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Abstract. Let f be a transcendental meromorphic function defined in the complex plane C and k ∈N. We
consider the value distribution of the differential polynomial f q0 ( f (k))qk , where q0(≥ 2), qk(≥ 1) are integers.

We obtain a quantitative estimation of the characteristic function T(r, f ) in terms of N
(
r, 1

f q0 ( f (k))qk−1

)
.

Our result generalizes the results obtained by Xu et al. (Math. Inequal. Appl., Vol. 14, PP. 93-100, 2011);
Karmakar and Sahoo (Results Math., Vol. 73, 2018) for a particular class of transcendental meromorphic
functions.

1. Introduction

Throughout this paper, we assume that the readers are familiar with the standard notations of Nevan-
linna theory ([3]). Also, we assume that f is a transcendental meromorphic function defined in the complex
plane C. It will be convenient to let that E denote any set of positive real numbers of finite linear (Lebesgue)
measure, not necessarily same at each occurrence. For any non-constant meromorphic function f , we
denote by S(r, f ) any quantity satisfying

S(r, f ) = o(T(r, f )) as r→∞, r < E.

Definition 1.1. Let f be a non-constant meromorphic function. A meromorphic function a(z)(. 0,∞) is called a
“small function” with respect to f if T(r, a(z)) = S(r, f ).

Definition 1.2. Let f be non-constant meromorphic function defined in the complex plane C, and k be a positive
integer. We say

M[ f ] = ( f )q0 ( f ′)q1 . . . ( f (k))qk

is a differential monomial generated by f , where q0, q1, . . . , qk are non-negative integers.
In this context, the terms µ := q0 + q1 + . . .+ qk and µ∗ := q1 + 2q2 + . . .+ kqk are known as the degree and weight

of the differential monomial respectively.
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Definition 1.3. ([14]) Let a ∈ C ∪ {∞}. For a positive integer k, we denote

i) by Nk)
(
r, a; f

)
the counting function of a-points of f with multiplicity ≤ k,

ii) by N(k
(
r, a; f

)
the counting function of a-points of f with multiplicity ≥ k,

Similarly, the reduced counting functions Nk)(r, a; f ) and N(k(r, a; f ) are defined.

Definition 1.4. ([8]) For a positive integer k, we denote Nk(r, 0; f ) the counting function of zeros of f , where a zero
of f with multiplicity q is counted q times if q ≤ k, and is counted k times if q > k.

In 1959, Hayman proved the following theorem:

Theorem 1.1. ([4]) If f is a transcendental meromorphic function and n ≥ 3, then f n f ′ assumes all finite values
except possibly zero infinitely often.

Moreover, Hayman ([4]) conjectured that the Theorem 1.1 remains valid for the cases n = 1, 2. In 1979,
Mues ([10]) confirmed the Hayman’s Conjecture for n = 2 and Chen and Fang ([2]) ensured the conjecture
for n = 1 in 1995.

In 1992, Q. Zhang ([15]) gave the quantitative version of Mues’s result as follows:

Theorem 1.2. ([15]) For a transcendental meromorphic function f , the following inequality holds :

T(r, f ) ≤ 6N
(
r,

1
f 2 f ′ − 1

)
+ S(r, f ).

In ([13]), Theorem 1.2 was improved by Xu and Yi as

Theorem 1.3. ([13]) Let f be a transcendental meromorphic function and φ(z)(. 0) be a small function, then

T(r, f ) ≤ 6N
(
r,

1
φ f 2 f ′ − 1

)
+ S(r, f ).

Also, Huang and Gu ([5]) extended Theorem 1.2 by replacing f ′ by f (k), where k(≥ 1) is an integer.

Theorem 1.4. ([5]) Let f be a transcendental meromorphic function and k be a positive integer. Then

T(r, f ) ≤ 6N
(
r,

1
f 2 f (k) − 1

)
+ S(r, f ).

A natural question was raised whether the above inequality still holds if the counting function in Theorem
1.4 is replaced by the corresponding reduced counting function. In this direction, in 2009, Xu, Yi and Zhang
([11]) proved the following theorem:

Theorem 1.5. ([11]) Let f be a transcendental meromorphic function, and k(≥ 1) be a positive integer. If N1(r, 0; f ) =
S(r, f ), then

T(r, f ) ≤ 2N
(
r,

1
f 2 f (k) − 1

)
+ S(r, f ).

