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Abstract. Considering an almost product manifold, we get the necessary and sufficient conditions for
Codazzi connections on it. Also, we show that a Codazzi adapted connection on an almost product
manifold, gives two type of Codazzi connections on it’s distributions, and moreover we study the conditions
of holding the converse of this. Finally, we study the Codazzi ( and statistical ) structures for Schouten-Van
Kampen and Vrănceanu connections as two important special cases of adapted connections, and then we
present some important examples of them.

1. Introduction

The notion of non-holonomic manifold as a need for a geometric interpretation of non-holonomic
mechanical systems have introduced independently by Vrănceanu [19] and Horak [13]. Then Bejancu-
Farran in [6] have presented a modern approach to the geometry of non-holonomic manifolds as manifolds
endowed with non-integrable distributions, and extend this study to almost product manifolds. Their
approach is mainly based on adapted linear connections, stressing the important role of Schouten-Van
Kampen and Vrănceanu connections for understanding the geometry of distributions, in general, and the
geometry of non-holonomic manifolds, in particular. When a semi-Riemannian metric is considered on the
manifold, they have compared the intrinsic and induced connections on a semi-Riemannian manifold, and
have got the local structure of the manifold when these connections coincide.

The mathematical scope of information geometry arose in 1945 by C. R. Rao from the idea that using
Fisher information, it is possible to define a Riemannian metric in spaces of probability distributions ([16]).
This powerful branch of mathematics implements the methods of differential geometry to the extent of
probability theory. Information geometry leads us to a geometrical interpretation of probability theory and
statistics and enables us to survey the invariant properties of statistical manifolds. It was realized by the
works of S. Amari that the differential geometric structure of a statistical manifold can be obtained from
divergence functions, giving a Riemannian metric and a pair of affine connections ([1, 2]). As the affine
connections play important roles in information geometry, recently many researchers worked on these
connections (see [4, 10, 14, 18]). Information geometry has many applications in various fields of research.
These applications can be found for example in image processing, physics, computer science and machine
learning (see for instance [7, 17]).
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A statistical manifold is a Riemannian manifold such that each of its points is a probability distribution.
Let Θ be an open subset of Rn. If S is a set of probability density functions on a sample space Ω with
parameter θ = (θ1, . . . , θn) such that

S =

{
p(x;θ) :

∫
Ω

p(x;θ) = 1, p(x;θ) > 0, θ ∈ Θ ⊆ Rn
}
,

then S is called a statistical model. The semi-definite Fisher information matrix 1(θ) = (1i j(θ)) is defined on
a statistical model S by

1i j(θ) :=
∫

Ω

∂ilθ∂ jlθp(x;θ)dx = Ep

[
∂ilθ∂ jlθ

]
,

where lθ := log p(x;θ), ∂i = ∂
∂θi and Ep[ f ] is the expectation of f (x) with respect to p(x;θ). Equipping S to

this metric, S is called an info-manifold or a statistical manifold.
In Section 2, we recall the known concepts on lift objects on tangent bundle of a Riemannian manifold.

Also, we present the known concepts on statistical manifolds. In Section 3, considering adapted linear
connections on an almost product manifold, we obtain the necessary and sufficient conditions such that
these connections reduce to the Codazzi connections. Also, we present an example of these connections on
an almost product manifold. Then we show that from a Codazzi connection on an almost product structure
(M,D,D′), we can construct two Codazzi connections onD andD′. Also, we show that this result is holds
for statistical connections, whenD andD′ are involutive distributions. Moreover, we study the conditions
that the converse of this result is hold. Then end of this section is depended to the intrinsic connections on
the distributions of an almost product structure (M,D,D′) and constructing a unique statistical connection
on M by using them. Section 4 is contain two important adapted connections on an almost product structure,
namely, Schouten-Van Kampen and Vrănceanu connections. Then we study the Codazzi ( and statistical )
conditions for these connections. Finally, using the Sasaki and horizontal lift metrics on the tangent bundle
of a Riemannian manifold, we introduce some Codazzi connections on it and we study the Codazzi and
statistical conditions for the Schouten-Van Kampen and Vrănceanu connections induced by them.

2. Preliminaries

Let (M, 1) be a Riemannian manifold with the unique Levi-Civita connection
1

∇. Considering the tangent
bundle (TM, π,M), we putV(x,y) = Ker(dπ(x,y)) as the vertical subspace of T(x,y)TM at the point (x, y). Indeed,
V(x,y) = T(x,y)TxM. A horizontal subspace is any choice ofH such that

T(x,y)TM = H(x,y) ⊕V(x,y), (1)

holds. As V = Ker(dπ), thus dπ : H(x,y) −→ TxM is a vector space isomorphism. The fiber H(x,y) is called
the horizontal subspace to TM at (x, y). If the splitting (1) is hold, then the horizontal lift of a tangent vector
Xx ∈ TxM, is the unique vector Xh

x ∈ H(x,y) such that dπ(Xh
x) = Xx and its vertical lift is the unique one

Xv
x ∈ V(x,y) such that Xv

x(d f ) = Xx( f ) for all f ∈ C∞(M).
Let (x,U) be a local chart on M by x = (x1, · · · , xn) where xi’s belong to C∞(M). If we consider xi

◦ π and
denote it again by xi, defining

yi(X) = X(xi) = dxi(X), i ∈ {1, · · · ,n}, X ∈ X(M),

one can make a local chart (x1, · · · , xn, y1, · · · , yn) : π−1(U) −→ R2n on TM. Moreover, it can be verified that
if X = Xi ∂

∂xi , then

Xv = Xi ∂

∂yi , Xh = Xi ∂

∂xi − X jyk
1

Γi
jk
∂

∂yi ,
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where
1

Γi
jk’s are Christoffel symbols of the Levi-Civita connection

1

∇. If
1

R denotes the Riemann curvature

tensor of
1

∇, then

[Xv,Yv] = 0, [Xh,Yv] = (
1

∇X Y)v, [Xh,Yh] = [X,Y]h
− (
1

R (X,Y)y)v, (2)

for any X,Y,Z ∈ X(M) and any point (x, y) ∈ TM. The Sasaki metric 1S on the tangent bundle TM is a natural
lift of the metric 1 given by

1S(Xh,Yh)(x,y) = 1x(X,Y), 1S(Xv,Yh)(x,y) = 0, 1S(Xv,Yv)(x,y) = 1x(X,Y). (3)

Also, the horizontal lift metric 1h on the tangent bundle TM is a natural lift of the metric 1 given by

1h(Xh,Yh)(x,y) = 1h(Xv,Yv)(x,y) = 0, 1h(Xv,Yh)(x,y) = 1x(X,Y). (4)

If { ∂∂xi |(x,y),
∂
∂yi |(x,y)}

n
i=1 is the natural basis of T(x,y)TM, thenH(x,y) could be spanned by { δδxi |(x,y)}

n
i=1, where

δ

δxi |(x,y) =
∂

∂xi |(x,y) − yk
1

Γ
j
ki (x)

∂

∂y j |(x,y).

