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Abstract. Considering an almost product manifold, we get the necessary and sufficient conditions for
Codazzi connections on it. Also, we show that a Codazzi adapted connection on an almost product
manifold, gives two type of Codazzi connections on it’s distributions, and moreover we study the conditions
of holding the converse of this. Finally, we study the Codazzi ( and statistical ) structures for Schouten-Van
Kampen and Vranceanu connections as two important special cases of adapted connections, and then we
present some important examples of them.

1. Introduction

The notion of non-holonomic manifold as a need for a geometric interpretation of non-holonomic
mechanical systems have introduced independently by Vranceanu [19] and Horak [13]. Then Bejancu-
Farran in [6] have presented a modern approach to the geometry of non-holonomic manifolds as manifolds
endowed with non-integrable distributions, and extend this study to almost product manifolds. Their
approach is mainly based on adapted linear connections, stressing the important role of Schouten-Van
Kampen and Vrdnceanu connections for understanding the geometry of distributions, in general, and the
geometry of non-holonomic manifolds, in particular. When a semi-Riemannian metric is considered on the
manifold, they have compared the intrinsic and induced connections on a semi-Riemannian manifold, and
have got the local structure of the manifold when these connections coincide.

The mathematical scope of information geometry arose in 1945 by C. R. Rao from the idea that using
Fisher information, it is possible to define a Riemannian metric in spaces of probability distributions ([16]).
This powerful branch of mathematics implements the methods of differential geometry to the extent of
probability theory. Information geometry leads us to a geometrical interpretation of probability theory and
statistics and enables us to survey the invariant properties of statistical manifolds. It was realized by the
works of S. Amari that the differential geometric structure of a statistical manifold can be obtained from
divergence functions, giving a Riemannian metric and a pair of affine connections ([1, 2]). As the affine
connections play important roles in information geometry, recently many researchers worked on these
connections (see [4, 10, 14, 18]). Information geometry has many applications in various fields of research.
These applications can be found for example in image processing, physics, computer science and machine
learning (see for instance [7, 17]).
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A statistical manifold is a Riemannian manifold such that each of its points is a probability distribution.
Let ©® be an open subset of R". If S is a set of probability density functions on a sample space QO with
parameter 0 = (0%, ...,0") such that

5={P(x;9) : fop(x;@)=1, p(x; 0) > 0, Ge®g]R”},

then S is called a statistical model. The semi-definite Fisher information matrix g(6) = (7:j(0)) is defined on
a statistical model S by

gi]-(Q) = f aileajlgp(x,' Q)dx = Ep [81-198]-19] ,
Q

where Ig := logp(x; 0), d; = % and Ep[f] is the expectation of f(x) with respect to p(x; 0). Equipping S to

this metric, S is called an info-manifold or a statistical manifold.

In Section 2, we recall the known concepts on lift objects on tangent bundle of a Riemannian manifold.
Also, we present the known concepts on statistical manifolds. In Section 3, considering adapted linear
connections on an almost product manifold, we obtain the necessary and sufficient conditions such that
these connections reduce to the Codazzi connections. Also, we present an example of these connections on
an almost product manifold. Then we show that from a Codazzi connection on an almost product structure
(M, D, D), we can construct two Codazzi connections on D and 9. Also, we show that this result is holds
for statistical connections, when O and 9 are involutive distributions. Moreover, we study the conditions
that the converse of this result is hold. Then end of this section is depended to the intrinsic connections on
the distributions of an almost product structure (M, D, ©’) and constructing a unique statistical connection
on M by using them. Section 4 is contain two important adapted connections on an almost product structure,
namely, Schouten-Van Kampen and Vranceanu connections. Then we study the Codazzi ( and statistical )
conditions for these connections. Finally, using the Sasaki and horizontal lift metrics on the tangent bundle
of a Riemannian manifold, we introduce some Codazzi connections on it and we study the Codazzi and
statistical conditions for the Schouten-Van Kampen and Vranceanu connections induced by them.