Later, in 2011, removing the restrictions on zeros of f , Xu, Yi and Zhang ([12]) proved the following theorem:

Theorem 1.6. Let f be a transcendental meromorphic function, and k(≥ 1) be a positive integer. Then

T(r, f ) ≤MN
(
r,

1
f 2 f (k) − 1

)
+ S(r, f ),

where M is 6 if k = 1, or k ≥ 3 and M = 10 if k = 2.

Recently, Karmakar and Sahoo([7]) further improved the Theorem 1.6 and obtained the following result:
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Theorem 1.7. ([7]) Let f be a transcendental meromorphic function, and n(≥ 2), k(≥ 1) be any integers, then

T(r, f ) ≤
6

2n − 3
N
(
r,

1
f n f (k) − 1

)
+ S(r, f ).

From the above discussions the following question is obvious:

Question 1.1. Is it possible to replace f n f (k), where n(≥ 2), k(≥ 1) be any integers, in the above theorem by
( f )q0 ( f (k))qk , where q0(≥ 2), qk(≥ 1) are integers?

The aim of this paper is to answer above question by giving some restriction on the poles of f .

2. Main Results

Theorem 2.1. Let f be a transcendental meromorphic function such that it has no simple pole. Also, let q0(≥ 2), qk(≥
1) are (k ∈N) integers. Then

T(r, f ) ≤
6

2q0 − 3
N

(
r,

1
( f )q0 ( f (k))qk − 1

)
+ S(r, f ).

Corollary 2.1. Clearly, Theorem 2.1 generalise Theorem 1.7 for transcendental meromorphic function which has no
simple pole.

Remark 2.1. Is it possible to remove the condition that “ f has no simple pole” when qk ≥ 2?

3. Lemmas

For a transcendental meromorphic function f , we define

M[ f ] := ( f )q0 ( f ′)q1 . . . ( f (k))qk .

In this paper, we assume that q0(≥ 1) and qk(≥ 1).

Lemma 3.1. For a non constant meromorphic function 1, we obtain

N
(
r,
1′

1

)
−N

(
r,
1

1′

)
= N(r, 1) + N

(
r,

1
1

)
−N

(
r,

1
1′

)
.

Proof. The proof is same as the formula (12) of ([6]).

Lemma 3.2. Let f be a transcendental meromorphic function and M[ f ] be a differential monomial in f , then

T
(
r,M[ f ]

)
= O(T(r, f )) and S

(
r,M[ f ]

)
= S(r, f ).

Proof. The proof is similar to the proof of the Lemma 2.4 of ([9]).

Lemma 3.3. ([14]) Let f be a transcendental meromorphic function defined in the complex plane C. Then

lim
r→∞

T(r, f )
log r

= ∞.

Lemma 3.4. Let M[ f ] be differential monomial generated by a transcendental meromorphic function f . Then M[ f ]
is not identically constant.
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Proof. Here (
1
f

)µ
=

(
f ′

f

)q1
(

f ′′

f

)q2

. . .

(
f (k)

f

)qk 1
M[ f ]

.

Thus by the first fundamental theorem and lemma of logarithmic derivative, we have

µT(r, f )

≤

k∑
i=1

qiN
(
r,
(

f (i)

f

))
+ T(r,M[ f ]) + S(r, f )

≤

k∑
i=1

iqi

{
N(r, 0; f ) + N(r,∞; f )

}
+ T(r,M[ f ]) + S(r, f )

≤

k∑
i=1

iqi
{
N(r, 0; M[ f ]) + N(r,∞; M[ f ])

}
+ T(r,M[ f ]) + S(r, f )

≤ (2µ∗ + 1)T(r,M[ f ]) + S(r, f ), (3.1)

Since f is a transcendental meromorphic function, so by Lemma 3.3 and inequality (3.1), M[ f ] must be not
identically constant.

Lemma 3.5. Let f be a transcendental meromorphic function and M[ f ] be a differential monomial, given by M[ f ] =
( f )q0 ( f ′)q1 · · · ( f (k))qk , where q0(≥ 2), q1, q2, · · · , qk (≥ 1) are k(≥ 1) non negative integers. Let 1(z) := M[ f ] − 1,

h(z) :=
M′[ f ]
f q0−1 , and

F(z) := 2
(
1′(z)
1(z)

)2

+ 3
(
1′(z)
1(z)

)′
− 2

(h′(z)
h(z)

)′
+

(h′(z)
h(z)

)2

− 4
(
1′(z)h′(z)
1(z)h(z)

)
. (3.2)

Then F . 0.