So, its dual basis is {dxi, δyi
}
n
i=1, where δyi = dyi + yk

1

Γi
k j (x)dx j. In continue, to simplify notation, we write

∂i, δi and ∂ī instead of ∂
∂xi , δ

δxi and ∂
∂yi , respectively.

2.1. Statistical connections on Riemannian manifolds
A linear connection ∇ on Riemannian manifold (M, 1) is called Codazzi connection if the cubic tensor field

C = ∇1 is totally symmetric, namely the Codazzi equations hold:

(∇X1)(Y,Z) = (∇Y1)(Z,X) (= (∇Z1)(X,Y)),∀X,Y,Z ∈ X(M).

An statistical manifold is a data (M, 1,∇) where 1 is a Riemannian metric on manifold M and ∇ is a symmetric
Codazzi connection.

In the local coordinate, C has the following form

C(∂i, ∂ j, ∂k) = ∂i1(∂ j, ∂k) − 1(∇∂i∂ j, ∂k) − 1(∂ j,∇∂i∂k),

and so

Ci jk = ∂i(1 jk) − Γh
ij1kh − Γh

ik1 jh, Ci jk = C jki = Cki j,

where Γh
ik’s are the Christoffel symbols of ∇. Thus for every statistical manifold (M, 1,∇), there exists a

naturally associated totally symmetric covariant tensor field C of degree 3. Conversely, let (M, 1,C) be a
Riemannian manifold with a totally symmetric covariant tensor field C of degree 3. If we define the tensor
field A by

1(A(X)Y,Z) = C(X,Y,Z), (5)

and a linear connection∇ by∇ =
1

∇ −
A
2 , then the triplet (M, 1,∇) becomes a statistical manifold. Thus to equip

a statistical structure (1,∇) is equivalent to equip a pair of structure (1,C) consisting of a semi-Riemannian
1 and a totally symmetric trilinear C.

For a statistical structure (∇, 1) we define the difference tensor field K := K(∇,1)
∈ Γ(TM(1,2)) as

K(X,Y) = ∇XY−
1

∇X Y.



E. Peyghan, C. Arcuş / Filomat 34:13 (2020), 4343–4358 4346

It is easy to check that K is symmetric and moreover,

1(K(X,Y),Z) = 1(Y,K(X,Z)). (6)

Conversely, if there exists a symmetric tensor field K ∈ Γ(TM(1,2)) on a Riemannian manifold (M, 1) such

that satisfies in the above equation, then (∇ =
1

∇ +K, 1) becomes a statistical structure on M (see [11, 12] for
more details). It is remarkable that considering K = −A

2 , two above directions are the same.

Let ∇ be a linear connection on (M, 1). The linear connection
∗

∇ given by

X1(Y,Z) = 1(∇XY,Z) + 1(Y,
∗

∇XZ), ∀X,Y,Z ∈ Γ(TM), (7)

is called the dual connection of ∇ with respect to 1. It is known that if ∇ is a Codazzi (statistical) connection on

M, then
∗

∇ is a Codazzi (statistical) connection on M, too (see [3], for more details).

2.2. Adapted connections on almost product manifolds

We consider on M two complementary distributionsD andD′, that is, TM has the decomposition

TM = D⊕D′. (8)

Denote by Q and Q′ the projection morphisms of TM onD andD′, respectively. Then we have

Q2 = Q, Q′2 = Q′, QQ′ = Q′Q = 0, Q + Q′ = IdM.

Also, defining the (1, 1)-tensor field F = Q − Q′, it is easy to see that F2 = IdM, i.e., F is an almost product
structure on M. For this reason the triple (M,D,D′) is called an almost product manifold. It is known that [6]

Γ(D) = {X ∈ TTM|FX = X}, Γ(D′) = {X ∈ TTM|FX = −X}.

LetD be an n-distribution on an (n + p)- dimensional manifold M. A linear connection ∇ on M is said to be
adapted toD if

∇XU ∈ Γ(D), ∀X ∈ Γ(TM), U ∈ Γ(D).

Now, ifD′ is a p-distribution on M complementary toD, then (M,D,D′) is an almost product manifold as
we have seen in the above. D andD′ are called the structural and transversal distributions, respectively.

A linear connection ∇ on an almost product manifold (M,D,D′) is said to be an adapted connection if it is
adapted to both distributionsD andD′. Thus ∇ is adapted if and only if ∇XQY ∈ Γ(D) and ∇XQ′Y ∈ Γ(D′),
for all X,Y ∈ Γ(TM).

Next, we suppose that D and D′ are locally represented on a coordinate neighbourhood U ⊂ M by
vector fields {Ei} and {Eα}, respectively. Then we call {EA} = {Ei,Eα}, A ∈ {1, · · · ,n + p}, a non-holonomic frame
field onU. An adapted connection ∇ on M is locally given by∇E j Ei = Γk

i jEk, ∇EαEi = Γk
iαEk,

∇E j Eα = Γ
β
α jEβ, ∇EγEα = Γ

β
αγEβ,

(9)

with respect to {Ei,Eα}. Thus we can denote by (Γk
iA,Γ

β
αA) an adapted connection ∇ on (M,D,D′). We putQ[E j,Ei] = Vk

i jEk, Q[Eβ,Eα] = Vk
αβEk,

Q[Eα,Ei] = −Q[Ei,Eα] = Vk
iαEk = −Vk

αiEk,
(10)
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and Q′[E j,Ei] = Vβ
i jEβ, Q′[Eγ,Eα] = Vβ

αγEβ,

Q′[Ei,Eα] = −Q′[Eα,Ei] = Vβ
αiEβ = −Vβ

iαEβ.
(11)

We recall that the torsion tensor field T of the linear connection ∇ is given by

T(X,Y) = ∇XY − ∇YX − [X,Y].

Using the decomposition (8) and the non-holonomic frame field {EA}we have

T(E j,Ei) = Tk
i jEk + Tαi jEα,

T(Eα,Ei) = −T(Ei,Eα) = Tk
iαEk + TβiαEβ = −Tk

αiEk − TβαiEβ,

T(Eγ,Eα) = Tk
αγEk + TβαγEβ,

where
Tk

i j = Γk
i j − Γk

ji − Vk
i j, Tαi j = −Vα

i j,

Tk
iα = −Tk

αi = Γk
iα − Vk

iα, Tβαi = −Tβiα = Γ
β
αi − Vα

i j,

Tk
αβ = Vk

αβ, Tβαγ = Γ
β
αγ − Γ

β
γα − Vβ

αγ.