2. Preliminaries

g
Let (M, g) be a Riemannian manifold with the unique Levi-Civita connection V. Considering the tangent
bundle (TM, t, M), we put V() = Ker(dn,)) as the vertical subspace of T(,,,,TM at the point (x, y). Indeed,
V) = Ty TeM. A horizontal subspace is any choice of H such that

Ty TM = Hiy) & Viry), 1)

holds. As V = Ker(dn), thus dm : H(y,) — T:M is a vector space isomorphism. The fiber H( ) is called
the horizontal subspace to TM at (x, y). If the splitting (1) is hold, then the horizontal lift of a tangent vector
X, € TyM, is the unique vector Xﬁ € H,y such that dn(Xﬁ) = X, and its vertical lift is the unique one
X7 € Vixy such that XJ(df) = X,(f) for all f € C*(M).

Let (x, U) be a local chart on M by x = (x!,--- ,x") where x'’s belong to C*(M). If we consider x' o T and
denote it again by x/, defining

Y(X) =X()=dx'(X), ie€fl-,n},  XeXM),

one can make a local chart (x',---, %", y',--- ,y") : n}(U) — R** on TM. Moreover, it can be verified that
if X = X'2,, then

oxi’

.0 0 —
X? = X'—, XM= X — = XIyf Ty,

9
oy Jx oy’
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g g 9
where I" 3’s are Christoffel symbols of the Levi-Civita connection V. If R denotes the Riemann curvature

tensor of %, then
VAU h \v J v h h h g v
[X7Y]=0, [X"Y]=(VxY)’, [X%Y']=[XY]"-(RX YY)y, 2)

forany X, Y, Z € X(M) and any point (x, y) € TM. The Sasaki metric g° on the tangent bundle TM is a natural
lift of the metric g given by

9S(th Yh)(x,y) =g:(X,Y), QS(XUI Yh)(x,y) =0, gs(er Y@y = gx(X, Y). 3)
Also, the horizontal lift metric ¢" on the tangent bundle TM is a natural lift of the metric g given by
7Yy = 7' XYy =0, g"(X Y M)wy) = 9:(XY). “)

If { %I(x,y), %y,-l(x,y)}le is the natural basis of T(y,, TM, then Hy ) could be spanned by {%I(W)}Ll, where

o d i 9
@kx,y) = @km -y Iy, (x)g—yjkx,y)-

So, its dual basis is {dx, 5y'}",, where 6y’ = dy' + * F;q. (x)dx/. In continue, to simplify notation, we write

S, . i 9 b s :
d;, 6; and d; instead of 37, 37 and Pl respectively.

2.1. Statistical connections on Riemannian manifolds

A linear connection V on Riemannian manifold (M, g) is called Codazzi connection if the cubic tensor field
C = Vg is totally symmetric, namely the Codazzi equations hold:

V)Y, 2) = (Vyp)(Z, X) (= (Vz9)(X, Y)), VX, Y, Z € X(M).

An statistical manifold is a data (M, g, V) where g is a Riemannian metric on manifold M and V is a symmetric
Codazzi connection.
In the local coordinate, C has the following form

C(d;, dj,9x) = dig(dj, d) — g(V5,0;,9k) — 9(dj, V5,0k),
and so
Cijx = di(g) — rfl]'gkh ~Thgmn,  Cij=Cji = Cuij,

where l"i?k’s are the Christoffel symbols of V. Thus for every statistical manifold (M, g, V), there exists a
naturally associated totally symmetric covariant tensor field C of degree 3. Conversely, let (M, g,C) be a
Riemannian manifold with a totally symmetric covariant tensor field C of degree 3. If we define the tensor
field A by

9(AX)Y,Z) = C(X, Y, 2), ®)

and a linear connection V by V =% —4, then the triplet (M, g, V) becomes a statistical manifold. Thus to equip
a statistical structure (g, V) is equivalent to equip a pair of structure (g, C) consisting of a semi-Riemannian
g and a totally symmetric trilinear C.

For a statistical structure (V, g) we define the difference tensor field K := K4 € T(TM1?)) as

g
KX, Y) = VxY- Vx Y.
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It is easy to check that K is symmetric and moreover,
9(KX,Y), Z) = g(Y, K(X, Z)). (6)

Conversely, if there exists a symmetric tensor field K € [(TM®?)) on a Riemannian manifold (M, g) such

g
that satisfies in the above equation, then (V =V +K, g) becomes a statistical structure on M (see [11, 12] for
more details). It is remarkable that considering K = —4, two above directions are the same.