Proof. On contrary, let us assume that F ≡ 0. Now,

M′[ f ] = 1′ = f q0−1h. (3.3)

Thus

N(r, 0; f ) ≤ N(r, 0; 1′). (3.4)

Claim 1: First we claim that 1(z) , 0.
Proof of Claim 1:
If z1 is a zero of 1 of multiplicity l (l ≥ 1), then 1(z1) = M[ f ](z1)− 1 = 0. Thus f (z1) , 0,∞. Now, we consider
two cases :
Case -1.1 l ≥ 2.

In this case, z1 is a zero of h of order l−1. Using Laurent series expansion of F about z1, one can see that z1
is a pole of F of order 2 if the coefficient of (z−z1)−2 in F is non zero, i.e., if (2l2−3l+(l−1)2+2(l−1)−4l(l−1)) , 0
for all l, i.e., the polynomial −l2 + l − 1 has no real solution, which is true by the given condition. Thus z1 is
a pole of F, which contradicts the fact that F ≡ 0. Thus on our assumption F ≡ 0, 1(z) , 0.
Case -1.2 l = 1.

The equation (3.3) yields that h(z1) , 0. In this case, the coefficient of (z − z1)−2 in F is (−1). Thus z = z1
is a pole of F of order 2, which contradicts the fact that F ≡ 0.
Hence the claim is true, i.e., 1 has no zero.

Claim 2: Next we claim that h(z) , 0.
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Proof of Claim 2:
Let z2 be a zero of h of order m. Thus from equation (3.3), M′[ f ](z2) = 0, i.e., 1′(z2) = 0. Hence 1(z2) , ∞.
Also, by Claim 1, 1(z2) , 0. Now, we consider two cases :
Case -2.1 m ≥ 2.

If m ≥ 2, then z2 is the zero of h′(z) of order (m − 1). So by Laurent series expansion, one can see that
the coefficient of (z − z2)−2 in F is (m2 + 2m), which is non zero. Thus z = z2 is a pole of F of order 2, which
contradicts the fact that F ≡ 0.
Case -2.2 m = 1.

If m = 1, then the coefficient of (z − z2)−2 in F is 3, which again contradicts the fact that F ≡ 0.
Hence Claim 2 is true.

Claim 3: All zeros of f (z) are simple.
Proof of Claim 3:
If z3 be a zero of f of order ≥ 2, then by definition of h, h(z3) = 0, which contradicts the Claim 2. Thus the
Claim 3 is true.

Now, we define another function as φ(z) =
h(z)
1(z)

. Then

1′

1
= φ f q0−1, (3.5)

and

h′

h
= φ f q0−1 +

φ′

φ
. (3.6)

Clearly φ . 0, otherwise
1′

1
≡ 0, which contradicts Lemma 3.4.

Claim 4: φ(z) is an entire function.
Proof of Claim 4:
As 1 and h has no zero, so poles of φ comes from the poles of h. Thus poles of φ comes from the poles of f .
Again, zeros of φ comes from the poles of 1, i.e., from poles of f .

Let z4 be a pole of f of order t. Then z4 is a pole of 1 of order tµ+µ∗ and pole of h of order tµ+µ∗+1−t(q0−1).
Thus z4 is a pole of φ of order 1 − t(q0 − 1) if 1 − t(q0 − 1) > 0 and z4 is a zero of φ of order t(q0 − 1) − 1 if
t(q0 − 1) − 1 > 0.

As q0 ≥ 2, so φ is an entire function. Also, if q0 = 2, then zeros of φ occur only at multiple poles of f and
if q0 > 2, then zeros of φ occur at only poles of f .