(12)

From (12) we conclude the following result, easily:

Proposition 2.1. [6] If an adapted connection ∇ on an almost product manifold (M,D,D′) is torsion free, then
distributionsD andD′ are involutive.

Here, we consider an (n + p)-dimensional Riemannian manifold (M, 1) and suppose that (D, 1) is a Rieman-
nian n-distribution on M. Considering the vector bundle

D⊥ = ∪x∈MD⊥x ,

where D⊥x is the complementary orthogonal subspace to Dx in (TxM, 1x), then (D⊥, 1) is a Riemannian p-
distribution on M. Here we denoted by the same symbol 1 the Riemannian metrics induced by 1 onD and
D
⊥. Thus we have

TM = D⊕D⊥. (13)

In what follows we keep the same notations Q and Q′ for the projection morphisms of TM on D and D⊥,
respectively.

Defining

DXQY = ∇XQY, D′XQ′Y = ∇XQ′Y, ∀X,Y ∈ Γ(TM),

easily we can see that D and D′ are linear connections on D and D′, respectively. Conversely, if D and
D′ are two linear connections on D and D′, respectively, then we construct an adapted connection ∇ on
(M,D,D′), by the formula

∇XY = DXQY + D′XQ′Y, ∀X,Y ∈ Γ(TM). (14)

Moreover, the restrictions of ∇X to Γ(D) and Γ(D) are exactly DX and D′X respectively (see [6], for more
details).

Here, we consider the almost product manifold (M,D,D′) and we let D and D′ are linear connections
onD andD′, respectively. We consider the tensor field

D T(X,QY) = DXQY −DQYQX −Q[X,QY], ∀X,Y ∈ Γ(TM), (15)
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and we call it theD′-torsion tensor field of D. Similarly, theD-torsion tensor field of D′ is defined as follows:

D′T(X,Q′Y) = D′XQ′Y −DQ′YQ′X −Q′[X,Q′Y], ∀X,Y ∈ Γ(TM).

It is known that D T and D′T have the following locally expression with respect to {EA}:

D T(E j,Ei) = D Tk
i jEk, D T(Eα,Ei) = D Tk

iαEk,

D′T(Eγ,Eα) = D′T
β
αγEβ, D′T(Ei,Eα) = D′T

β
αiEβ,

whereD Tk
i j = Γk

i j − Γk
ji − Vk

i j, D Tk
iα = Γk

iα − Vk
iα,

D′T
β
αγ = Γ

β
αγ − Γ

β
γα − Vβ

αγ, D′T
β
αi = Γ

β
αi − Vβ

αi.
(16)

From (12) and (16) we obtain the following

Proposition 2.2. [6] Let (M,D,D′) be an almost product manifold such that D and D′ are involutive. Then an
adapted connection ∇ on M is torsion free if and only if D and D′ areD′-torsion free andD-torsion free, respectively.

Let (M,D,D′) be an almost product manifold and ∇ be a linear connection on M. Defining

SV
∇X Y = Q∇XQY + Q′∇XQ′Y, (17)
V
∇X Y = Q∇QXQY + Q′∇Q′XQ′Y + Q[Q′X,QY] + Q′[QX,Q′Y], (18)

for all X,Y ∈ Γ(TM), it is easy to see that these connections are adapted connections on M which are called
the Schouten-Van Kampen connection and the Vrănceanu connection, respectively. If ∇ is locally given by

∇EB EA = FC
ABEC,

then we have
SV
∇= (

SV
Γk

iA ,
SV

Γ
β
αA ) and

V
∇= (

V
Γk

iA ,
V

Γ
β
αA), where

SV

Γk
iA = Fk

iA,
SV

Γ
β
αA = FβαA,

and
V

Γk
i j = Fk

i j,
V

Γk
iα = Vk

iα,
V

Γ
β
αi = V′βαi ,

V

Γ
β
αγ= Fβαγ.

3. Statistical connections on almost product manifolds

Some questions are raised about linear connections on almost product manifolds in the mind. One of
these questions is that if ∇ is an adapted connection on an almost product manifold, is the dual connection
of it adapted? In the below we study this question.

Proposition 3.1. Let (M, 1) b a (n+p)-dimensional Riemannian manifold and (D, 1) be a Riemannian n-distribution
on M. If ∇ is an adapted statistical connection on (M,D,D⊥), then the dual connection of ∇ with respect to 1, given
by (7) is an adapted statistical connection on M.

Proof. From (7) we have

X1(Q′Y,QZ) = 1(∇XQ′Y,QZ) + 1(Q′Y,
∗

∇XQZ),∀X,Y,Z ∈ Γ(TM).

Since Q′Y and QZ are belong to Γ(D⊥) and Γ(D), respectively, then we have 1(Q′Y,QZ) = 0. Also, since

∇XQ′Y ∈ Γ(D⊥), then we have 1(∇XQ′Y,QZ) = 0. Thus the above equation reduces to 1(Q′Y,
∗

∇XQZ) = 0.

This shows that
∗

∇XQZ ∈ Γ(D). Similarly we can deduce that
∗

∇XQZ ∈ Γ(D⊥). So
∗

∇ is an adapted connection
on M.
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The other question is, under what conditions an adapted connection reduces to a Codazzi connection.
Using locally expression is one of the best ways to study these conditions. In below, we present these
conditions and we construct an interesting example in this case.

Proposition 3.2. Let (M,D,D′) be an almost product manifold and 1 be a Riemannian metric on it. Then an adapted
connection ∇ = (Γk

iA,Γ
β
αA) is Codazzi if and only if

Ek1i j − Γr
ik1rj − Γr

jk1ir = Ei1 jk − Γr
ji1rk − Γr

ki1 jr = E j1ki − Γr
k j1ri − Γr

i j1kr, (19)

Eγ1αβ − Γ
µ
αγ1µβ − Γ

µ
βγ1αµ = Eα1βγ − Γ

µ
βα1µγ − Γ

µ
γα1βµ = Eβ1γα − Γ

µ
γβ1µα − Γ

µ
αβ1γµ, (20)

Eα1i j − Γr
iα1rj − Γr

jα1ir = Ei1 jα − Γr
ji1rα − Γ

µ
αi1 jµ = E j1αi − Γ

µ
α j1µi − Γr

i j1αr, (21)

Eα1βi − Γ
µ
βα1µi − Γr

iα1βr = Eβ1iα − Γr
iβ1rα − Γ

µ
αβ1iµ = Ei1αβ − Γ

µ
αi1µβ − Γ

µ
βi1αµ. (22)

Proof. Using the non-holonomic frame field {EA} in

(∇X1)(Y,Z) = (∇Y1)(Z,X) = (∇Z1)(X,Y),

we can conclude the proof.