Let V be a linear connection on (M, g). The linear connection V given by

Xg(Y,Z) = g(VxY, Z) + g(Y,VxZ), VX,Y,Z e T(TM), 7)

is called the dual connection of V with respect to g. It is known that if V is a Codazzi (statistical) connection on

M, then V is a Codazzi (statistical) connection on M, too (see [3], for more details).

2.2. Adapted connections on almost product manifolds

We consider on M two complementary distributions 9 and 2, that is, TM has the decomposition
TM=Dea9D. 8)

Denote by Q and Q’ the projection morphisms of TM on D and 9, respectively. Then we have

Q*=Q Q%=Q, QU =QQ=0, Q+Q =Idu.

Also, defining the (1, 1)-tensor field F = Q — (', it is easy to see that F?2 = Idy,, i.e., F is an almost product
structure on M. For this reason the triple (M, D, ) is called an almost product manifold. It is known that [6]

I(D) = {X e TTMIFX = X}, T(?) = {X € TTM|FX = —X].

Let O be an n-distribution on an (1 + p)- dimensional manifold M. A linear connection V on M is said to be
adapted to D if

VxU e T(D), ¥YX e TI(TM), UeT(D).

Now, if 9 is a p-distribution on M complementary to D, then (M, D, ©’) is an almost product manifold as
we have seen in the above. O and 9’ are called the structural and transversal distributions, respectively.

A linear connection V on an almost product manifold (M, D, ©’) is said to be an adapted connection if it is
adapted to both distributions 9 and 9. Thus V is adapted if and only if VxQY € I'(D) and VxQ'Y € I'(2),
forall X, Y € T(TM).

Next, we suppose that O and 9 are locally represented on a coordinate neighbourhood U C M by
vector fields {E;} and {E,}, respectively. Then we call {Ex} = {E;, E,}, A € {1, -, n + p}, a non-holonomic frame
field on U. An adapted connection V on M is locally given by

. =Tk . =Tk
{VE E; =TKE,, Vg E=TFE, o)

_ _
Vi,Eo =Th Eg, Ve E,=Th Eg,

with respect to {E;, E,}. Thus we can denote by (1”5.‘ A Ti ,) an adapted connection V on (M, D, D). We put

{Q[E]., E]l =VEE, QIEEdl = VAE, (10)

QIE., Ell =-QIE; E.l = VE Ex = -VX Ey,
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and

25 =0 =3 _ /P , _ B
{Q [EjEl =ViE, QIE, Ed=ViEg, a

QE;Eal =-QEsE]l=V.Es=-VEp.
We recall that the torsion tensor field T of the linear connection V is given by
T(X,Y)=VxY - VyX-[X Y]
Using the decomposition (8) and the non-holonomic frame field {E4} we have
T(E;, E) = Tijk + T¢Ea,
T(Eq, E) = =T(E; Ea) = ThEx + T Eg = =TS Ec = Th By,
T(E,, Eo) = T% Ex + Th Eg,
where
TE =Tk -Tk-VE T¢=-vo
j ijo i

i’ Tij ij’
ko _ k _ Tk k B _ B _ B ¢
TF =-T¢ =T% - V* Tm. = —Tia =I". - Vl.j., (12)

ia ai ﬁza ﬁla, ; 5 ai
ko yk -

Top = Vagr Tay = Tay =Ty = Vi,

From (12) we conclude the following result, easily:

Proposition 2.1. [6] If an adapted connection V on an almost product manifold (M, D, 1Y) is torsion free, then
distributions D and 9 are involutive.