Next, in view of Lemma 3.4, we can write

1
f µ

=
1 + 1

f µ
−
1′

f µ
1

1′
. (3.7)

and

µ

q0 − 1
T(r, φ) =

µ

q0 − 1
m(r, φ) =

µ

q0 − 1
m
(
r,
1′

1

1
f q0−1

)
(3.8)

≤ m
(
r,

1
f µ

)
+ S(r, f ).
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Thus using Lemma 3.1, equation (3.7) and inequality (3.8), (3.4), we have

µ

q0 − 1
T(r, φ) =

µ

q0 − 1
m(r, φ)

≤ m
(
r,
1

1′

)
+ S(r, f )

≤ N
(
r,
1′

1

)
−N

(
r,
1

1′

)
+ S(r, f )

≤ N(r, 1) + N
(
r,

1
1

)
−N

(
r,

1
1′

)
+ S(r, f )

≤ N(r, f ) −N
(
r,

1
f

)
+ S(r, f )

Again, using (3.7), we have

µ ·m
(
r,

1
f

)
≤ N(r, f ) −N

(
r,

1
f

)
+ S(r, f )

i.e., µT(r, f ) ≤ N(r, f ) + (µ − 1)N
(
r,

1
f

)
+ S(r, f )

i.e., m(r, f ) + (µ − 1)m
(
r,

1
f

)
≤ S(r, f ).

Hence,

m(r, f ) = m
(
r,

1
f

)
= S(r, f ), (3.9)

T(r, φ) = S(r, f ). (3.10)

Next, we consider two cases :
Case-1 Assume q0 > 2.
If z4 is a pole of f of order t, then z4 is a zero of φ of order t(q0 − 1) − 1. As t(q0 − 1) − 1 ≥ 2t − 1 ≥ t, so

N(r, f ) ≤ N(r, 0, φ) (3.11)

Combining (3.9),(3.10) and (3.11), we get

T(r, f ) = S(r, f ), (3.12)

which is absurd as f is a non constant transcendental meromorphic function. Thus our assumption is
wrong. Hence F . 0.
Case-2 Next, we assume that q0 = 2.
Substituting (3.5) and (3.6) in (3.2) and using the fact that F ≡ 0, we obtain

f 2φ2 +
[
2
(φ′
φ

)′
−

(φ′
φ

)2]
+ fφ′ − f ′φ ≡ 0. (3.13)

From Lemma (3.4), it is clear that φ . 0. If z5 is the zero of f , then φ(z5) , 0,∞. Thus proceeding similarly
as in Lemma 3 of ([5]), we can write

f (i)(z5) =
li1(z5)
φ(z5)

, (3.14)

where li1(z) are the differential monomials in
φ′

φ
for i = 1, 2, · · · , k.
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Since 1(z5) = −1 and h(z5) = q0

(
( f ′)q1+1( f ′′)q2 · · · ( f (k))qk

)
(z5), so,

φ(z5) = −q0

(
( f ′)q1+1( f ′′)q2 · · · ( f (k))qk

)
(z5). (3.15)

Thus using (3.15) and (3.14), we have

φ(z5) = −q0

( (l11)q1+1(l21)q2 · · · (lk1)qk

(φ)q1+q2+···+qk+1

)
(z5). (3.16)

Next we define
G := φq1+q2+···+qk+2 + q0 (l11)q1+1(l21)q2 · · · (lk1)qk .

If G . 0, then
N(r, 0; f ) = N(r, 0; f ) ≤ N(r, 0; G) ≤ O(T(r, φ)) + O(1) = S(r, f ).

Thus T(r, f ) = T(r, 1
f ) + O(1) = S(r, f ), a contradiction as f is non constant transcendental meromorphic

function.
If G ≡ 0, then

φq1+q2+···+qk+2 = −q0 (l11)q1+1(l21)q2 · · · (lk1)qk .

Thus by lemma of logarithmic derivative, T(r, φ) = m(r, φ) = S(r, φ), i.e., φ is a polynomial or a constant (as
φ is an entire function).

Now, proceeding similarly as in Lemma 3 of ([5]), one can show that f is rational, which is impossible.
Hence the proof.

Lemma 3.6. ([8]) Let f be a transcendental meromorphic function and α = α(z)(. 0,∞) be a small function of f . If
ψ = α( f )n( f (k))p, where n(≥ 0), p(≥ 1), k(≥ 1) are integers, then for any small function a = a(z)(. 0,∞) of ψ,

(p + n)T(r, f ) ≤ N(r,∞; f ) + N(r, 0; f ) + pNk(r, 0; f ) + N(r, a;ψ) + S(r, f ).