Corollary 3.3. Let (M,D,D⊥) be an almost product manifold and 1 be a Riemannian metric on it. Then an adapted
connection ∇ = (Γk

iA,Γ
β
αA) is Codazzi if and only if

Ek1i j − Γr
ik1rj − Γr

jk1ir = Ei1 jk − Γr
ji1rk − Γr

ki1 jr = E j1ki − Γr
k j1ri − Γr

i j1kr, (23)

Eγ1αβ − Γ
µ
αγ1µβ − Γ

µ
βγ1αµ = Eα1βγ − Γ

µ
βα1µγ − Γ

µ
γα1βµ = Eβ1γα − Γ

µ
γβ1µα − Γ

µ
αβ1γµ, (24)

Eα1i j − Γr
iα1rj − Γr

jα1ir = 0, (25)

Ei1αβ − Γ
µ
αi1µβ − Γ

µ
βi1αµ = 0. (26)

Example 3.4. Let (R4, 1) be the 4-dimensional Euclidean space with 1 given by 1(x, y) =
∑4

i=1 xiyi. We define the
open submanifold M of R4 by

M = {(x1, x2, x3, x4) ∈ R4
|2x3 − (x1)2 > 0},

where (x1, x2, x3, x4) is a rectangular coordinate system on R4. Then on the Riemannian manifold (M, 1) we consider
the distributionsD andD⊥ spanned by

{X1 =
∂
∂x1

+ L
∂
∂x2

+ x1
∂
∂x3

, X2 =
∂
∂x4

+ x1
∂
∂x2
− L

∂
∂x3
},

{X1̄ =
∂
∂x2
− L

∂
∂x1
− x1

∂
∂x4

, X2̄ =
∂
∂x3
− x1

∂
∂x1

+ L
∂
∂x4
},

respectively, where L =
√

2x3 − (x1)2. It is easy to see that D and D⊥ are complementary orthogonal Riemannian
distributions on (M, 1). Moreover, none of them is involutive, so they are not integrable. Also, easily results that
{X1,X2} is an orthogonal basis in Γ(D) and {X1̄,X2̄} is an orthogonal basis in Γ(D⊥). Moreover we have

1(X1,X1) = 1(X2,X2) = 1(X1̄,X1̄) = 1(X2̄,X2̄) = H,

where H = 1 + 2x3, which is non-zero on M (see [6]). Let ∇ = (Γk
iA,Γ

k̄
īA

), A ∈ { j, j̄}, i, j, k = 1, 2, be an adapted
connection on M. Using Corollary 3.3 we deduce that ∇ is a Codazzi linear connection on (M, 1) if and only ifH(Γ2

11 + Γ1
21) = 2L + 2HΓ1

12, Γ1
12̄

= H−1, Γ1
11̄

= 0, Γ2
11̄

= −Γ1
21̄
, Γ2

12̄
= −Γ1

22̄
,

H(Γ2̄
1̄1̄

+ Γ1̄
2̄1̄

) = 2 − 2HΓ1̄
1̄2̄
, Γ1̄

1̄2
= −LH−1, Γ1̄

1̄1
= x1H−1, Γ2̄

1̄1
= −Γ1̄

2̄1
, Γ2̄

1̄2
= Γ1̄

2̄2
.

(27)
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So we can obtain several Codazzi adapted connections on (M, 1). For instance, considering (Γk
iA,Γ

k̄
īA

), where all Γk
iA,

Γk̄
īA

are zero expect

Γ2
11 = 2LH−1, Γ1

12̄ = H−1, Γ2̄
1̄1̄ = 2H−1, Γ1̄

1̄2 = −LH−1, Γ1̄
1̄1 = x1H−1,

we have a Codazzi adapted connection (M, 1), which is not compatible with 1.

Here, we focus on Riemannian distributions on M and we like to introduce Codazzi (statistical) connections
on these distributions. We present the following definition:

Definition 3.5. Let (D, 1) be a Riemannian distribution on M,D′ be a complementary distribution toD in TM and
D be a linear connection onD. We say that 1 isD-Codazzi with respect to D (or D isD-Codazzi connection) if

(DQX1)(QY,QZ) = (DQY1)(QZ,QX) = (DQZ1)(QX,QY), ∀X,Y,Z ∈ Γ(TM).

Also, 1 is called D′-parallel with respect to D (or D is D′-compatible with respect to 1) if (DQ′X1)(QY,QZ) = 0.
Moreover, D is calledD-statistical connection, if D isD-Codazzi andD′-torsion free connection.

Let (D, 1) be a Riemannian distribution on M and D be aD-Codazzi connection on M. We define the linear

connection
∗

D on M as follows

X1(QY,QZ) = 1(DXQY,QZ) + 1(QY,
∗

DXQZ), ∀X,Y,Z ∈ Γ(TM), (28)

and we call it the dual connection of D with respect to 1. Now, we study the Codazzi (statistical) conditions
for dual connection of D.

Equation (28) implies

(DQX1)(QY,QZ) = 1(
∗

DQXQY,QZ) − 1(DQXQY,QZ).

Similarly we get

(DQY1)(QX,QZ) = 1(
∗

DQYQX,QZ) − 1(DQYQX,QZ).

Since D is aD-Codazzi connection, then two above equations give us

1(
∗

DQXQY −
∗

DQYQX −DQXQY + DQYQX,QZ) = 0, ∀X,Y,Z ∈ Γ(TM).

Applying (15) in the above equation we obtain

1(T ∗

D
(QX,QY) − TD(QX,QY),QZ) = 0, ∀X,Y,Z ∈ Γ(TM),

which gives us

T ∗

D
(QX,QY) = TD(QX,QY), ∀X,Y ∈ Γ(TM). (29)

Here we study theD-Codazzi condition for
∗

D. (28) gives us

(
∗

DQX1)(QY,QZ) = 1(DQXQY,QZ) − 1(
∗

DQXQY,QZ), (30)

and

(
∗

DQY1)(QX,QZ) = 1(DQYQX,QZ) − 1(
∗

DQYQX,QZ). (31)

Applying (29) we conclude that (30) is equal to (31), and so
∗

D is a D-Codazzi condition on M. Thus we
have the following



E. Peyghan, C. Arcuş / Filomat 34:13 (2020), 4343–4358 4351

Theorem 3.6. Let (D, 1) be a Riemannian distribution on M andD′ be a complementary distribution toD in TM.
If D is aD-Codazzi connection on M, then the dual connection of D with respect to 1 is aD-Codazzi connection on

M. Moreover theD′-torsion tensor fields of D and
∗

D overD are the same (i.e., T ∗

D
(QX,QY) = TD(QX,QY)).