Here, we consider an (n + p)-dimensional Riemannian manifold (M, g) and suppose that (D, g) is a Rieman-
nian n-distribution on M. Considering the vector bundle

DJ_ = UXEMDQJC_/

where Dy is the complementary orthogonal subspace to D, in (TxM, g,), then (D, g) is a Riemannian p-
distribution on M. Here we denoted by the same symbol g the Riemannian metrics induced by g on O and
D+. Thus we have

TM = Do D (13)

In what follows we keep the same notations Q and Q’ for the projection morphisms of TM on D and D+,
respectively.
Defining

DxQY = VxQY, D,Q'Y =VxQ'Y, VX, Y € T(TM),

easily we can see that D and D’ are linear connections on D and 9, respectively. Conversely, if D and
D’ are two linear connections on D and 2, respectively, then we construct an adapted connection V on
(M, D, D), by the formula

VxY = DxQY + D, QY, ¥X,Y € I(TM). (14)

Moreover, the restrictions of Vx to T'(D) and I'(D) are exactly Dx and DY respectively (see [6], for more
details).

Here, we consider the almost product manifold (M, D, D’) and we let D and D’ are linear connections
on D and 7Y, respectively. We consider the tensor field

»T(X,QY) = DxQY — DoyQX — Q[X, QY], VX Y e I(TM), (15)
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and we call it the O'-torsion tensor field of D. Similarly, the D-torsion tensor field of D’ is defined as follows:
L T(X,QY)=DyQY-DoyQ' X -Q'[X,QY], VX YeI(TM).
It is known that , T and ,, T have the following locally expression with respect to {E}:

DT(E]/E ) - Tk Ek/

Dz]

B
o T(Ey, Ed) =, ThEs, , T(E;,E) =, T Eg,

(EDLIE ) D mEk/

D

where

Tk — Fk rk Vk Tk — rk Vk
I T (16)
o Tay =Ty =Tya = Vaw o Toi = T = Ve

From (12) and (16) we obtain the following

Proposition 2.2. [6] Let (M, D, D’) be an almost product manifold such that D and D’ are involutive. Then an
adapted connection V on M is torsion free if and only if D and D’ are 9'-torsion free and D-torsion free, respectively.

Let (M, D, D’) be an almost product manifold and V be a linear connection on M. Defining

Vx Y = QVxQY + Q'VxQ'Y, (17)
Vx Y = QVoxQY + Q'VoxQ'Y + QIQ'X, QY] + Q'[QX, Q'Y], (18)

for all X, Y € I'(TM), it is easy to see that these connections are adapted connections on M which are called
the Schouten-Van Kampen connection and the Vrianceanu connection, respectively. If V is locally given by

Ve,Ea = FS,Ec,

SV sV SV
then we have V= (T%, , l"ﬁ ) and V (FfA,I“{A) where
3%
rf, = Ff rﬁ =F

iA’ aA aA’
and

v
v
rf=v’: 1 =F,

ai’

v
k _ rk k_ k
Fij_Fl.]. r,,=V;

ia’

3. Statistical connections on almost product manifolds

Some questions are raised about linear connections on almost product manifolds in the mind. One of
these questions is that if V is an adapted connection on an almost product manifold, is the dual connection
of it adapted? In the below we study this question.

Proposition 3.1. Let (M, g) b a (n+p)-dimensional Riemannian manifold and (D, g) be a Riemannian n-distribution
on M. If V is an adapted statistical connection on (M, D, D*), then the dual connection of V with respect to g, given
by (7) is an adapted statistical connection on M.

Proof. From (7) we have

Xg9(Q'Y,Q2) = g(VxQ'Y, QZ) + 9(Q'Y, VxQZ), VX, Y, Z € T(TM).
Since Q'Y and QZ are belong to I'(D*) and I'(D), respectively, then we have g(Q'Y, QZ) = 0. Also since
VxQ'Y € F(Z)l), then we have g(VxQ'Y,QZ) = 0. Thus the above equation reduces to g(Q’Y, VXQZ) =0.

This shows that VXQZ € I'(D). Similarly we can deduce that VXQZ eT(DY). So Vi is an adapted connection
onM. O
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The other question is, under what conditions an adapted connection reduces to a Codazzi connection.
Using locally expression is one of the best ways to study these conditions. In below, we present these
conditions and we construct an interesting example in this case.