4. Proof of the Theorem

Proof. [Proof of Theorem 2.1] We define

1(z) := ( f )q0 ( f (k))qk − 1,

where q0(≥ 2), qk (≥ 1) (k ∈N) are non negative integers, and h(z) :=
1′

f q0−1 . Also,

F(z) = 2
(
1′(z)
1(z)

)2

+ 3
(
1′(z)
1(z)

)′
− 2

(h′(z)
h(z)

)′
+

(h′(z)
h(z)

)2

− 4
(
1′(z)h′(z)
1(z)h(z)

)
, (4.1)

Clearly, F(z) . 0, and f has no simple pole. Next we define another function as

β := q0( f ′)( f (k))qk + qk f ( f (k))qk−1 f (k+1)
− f ( f (k))qk

1′

1
.

Then

f q0−1β = −
1′

1
, (4.2)

and

h = −β1, (4.3)
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and

β2F = β2
{(
1′

1
)′ − (

1′

1
)2
} − 2ββ′(

1′

1
) + (β′)2

− 2(ββ′′ − (β′)2) (4.4)

We note that

i) Equation (4.3) gives that the zeros of h come from the zeros of β or, the zeros of 1.
ii) Equation (4.2) gives that the multiple poles of f with multiplicity p(≥ 2) are the zeros of β with

multiplicity (q0 − 1)p − 1.
iii) If z0 is a zero of 1, then it can not be a pole of f . Thus from equation (4.2), it is clear that z0 is a simple

pole of β.
iv) From (iii) and equation (4.4) gives that the poles of β2F only come from the zeros of 1. Moreover, poles

of β2F have multiplicity atmost 4. Thus

N(r, β2F) ≤ 4N(r,
1
1

). (4.5)

Since m(r,F) = S(r, f ) and m(r, β) = S(r, f ), therefore m(r, β2F) = S(r, f ). Thus

T(r, β2F) ≤ 4N(r,
1
1

) + S(r, f ). (4.6)

Let z0 be a zero of f of multiplicity q(≥ k + 1). Then equation (4.2) gives that it is a zero of β of order atleast
qk(q−k)+ (q−1). Therefore it is a zero of β2F of order at least 2(qk(q−k)+ (q−1))−2 = (2q−2)+2qk(q−k)−2 ≥
(2q − 2). Thus

2N(r,
1
f

) − 2N(r,
1
f

) ≤ N(r,
1
β2F

) ≤ T(r, β2F) + O(1) ≤ 4N(r,
1
1

) + S(r, f ). (4.7)

Again, from Lemma 3.6, we have

(q0 + qk)T(r, f ) ≤ N(r,∞; f ) + N(r, 0; f ) + qkNk(r, 0; f ) + N(r,
1
1

) + S(r, f ). (4.8)

Combining twice of (4.8) and (4.7), we obtain

2(q0 + qk)T(r, f ) + 2N(r,
1
f

) − 2N(r,
1
f

)

≤ 2N(r,∞; f ) + 2N(r, 0; f ) + 2qkNk(r, 0; f ) + 6N(r,
1
1

) + S(r, f ).

Since f has no simple pole, so we have

2(q0 + qk)T(r, f ) ≤ 2N(2(r,∞; f ) + 2N(r, 0; f ) + 2qkNk(r, 0; f ) + 6N(r,
1
1

) + S(r, f ). (4.9)

i.e.,

(2q0 − 3)T(r, f ) + m(r, f ) + N(r, f ) + (2 + 2qk)m(r,
1
f

) + (2 + 2qk)N(r,
1
f

) (4.10)

≤ 2N(2(r,∞; f ) + 2N(r, 0; f ) + 2qkNk(r, 0; f ) + 6N(r,
1
1

) + S(r, f ).

i.e.,

(2q0 − 3)T(r, f ) + N(r, f ) + (2 + 2qk)N(r,
1
f

) (4.11)

≤ 2N(2(r,∞; f ) + 2N(r, 0; f ) + 2qkNk(r, 0; f ) + 6N(r,
1
1

) + S(r, f ).
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i.e.,

(2q0 − 3)T(r, f ) + N(r, f ) ≤ 2N(2(r,∞; f ) + 6N(r,
1
1

) + S(r, f ). (4.12)

Thus

(2q0 − 3)T(r, f ) ≤ 6N(r,
1
1

) + S(r, f ). (4.13)

This completes the proof.
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