From the above theorem we can conclude the following

Corollary 3.7. Let (D, 1) be a Riemannian distribution on M andD′ be a complementary distribution toD in TM.
If D is aD-statistical connection on M, then the dual connection of D with respect to 1 is aD-statistical connection
on M.

Here, we study the existence of statistical connections on the distributions of an almost product manifolds.

Theorem 3.8. Let (D, 1) be a Riemannian distribution on M andD′ be a complementary distribution toD in TM.
If C is a totally symmetric (3, 0)-tensor field onD, then there exists a unique linear connection D onD such that D
isD-statistical connection onD with cubic tensor field C.

Proof. We define the differential operator D : Γ(TM) × Γ(D)→ Γ(D) by

21(DQXQY,QZ) = QX(1(QY,QZ)) + QY(1(QZ,QX)) −QZ(1(QX,QY))
+ 1(Q[QX,QY],QZ) − 1(Q[QY,QZ],QX) + 1(Q[QZ,QX],QY) + C(QX,QY)QZ, (32)

and

DQ′XQY = Q[Q′X,QY], (33)

for all X,Y,Z ∈ Γ(TM). It is easy to see that D given by (32) and (33) is a linear connection onD. Using (32)
we get

1(DQXQY −DQYQX,QZ) = 1(Q[QX,QY],QZ), ∀X,Y,Z ∈ Γ(TM),

and so DQXQY = DQYQX + Q[QX,QY]. Thus using (33) we get

DXQY −DQYQX = DQXQY + DQ′YQY −DQYQX
= DQ′XQY + Q[QX,QY]
= Q[Q′X,QY] + Q[QX,QY]
= Q[X,QY],

i.e., D isD′-torsion free. Again, using (32) we obtain

QX(1(QY,QZ)) − 1(DQXQY,QZ) − 1(QY,DQXQZ) = C(QX,QY)QZ,

i.e., D isD-Codazzi connection onDwith cubic tensor field C.

Now, the question arises as to whether a Codazzi (statistical) adapted connection can induces Codazzi
(statistical) connections on its distributions. In the following we answer to this question.

Theorem 3.9. Let (M, 1) be a Riemannian manifold and ∇ be a Codazzi adapted connection on (M,D,D′). Then D
and D′ areD-Codazzi andD′-Codazzi connections, respectively.

Proof. As ∇ is an Codazzi adapted connection on (M,D,D′), then we get

(DQX1)(QY,QZ) = (QX)1(QY,QZ) − 1(DQXQY,QZ) − 1(QY,DQXQZ)
= (QX)1(QY,QZ) − 1(∇QXQY,QZ) − 1(QY,∇QXQZ)
= (∇QX1)(QY,QZ) = (∇QY1)(QZ,QX)
= (DQY1)(QZ,QX). (34)

Thus D is a D-Codazzi connection on D. In the similar way we can conclude that D′ is a D′-Codazzi
connection onD′.
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Using Proposition 2.2 and Theorem 3.9 we can conclude the following

Corollary 3.10. Let (M, 1) be a Riemannian manifold and ∇ be an statistical adapted connection on (M,D,D′) such
thatD andD′ are involutive distributions. Then D and D′ are statistical connection onD andD′, respectively.

In the following theorem, we present the conditions that the converse of Theorem 3.9 holds.

Theorem 3.11. Let (M, 1) be a Riemannian manifold. If 1 isD-Codazzi with respect to D,D⊥-Codazzi with respect
to D⊥,D⊥-parallel with respect to D andD-parallel with respect to D⊥, then the adapted connection ∇ on M defined
by (14) is Codazzi.

Proof. Since 1(QX,Q′Y) = 0, for all X,Y ∈ Γ(TM), then we can obtain the following

(∇X1)(Y,Z) = (DQX1)(QY,QZ) + (D⊥Q′X1)(Q
′Y,Q′Z) + (DQ′X1)(QY,QZ) + (D⊥QX1)(Q

′Y,Q′Z).

Since 1 is D⊥-parallel with respect to D and D-parallel with respect to D⊥, then the third and fourth
sentences in the right side of the above equation are zero and so it reduces to the following

(∇X1)(Y,Z) = (DQX1)(QY,QZ) + (D⊥Q⊥X1)(Q
⊥Y,Q⊥Z).

From the above equation we deduce

(∇X1)(Y,Z) = (∇Y1)(Z,X) = (∇Z1)(X,Y),

because 1 isD-Codazzi with respect to D andD⊥-Codazzi with respect to D⊥.

According to Theorem 3.8 there exists a unique connection D (resp. D⊥ ) on D (resp. D⊥ ) satisfying
the conditions from the theorem with respect to the decomposition (13). We call D and D⊥ the intrinsic
connections onD associated to C andD⊥ associated to C′, respectively.

Theorem 3.12. If (M,D,D′) is an almost product manifold, D is an intrinsic connection onD associated to C and
D⊥ is an intrinsic connection on D⊥ associated to C′, then the adapted connection determined by (D,D⊥) is the

Vrănceanu connection
V
∇ defined by the statistical connection determined with cubic tensor field C + C′ on M.

Proof. We consider the linear connection ∇ defined by

21(∇XY,Z) = X(1(Y,Z)) + Y(1(Z,X)) − Z(1(X,Y))
+ 1([X,Y],Z) − 1([Y,Z],X) + 1([Z,X],Y) + C(QX,QY)QZ + C′(Q′X,Q′Y)Q′Z, (35)

for all X,Y,Z ∈ Γ(TM). Direct calculations imply that ∇ is torsion-free. Moreover, we obtain

(∇X1)(Y,Z) = (∇Y1)(Z,X) = (∇Z1)(X,Y) = C(QX,QY)QZ + C′(Q′X,Q′Y)Q′Z.

Thus ∇ is a Codazzi connection on M and consequently it is a statistical conection on M. Now, using (32)
and (34) we get Q∇QXQY = DQXQY, and so (33) implies

DXQY = Q∇QXQY + Q[Q′X,QY], ∀X,Y ∈ Γ(TM).

In the similar way we obtain

D⊥XQ′Y = Q′∇Q′XQ′Y + Q′[QX,Q′Y], ∀X,Y ∈ Γ(TM).

The proof is complete, using two above equation with together (18).
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4. Statistical structures on Schouten-Van Kampen and Vrănceanu connections

In this section, we study the Codazzi (statistical) conditions for Schouten-Van Kampen and Vrănceanu
connections. Also, we present some interesting examples in these cases.