Proposition 3.2. Let (M, D, D’) be an almost product manifold and g be a Riemannian metric on it. Then an adapted
connection V = (T ,Fi 1) is Codazzi if and only if

iA
Exgij = Tydrj = Uygir = Eigjc = Uygne = Ui = Ejgi = Ti9ri — Tk, (19)
Eygap — Fﬁ),gyﬁ - ng.‘]au = Eagpy — F’ﬁﬂﬂw - Fgagﬁu = Eggya - Fﬁﬁgw - Fiiﬁgw/ (20)
Eafij = Tia9rj = Uioflir = Eifja = Tira = Tyju = Ejfai = Ty ;i = Tjjfar, (21)
Eogpi — Tﬁagm —I9pr = Epgia = Tiggra = Tﬁﬁ%y = Eifap — Thfup rgi%y- (22)

Proof. Using the non-holonomic frame field {E4} in
(Vxg)(Y,Z) = (Vyg)(Z, X) = (Vz9)(X, Y),
we can conclude the proof. [

Corollary 3.3. Let (M, D, D*) be an almost product manifold and g be a Riemannian metric on it. Then an adapted
connection V = (I'¥ ,Fi ) is Codazzi if and only if

Exgij = Uygrj = Uygir = Eig e = Vg = Tyjr = Ejgri = Ty = Tjge, (23)
E,)Gap - rg)/!]uﬁ - TE}.%# = Eagpy — F,Z‘agw - r{;a!]ﬁu = Eggya = F;fﬁ.%a - riﬁ%/#/ (24)
Eagij = Tiy9rj = Tipgir = 0, (25)
Eigap - rzigﬂﬁ - r,?,-gau =0. (26)

Example 3.4. Let (R%, g) be the 4-dimensional Euclidean space with g given by g(x,y) = Y.i, Xiyi. We define the
open submanifold M of R* by

M = {(x1,x2,x3,%s) € R¥*2x3 — (x1)* > 0},

where (x1, X2, X3, X4) is a rectangular coordinate system on R*. Then on the Riemannian manifold (M, g) we consider
the distributions D and D+ spanned by

J d d d d d
{Xl_a_gcl+L8_3c2+xl8_x3' Xz_&__X4+X18_x2_L3__X3}’
0 0 J 0 0 0

— - Ls—-x15—, X5=5—-x15—+L=—
aJC2 8x1 & 8x4 2 8x3 “ axl 8x4
respectively, where L = /2x3 — (x1)2. It is easy to see that D and D+ are complementary orthogonal Riemannian
distributions on (M, g). Moreover, none of them is involutive, so they are not integrable. Also, easily results that
{X1, X2} is an orthogonal basis in T(D) and {Xi, X5} is an orthogonal basis in T (D). Moreover we have

{Xi = 1

9(X1, X1) = 9(X2, Xa) = 9(X3, X1) = 9(X3, X3) = H,

where H = 1 + 2x3, which is non-zero on M (see [6]). Let V = (l"i.‘A, Fi;‘A), A €]}, i,j,k = 1,2, be an adapted

connection on M. Using Corollary 3.3 we deduce that V is a Codazzi linear connection on (M, g) if and only if

2 1 112, 1 -1 1 -1 221, 1 222’ 1 (27)
H(@2, +TL) =2-2HTl, T1 = -IH?, T =xH, T2 = -T1, 12 =1L,

2 1 — 1 1 _ g1 1 _ 2 _ 1 2 _ 1
{H(r11 +T}) =2L+2HTL,, T, =H", I\ =0, I2, =-T., I?,=-T
11 217

12’
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k

So we can obtain several Codazzi adapted connections on (M, g). For instance, considering (I':,, I ), where all FfA,

k
‘ iA
I, are zero expect
2 _ -1 1l _qg1 12 _opg-1 1l _ -1 ol _ .oyl
I, =2LH™, I'y=H", T;;=2H, I, =-LH™, I}, =xH ™,
we have a Codazzi adapted connection (M, g), which is not compatible with g.

Here, we focus on Riemannian distributions on M and we like to introduce Codazzi (statistical) connections
on these distributions. We present the following definition:

Definition 3.5. Let (D, g) be a Riemannian distribution on M, 9 be a complementary distribution to O in TM and
D be a linear connection on D. We say that g is D-Codazzi with respect to D (or D is D-Codazzi connection) if

(Dox(QY, QZ) = (Davg)(QZ, QX) = (Dazg)(QX,QY), VX,Y,Z € I(TM).

