8] + [M1G̃1(µ)K6F2(µ)M1K2

+M1G̃1(µ)K6F3(µ)M2K5 + M1G̃2(µ)K9F2(µ)M1K2 + M1G̃2(µ)K9F3(µ)M2K5]
a5 = [F1(µ)M1K1M1G̃1(µ)K1 + F1(µ)M1K1M1G̃2(µ)K8 + M2G̃3(µ)K7M1G̃1(µ)K1

+M2G̃3(µ)K7M1G̃2(µ)K8] + (F1(µ)M1K2 + M2G̃3(µ)K8)2 + [F1(µ)M1K3F2(µ)M1K2

+F1(µ)M1K3F3(µ)M2K5 + M2G̃3(µ)K9F2(µ)M1K2 + M2G̃3(µ)K9F3(µ)M2K5]
a8 = [F2(µ)M1K1M1G̃1(µ)K1 + F2(µ)M1K1M1G̃2(µ)K8 + F3(µ)M2K4M1G̃1(µ)K1

+F3(µ)M2K4M1G̃2(µ)K8] + [F2(µ)M1K2F1(µ)M1K2 + F2(µ)M1K2M2G̃3(µ)K8

+F3(µ)M2K5F1(µ)M1K2 + F3(µ)M2K5M2G̃3(µ)K8] + [F2(µ)M1K3F2(µ)M1K2
+F2(µ)M1K3F3(µ)M2K5 + F3(µ)M2K6F2(µ)M1K2 + F3(µ)M2K6F3(µ)M2K5]

a3 = [M1G̃1(µ)K4M1G̃1(µ)K6 + M1G̃1(µ)K4M1G̃2(µ)K9 + M1G̃2(µ)K7M1G̃1(µ)K6

+M1G̃2(µ)K7M1G̃2(µ)K9] + [M1G̃1(µ)K5F1(µ)M1K3 + M1G̃1(µ)K5M2G̃3(µ)K9

+M1G̃2(µ)K8F1(µ)M1K3 + M1G̃2(µ)K8M2G̃3(µ)K9] + [M1G̃1(µ)K6F2(µ)M1K3

+M1G̃1(µ)K6F3(µ)M2K6 + M1G̃2(µ)K9F2(µ)M1K3 + M1G̃2(µ)K9F3(µ)M2K6]
a6 = [F1(µ)M1K1M1G̃1(µ)K6 + F1(µ)M1K1M1G̃2(µ)K9 + M2G̃3(µ)K7M1G̃1(µ)K6

+M2G̃3(µ)K7M1G̃2(µ)K9] + [F1(µ)M1K2F1(µ)M1K3 + F1(µ)M1K2M2G̃3(µ)K9

+M2G̃3(µ)K8F1(µ)M1K3 + M2G̃3(µ)K8M2G̃3(µ)K9] + [F1(µ)M1K3F2(µ)M1K3

+F1(µ)M1K3F3(µ)M2K6 + M2G̃3(µ)K9F2(µ)M1K3 + M2G̃3(µ)K9F3(µ)M2K6]
a9 = [F2(µ)M1K1M1G̃1(µ)K6 + F2(µ)M1K1M1G̃2(µ)K9 + F3(µ)M2K4M1G̃1(µ)K6

+F3(µ)M2K4M1G̃2(µ)K9] + [F2(µ)M1K2F1(µ)M1K3 + F2(µ)M1K2M2G̃3(µ)K9

+F3(µ)M2K5F1(µ)M1K3 + F3(µ)M2K5M2G̃3(µ)K9] + (F2(µ)M1K3 + F3(µ)M2K6)2

It follows from hypothesis (A) and Lemma 4.1 that

G

(λ − µ)2


 0 M1G̃1(µ) M1G̃2(µ)

F1(µ)M1 0 M2G̃3(µ)
F2(µ)M1 F3(µ)M2 0

K


2 < 1.

Which implies that, the operator

(λ − µ)

 0 M1G̃1(µ) M1G̃2(µ)
F1(µ)M1 0 M2G̃3(µ)
F2(µ)M1 F3(µ)M2 0

 ∈ I2(X × Y × Z).

Then, we can deduce from Remark 4.1 (ii) and the facts that Fi(µ)G̃ j(µ) is strictly singular and Mi are
compacts for all i ∈ {4, · · · , 9}, that

(λ − µ)R(µ) ∈ I2(X × Y × Z).

Since tA1 is a generalized weakly M1-demicompact operator, tS1(µ) is a generalized weakly M2-demicompact
operator and tS2(µ) is a generalized weakly M3-demicompact operator with a generalized set E, we infer
from Theorem 2.2, that λM1 − A1 ∈ Φ(X), λM2 − S1(µ) ∈ Φ(Y) and λM3 − S2(µ) ∈ Φ(Z) for all λ ∈ C\E.
Now, when applying Lemma 6.6.1 in [12], we get V(λ) ∈ Φ(X × Y × Z) for all λ ∈ C\E. Furthermore, we
observe that the operators Gr(µ) and Gl(µ) are bounded and have bounded inverses. Hence, the operator
Gl(µ)V(λ)Gr(µ) ∈ Φ(X × Y × Z) for all λ ∈ C\E. Now, if we use Equation (2.4) and apply Theorem 4.2, we
conclude that λM − L ∈ Φ(X × Y × Z) for all λ ∈ C\E, which implies that λM − L ∈ Φ+(X × Y × Z) for all
λ ∈ C\E. So, by Theorem 2.1, we deduce that L is generalized weakly M-demicompact. �
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