Theorem 4.1. Let ∇ be a Codazzi connection on (M,D,D′). Then the Schouten-Van Kampen connection
SV
∇

determined by ∇ is Codazzi if and only if

Fγik1γ j + Fγjk1γi = Fγji1γk + Fγki1γ j = Fγkj1γi + Fγi j1γk, (36)

Fr
αγ1rβ + Fr

βγ1rα = Fr
βα1rγ + Fr

γα1rβ = Fr
γβ1rα + Fr

αβ1rγ, (37)

Fγik1γβ + Fr
βk1ir = Fγki1γβ + Fr

βi1kr = Fγiβ1γk + Fγkβ1iγ, (38)

Fr
αk1rβ + Fr

βk1αr = Fr
βα1rk + Fγkα1βγ = Fr

αβ1rk + Fγkβ1αγ. (39)

Proof. It is easy to see that
(∇Ek1)(Ei,E j) = (

SV
∇Ek 1)(Ei,E j) − Fγik1γ j − Fγjk1γi,

(∇Ei1)(E j,Ek) = (
SV
∇Ei 1)(E j,Ek) − Fγji1γk − Fγki1γ j,

(∇E j1)(Ek,Ei) = (
SV
∇E j 1)(Ek,Ei) − Fγkj1γi − Fγi j1γk.

(40)

Since ∇ is a Codazzi, then ∇1 is totally symmetric with respect to {Ei,E j,Ek}. Thus using (40) we deduce that
SV
∇ is totally symmetric with respect to {Ei,E j,Ek} if and only if (36) holds. Also, in the similar way we derive

that
SV
∇ is totally symmetric with respect to {Eα,Eβ,Eγ} if and only if (37) holds. Moreover, it follows that the

totally symmetric property of
SV
∇ with respect {Ei,Ek,Eβ} is equivalent with (38) and the totally symmetric

property of
SV
∇ with respect {Eα,Eβ,Ek} is equivalent with (39).

Corollary 4.2. Let ∇ be a Codazzi connection on (M,D,D⊥). Then the Schouten-Van Kampen connection
SV
∇

determined by ∇ is Codazzi if and only if

Fγik1γβ + Fr
βk1ir = Fγki1γβ + Fr

βi1kr = 0, (41)

Fr
βα1rk + Fγkα1βγ = Fr

αβ1rk + Fγkβ1αγ = 0. (42)

Example 4.3. Let ∇ be a statistical connection on Riemannian manifold (M, 1) and C be the cubic tensor field of ∇
with the coefficients Ci jk. It is easy to check that ∇̃ given by

∇̃δ jδi =
1

Γk
ji δk −

1
2 (yl

1

Rk
jil +1kr

Cir j)∂k̄,

∇̃δ j∂ī = 1
2 (yl

1

Rk
li j −1

kr
Cir j)δk + (

1

Γk
ji −

1
21

kr
Cir j)∂k̄,

∇̃∂ j̄
δi = 1

2 (yl
1

Rk
l ji −1

kr
C jri)δk −

1
21

kr
C jri∂k̄,

∇̃∂ j̄
∂ī = − 1

21
kr
Cir jδk,

(43)

is a Codazzi connection on (TM, 1S) (see [5], for more details). Then the Schouten-Van Kampen connection
SV
∇
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determined by ∇̃ is as follows

SV
∇ δ j δi =

1

Γk
ji δk,

SV
∇ δ j ∂ī = (

1

Γk
ji −

1
21

kr
Cir j)∂k̄,

SV
∇ ∂ j̄

δi = 1
2 (yl

1

Rk
l ji −1

kr
C jri)δk,

SV
∇ ∂ j̄

∂ī = 0.

(44)

Now we study the Codazzi condition for
SV
∇ . Since 1S(δi, ∂ j̄) = 0, then we have VTM = (HTM)⊥. So we must to check

relations (41) and (42), only. As 1S(δi, δ j) = 1S(∂ī, ∂ j̄) = 1i j, then (41) and (42) reduce to the following, respectively:

Fr̄
i j1rk + Fr

k̄ j1ir = Fr̄
ji1rk + Fr

k̄i1rj = 0, (45)

Fr
ī j̄1rk + Fr̄

k j̄1ir = Fr
j̄ī1rk + Fr̄

kī1 jr = 0, (46)

where FC
AB, A,B,C ∈ {i, ī}, are coefficients of ∇̃. Since C is totally symmetric, then it is easy to see that

Fr̄
i j1rk + Fr

k̄ j1ir = Fr̄
ji1rk + Fr

k̄i1rj = Fr
ī j̄1rk + Fr̄

k j̄1ir = Fr
j̄ī1rk + Fr̄

kī1 jr = −Ci jk.

Thus (45) and (46) are hold if and only if Ci jk = 0. Therefore,
SV
∇ is Codazzi connection if and only if ∇ reduces to the

Levi-Civita connection on M.

Example 4.4. Let ∇ be a statistical connection on Riemannian manifold (M, 1) and C be the cubic tensor field of ∇
with the coefficients Ci jk. It is easy to check that ∇̃ given by

∇̃δ jδi = (
1

Γk
ji −

1
2 Kk

i j)δk + yl
1

Rk
l ji ∂k̄,

∇̃δ j∂ī = (
1

Γk
ji −

1
2 Kk

i j)∂k̄,

∇̃∂ j̄
δi = − 1

2 Kk
i j∂k̄,

∇̃∂ j̄
∂ī = 0,

(47)

is a Codazzi connection on (TM, 1h) (see [15], for more details). Then the Schouten-Van Kampen connection
SV
∇

determined by ∇̃ is as follows
SV
∇ δ j δi = (

1

Γk
ji −

1
2 Kk

i j)δk,
SV
∇ δ j ∂ī = (

1

Γk
ji −

1
2 Kk

i j)∂k̄,
SV
∇ ∂ j̄

δi =
SV
∇ ∂ j̄

∂ī = 0.

(48)

Now we study the Codazzi condition for
SV
∇ . Using (4), equations (36)-(39) reduce to the following

Fr̄
ik1rj + Fr̄

jk1ri = Fr̄
ji1rk + Fr̄

ki1rj = Fr̄
k j1ri + Fr̄

i j1rk, (49)

Fr
īk̄1rj + Fr

j̄k̄1ri = Fr
j̄ī1rk + Fr

k̄ī1rj = Fr
k̄ j̄1ri + Fr

ī j̄1rk, (50)

Fr̄
i j̄1rk + Fr̄

k j̄1ir = 0, (51)

Fr
īk1rj + Fr

j̄k1ri = 0. (52)
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It is easy to check that all sides of (49), (50) and (52) are zero, and so these equations are hold. But (51) is equivalent

with Kr
i j1rk + Kr

k j1ir = 0. Using (6), the last equation is equivalent with Kr
i j1rk = 0 or Kr

i j = 0. Thus
SV
∇ is Codazzi

connection if and only if ∇ reduces to the Levi-Civita connection on M. In this case ∇̃ reduces to the Levi-Civita

connection of (TM, 1h), i.e.,
1h

∇.