Also, g is called 9 -parallel with respect to D (or D is 9¥-compatible with respect to g) if (Do xg)(QY, QZ) = 0.
Moreover, D is called D-statistical connection, if D is D-Codazzi and 9 -torsion free connection.

Let (D, g) be a Riemannian distribution on M and D be a D-Codazzi connection on M. We define the linear

connection D on M as follows
Xg(QY,QZ) = g(DxQY, QZ) + g(QY,DxQZ), VX, Y,Z e T(TM), (28)

and we call it the dual connection of D with respect to g. Now, we study the Codazzi (statistical) conditions
for dual connection of D.
Equation (28) implies

(Dox9)(QY, QZ) = g(DoxQY, QZ) — g(DoxQY, Q7).

Similarly we get

(Doy9)(QX, QZ) = g(DoyQX, QZ) — g(DoyQX, Q7).
Since D is a ©-Codazzi connection, then two above equations give us

7(DaxQY — DoyQX - DoxQY + DoyQX,QZ) =0, VX, Y,Z € I(TM).
Applying (15) in the above equation we obtain

g(Tb(QX/ QY) - TD(QX/ QY)/ QZ) = 0/ VX/ Y/Z € 1—‘('T]\/I)/
which gives us

T (QX,QY) = Tp(QX,QY), VX, Y e T(TM). (29)
Here we study the D-Codazzi condition for 15 (28) gives us

(Daxg)(QY, QZ) = g(DoxQY, QZ) — 9(DoxQY, QZ), (30)
and

(Doyg)(QX, QZ) = §(DoyQX, QZ) - ¢(DoyQX, QZ). (31)

Applying (29) we conclude that (30) is equal to (31), and so D is a D-Codazzi condition on M. Thus we
have the following
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Theorem 3.6. Let (D, g) be a Riemannian distribution on M and O be a complementary distribution to D in TM.
If D is a D-Codazzi connection on M, then the dual connection of D with respect to g is a D-Codazzi connection on
M. Moreover the 9 -torsion tensor fields of D and D over D are the same (i.e., Tb(QX, QY) = Tp(QX, QY)).

From the above theorem we can conclude the following

Corollary 3.7. Let (D, g) be a Riemannian distribution on M and D' be a complementary distribution to D in TM.
If D is a D-statistical connection on M, then the dual connection of D with respect to g is a D-statistical connection
on M.

Here, we study the existence of statistical connections on the distributions of an almost product manifolds.

Theorem 3.8. Let (D, g) be a Riemannian distribution on M and D' be a complementary distribution to D in TM.
If C is a totally symmetric (3, 0)-tensor field on D, then there exists a unique linear connection D on D such that D
is D-statistical connection on D with cubic tensor field C.

Proof. We define the differential operator D : I'(TM) x I'(D) — I'(D) by
29(DoxQY, QZ) = QX(9(QY, Q2)) + QY(9(QZ, QX)) — QZ(9(QX, QY))
+9(QIQX, QY], QZ) - g(QIQY, QZ], QX) + g(QIQZ, QX], QY) + C(QX, QY)QZ, (32)

and

DoxQY = Q[Q'X, QY], (33)

forall X, Y, Z € I'(TM). It is easy to see that D given by (32) and (33) is a linear connection on D. Using (32)
we get

9(DoxQY — DoyQX, QZ) = g(QIQX, QY],QZ), VX, Y,Z e I(TM),
and so DoxQY = DoyQX + Q[QX, QY]. Thus using (33) we get
DxQY — DoyQX = DoxQY + Do yQY — DoyQX
= DoxQY + Q[QX, QY]
= QIQ'X, QY]+ Q[QX, QY]
= Q[X, QY],

i.e., D is 9¥-torsion free. Again, using (32) we obtain

QX(9(QY, Q2)) — g(DoxQY, QZ) — g(QY, DoxQZ) = C(QX, QY)QZ,
i.e., D is D-Codazzi connection on D with cubic tensor field C. O

Now, the question arises as to whether a Codazzi (statistical) adapted connection can induces Codazzi
(statistical) connections on its distributions. In the following we answer to this question.