Theorem 4.5. Let ∇̃ be a linear connection on M and
SV
∇ be the Schouten-Van Kampen connection determined by ∇̃.

If ∇̃ is torsion-free, then
SV
∇ is torsion-free if and only ifD andD′ are involutive and Fk

αi = Fβiα = 0.

Proof. It is easy to see that the local components of the torsion tensor fields T̃ and
SV
T of ∇̃ and Schouten–Van

Kampen with respect to he non– holonomic frame field {EA} are as follow:

T̃k
AB = Fk

AB − Fk
BA − Vk

AB, T̃αAB = FαAB − FαBA − V′αAB, (53)

and 

SV
Tk

i j = Fk
i j − Fk

ji − Vk
i j,

SV
Tαi j = −V′αi j ,

SV
Tk

iα = −
SV
Tk
αi = Fk

iα − Vk
iα,

SV

Tβαi = −
SV

Tβiα = Fβαi − V′βαi ,

SV
Tk
αβ = −Vk

αβ,
SV
Tγαβ = Fγαβ − Fγβα − V′γαβ.

(54)

Since ∇̃ is torsion-free, then we have T̃C
AB = 0. Thus using (53), (54) reduces to

SV

Tk
i j =

SV
Tγαβ = 0,

SV
Tαi j = −V′αi j ,

SV

Tk
iα = −

SV

Tk
αi = Fk

αi,
SV

Tβαi = −
SV

Tβiα = Fβiα,
SV

Tk
αβ = −Vk

αβ. (55)

From the above equation we conclude that
SV
T = 0 if and only if Vα

i j = 0 (i.e.,D is involutive), Vk
αβ = 0 (i.e.,D′

is involutive) and Fk
αi = Fβiα = 0. These complete the proof.

Theorems 4.1 and 4.5 imply the following

Corollary 4.6. Let ∇̃ be a linear connection on M and
SV
∇ be the Schouten-Van Kampen connection determined by ∇̃.

If ∇̃ is statistical connection, then
SV
∇ is statistical connection if and only if D, D′ are involutive, Fk

αi = Fβiα = 0 and
moreover, (36)-(39) are hold.

Example 4.7. We consider the Codazzi connection ∇̃ introduced by Example 4.3. It is easy to check that it is torsion-

free and so it is a statistical connection on (TM, 1S). Now we study the conditions that
SV
∇ can be statistical connection.

Since
SV
∇ is Codazzi connection if and only if∇ reduces to the Levi-Civita connection on M, then according to Corollary

4.6,
SV
∇ is statistical if and only if ∇ reduces to the Levi-Civita connection on M, also HTM and VTM are involutive

and moreover Fk
j̄i

= Fk̄
i j̄

= 0. It is known that VTM is involutive, but HTM is not involutive, unless Rk
i jl = 0, for all

i, j, k, l ∈ {1, · · · ,n}. Indeed, HTM is involutive if and only if M is locally flat. Considering Rk
i jl = 0, from (43) we get

Fk
j̄i

= Fk̄
i j̄

= 0. Thus
SV
∇ is statistical if and only if M is locally flat manifold and ∇ reduces to the Lev-Civita connection

on (M, 1). Note that in this case,
SV
∇ and ∇̃ are the same and they reduce to the Levi-Civita connection of (TM, 1S).
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Example 4.8. Using Corollary 4.6, it is easy to see that
SV
∇ given by Example 4.4 is statistical connection on (TM, 1h)

if and only if ∇ reduces to the locally flat Levi-Civita connection on (M, 1).

Theorem 4.9. Let ∇ be a Codazzi connection on (M,D,D′). Then the Vrănceanu connection
V
∇ determined by ∇ is

Codazzi if and only if

(i) Fγik1γ j + Fγjk1γi = Fγji1γk + Fγki1γ j = Fγkj1γi + Fγi j1γk,

(ii) V′γ
αk1iγ − Fγik1γα − Fr

αk1ir − Fγ
αk1iγ = V′γαi1kγ − Fγki1γα − Fr

αi1kr − Fγαi1kγ

= Vr
kα1ri + Vr

iα1rk − Fr
kα1ri − Fγkα1γi − Fr

iα1rk − Fγiα1kγ,

(iii) V′γ
αk1γβ + V′γ

βk1αγ − Fr
αk1rβ − Fγ

αk1γβ − Fr
βk1αr − Fγ

βk1αγ

= Vr
kα1βr − Fr

βα1rk − Fr
kα1βr − Fγkα1βγ = Vr

kβ1αr − Fr
αβ1rk − Fr

kβ1αr − Fγkβ1αγ,

(v) Fr
αk1rβ + Fr

βk1αr = Fr
βα1rk + Fγkα1βγ = Fr

αβ1rk + Fγkβ1αγ.

Proof. The proof of (i) and (v) are the same of (36) and (39). It is easy to see that
(∇Ek1)(Ei,Eα) = (

V
∇Ek 1)(Ei,Eα) + V′γ

αk1iγ − Fγik1γα − Fr
αk1ir − Fγ

αk1iγ,

(∇Ei1)(Eα,Ek) = (
V
∇Ei 1)(Eα,Ek) + V′γαi1kγ − Fγki1γα − Fr

αi1kr − Fγαi1kγ,

(∇Eα1)(Ek,Ei) = (
V
∇Eα 1)(Ek,Ei) + Vr

kα1ri + Vr
iα1rk − Fr

kα1ri − Fγkα1γi − Fr
iα1rk − Fγiα1kγ.

(56)

Since ∇ is a Codazzi, then ∇1 is totally symmetric with respect to {Ei,Ek,Eα}. Thus using (56) we deduce

that
V
∇ is totally symmetric with respect to {Ei,Ek,Eα} if and only if (ii) holds. Also, in the similar way we

derive that
V
∇ is totally symmetric with respect to {Eα,Eβ,Ek} if and only if (iii) holds.

Corollary 4.10. Let ∇ be a Codazzi connection on (M,D,D⊥). Then the Vrănceanu connection
V
∇ determined by ∇

is Codazzi if and only if

(i) − Fγik1γα − Fr
αk1ir = −Fγki1γα − Fr

αi1kr = Vr
kα1ri + Vr

iα1rk − Fr
kα1ri − Fr

iα1rk,

(ii) V′γ
αk1γβ + V′γ

βk1αγ − Fγ
αk1γβ − Fγ

βk1αγ = −Fr
βα1rk − Fγkα1βγ = −Fr

αβ1rk − Fγkβ1αγ,

(iii) Fr
βα1rk + Fγkα1βγ = Fr

αβ1rk + Fγkβ1αγ = 0.

Example 4.11. Let ∇ be a statistical connection on Riemannian manifold (M, 1), C be the cubic tensor field of ∇ with

the coefficients Ci jk and ∇̃ be the Codazzi connection ∇̃ given by (43) on (TM, 1S). Since Vk
i j̄

= 0 and V′k̄
j̄i

=
1

Γk
ji, then

we have
V

Γk
i j = Fk

i j,
V

Γk
i j̄ = 0,

V

Γk̄
ī j =

1

Γk
i j,

V

Γk̄
ī j̄ = Fk̄

ī j̄,

and so the Vrănceanu connection
V
∇ determined by ∇̃ is as follows

V
∇δ j δi =

1

Γk
ji δk,

V
∇δ j ∂ī =

1

Γk
ji ∂k̄,

V
∇∂ j̄

δi =
V
∇∂ j̄

∂ī = 0.
(57)

Direct calculations give Fr
j̄ī

+ Fr̄
kī
1 jr = −Ci jk. So (iii) of the above corollary is hold if and only if Ci jk = 0, i.e., ∇ reduces

to the Levi-Civita connection on (M, 1). Using it, we get

V′r̄īk1rj + V′r̄j̄k1ir − Fr̄
īk1rj − Fr̄

j̄k1ir =
1

Γr
ik 1rj+

1

Γr
jk 1ir−

1

Γr
ik 1rj−

1

Γr
jk 1ir = 0.
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Similarly the second and third sentences of (ii) of the above corollary are zero, and so (ii) is holds. We have

Fr̄
ik1rj + Fr

j̄k1ir = −
1
2

yl(Rkil j − Rl jki) = 0.

Thus the first sentence of (i) of the above corollary is zero. Similarly, we deduce that the second sentence of it, is zero,
too. Moreover, since Vr

k j̄
= Vr

j̄k
= 0, then the third sentence if it also is zero. Therefore (i) is hold. According to these

explanations we conclude that
V
∇ is statistical connection if and only if ∇ reduces to the Levi-Civita connection.

Example 4.12. Let ∇ be a statistical connection on Riemannian manifold (M, 1), C be the cubic tensor field of ∇
with the coefficients Ci jk and ∇̃ be the Codazzi connection on (TM, 1h) given by Example 4.4. Then the Vrănceanu

connection
V
∇ determined by ∇̃ is as follows

V
∇δ j δi = (

1

Γk
ji −

1
2 Kk

i j)δk,
V
∇δ j ∂ī =

1

Γk
ji ∂k̄,

V
∇∂ j̄

δi =
V
∇∂ j̄

∂ī = 0.

(58)

Now we check the Codazzi conditions for
V
∇. Using (4), (i)-(v) of Theorem 4.9 reduces to the following

Fr̄
ik1rj + Fr̄

jk1ri = Fr̄
ji1rk + Fr̄

ki1rj = Fr̄
k j1ri + Fr̄

i j1rk, (59)

V′ r̄j̄k1ir − Fr̄
j̄k1ir = V′ r̄j̄i1kr − Fr̄

j̄i1kr = −Fr̄
k j̄1ri − Fr̄

i j̄1kr, (60)

Fr
īk1rj + Fr

j̄k1ir = Fr
kī1 jr = Fr

k j̄1ir = 0. (61)

We get

Fr̄
ik1rj + Fr̄

jk1ri = yl(Rlki j + Rlk ji) = 0.

Thus the first sentence of (59) is zero. Similarly we the second and third sentences of (59) are zero and so (59) is holds.
Easily we can see that (61) is holds. We can see that the first and second sentences of (60) are equal to 1

2 Kr
jk, while th

third sentence of is equal to Kr
jk. Thus (60) is holds if and only if Kr

jk = 0, i.e., ∇ reduces to the Levi-Civita connection

on (M, 1). Therefore
V
∇ is statistical if and only if ∇ reduces to the Levi-Civita connection on (M, 1).

Theorem 4.13. Let ∇ be a linear connection on M and
V
∇ be the Vrănceanu connection determined by ∇. If ∇ is

torsion-free, then
V
∇ is torsion-free if and only ifD andD′ are involutive.

Proof. It is easy to see that the local components of the torsion tensor field
V
T of Vrănceanu connection with

respect to he non– holonomic frame field {EA} are as follow:

V
Tk

i j = Fk
i j − Fk

ji − Vk
i j,

V
Tαi j = −V′αi j ,

V
Tk

iα= −
V
Tk
αi = 0,

V

Tβαi = −
V

Tβiα= 0,

V
Tk
αβ= −Vk

αβ,
V
Tγαβ= Fγαβ − Fγβα − V′γαβ.

(62)
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Since ∇ is torsion-free, then we have TC
AB = 0. Thus using (53), (62) reduces to

V

Tk
i j =

V
Tγαβ= 0,

V
Tαi j = −V′αi j ,

V

Tk
iα= −

V

Tk
αi = 0,

V

Tβαi = −
V

Tβiα= 0,
V

Tk
αβ= −Vk

αβ. (63)

From the above equation we conclude that
V
T= 0 if and only if V′αi j = 0 (i.e.,D is involutive), Vk

αβ = 0 (i.e.,D′

is involutive).

Corollary 4.14. Let ∇ be a linear connection on M and
V
∇ be the Vrănceanu connection determined by ∇. If ∇ is

statistical connection, then
V
∇ is statistical connection if and only if D, D′ are involutive and moreover, (i)-(v) of

Theorem 4.9 are hold.

Example 4.15. We consider the statistical connection ∇̃ introduced by Example 4.3 on (TM, 1S). Now we study the

conditions that
V
∇ can be statistical connection. Since

V
∇ is Codazzi linear connection if and only if ∇ reduces to the

Levi-Civita connection, then according to Corollary 4.14,
V
∇ is statistical if and only if HTM and VTM are involutive

and moreover ∇ reduces to the Levi-Civita connection. Thus
V
∇ is statistical if and only if reduces to the flat Lev-Civita

connection on (M, 1). Note that in this case,
V
∇ and ∇̃ are the same and they reduce to the Levi-Civita connection of

(TM, 1S).

Example 4.16. Similar to the above example, it is easy to see that
V
∇ given by Example 4.4 is statistical connection

on (TM, 1h) if and only if ∇ reduces to the locally flat Levi-Civita connection on (M, 1).
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