Theorem 3.9. Let (M, g) be a Riemannian manifold and V be a Codazzi adapted connection on (M, D, D). Then D
and D" are D-Codazzi and 9'-Codazzi connections, respectively.

Proof. AsV is an Codazzi adapted connection on (M, D, D’), then we get

(Doxg)(QY, QZ) = (QX)g(QY, QZ) — g(DoxQY, QZ) — g(QY, DoxQ7)
= (QX)9(QY, QZ) — g(VoxQY, QZ) — 9(QY, VoxQZ)
= (Vox9)(QY, QZ) = (Varg)(QZ, QX)
= (Doy9)(QZ, QX). (34)

Thus D is a D-Codazzi connection on . In the similar way we can conclude that D’ is a 9’-Codazzi
connectionon O'. [
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Using Proposition 2.2 and Theorem 3.9 we can conclude the following

Corollary 3.10. Let (M, g) be a Riemannian manifold and V be an statistical adapted connection on (M, D, D") such
that O and D’ are involutive distributions. Then D and D’ are statistical connection on D and I, respectively.

In the following theorem, we present the conditions that the converse of Theorem 3.9 holds.

Theorem 3.11. Let (M, g) be a Riemannian manifold. If g is D-Codazzi with respect to D, D+-Codazzi with respect
to D+, D*-parallel with respect to D and D-parallel with respect to D*, then the adapted connection V on M defined
by (14) is Codazzi.

Proof. Since g(QX,Q’Y) =0, for all X, Y € I['(TM), then we can obtain the following
(Vxg)(Y, Z) = (Daxg)(QY, QZ) + (D5 x9)(Q"Y, Q'Z) + (Do x9)(QY, QZ) + (D) (Q'Y, Q' Z).

Since g is D*-parallel with respect to D and D-parallel with respect to D+, then the third and fourth
sentences in the right side of the above equation are zero and so it reduces to the following

(Vxg)(¥, Z) = (Doxg)(QY, QZ) + (Dg.x9)(QY, Q*Z).
From the above equation we deduce
(Vxg)(Y, Z) = (Vyg)(Z, X) = (Vzg)(X, Y),

because g is D-Codazzi with respect to D and D+-Codazzi with respect to D*. [J

According to Theorem 3.8 there exists a unique connection D (resp. D* ) on D (resp. D~ ) satisfying
the conditions from the theorem with respect to the decomposition (13). We call D and D+ the intrinsic
connections on D associated to C and D+ associated to C’, respectively.

Theorem 3.12. If (M, D, 9) is an almost product manifold, D is an intrinsic connection on D associated to C and
D+ is an intrinsic connection on D+ associated to C’, then the adapted connection determined by (D, D*) is the

14
Vrinceanu connection V defined by the statistical connection determined with cubic tensor field C + C’ on M.

Proof. We consider the linear connection V defined by

29(VxY, Z) = X(9(Y, 2)) + Y(9(Z, X)) = Z(9(X, Y))
+9([X,Y],2) - g([Y, 2], X) + 9([Z, X], Y) + C(QX, QY)QZ + C'(Q'X, Q'V)Q'Z, (35)

forall X, Y,Z € T(TM). Direct calculations imply that V is torsion-free. Moreover, we obtain
(Vxg) (Y, Z) = (Vyg)(Z, X) = (Vz9)(X, Y) = C(QX,QY)QZ + C'(Q'X, Q'Y)Q' Z.

Thus V is a Codazzi connection on M and consequently it is a statistical conection on M. Now, using (32)
and (34) we get QVoxQY = DgxQY, and so (33) implies

DxQY = QVoxQY + QIQ'X, QY], VX Y e I(TM).
In the similar way we obtain
DyxQY =Q'VoxQY+Q[QX,QY], VX Y eI(TM).

The proof is complete, using two above equation with together (18). O
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4. Statistical structures on Schouten-Van Kampen and Vrianceanu connections

In this section, we study the Codazzi (statistical) conditions for Schouten-Van Kampen and Vranceanu
connections. Also, we present some interesting examples in these cases.

1%
Theorem 4.1. Let V be a Codazzi connection on (M, D,D’). Then the Schouten-Van Kampen connection V

determined by V is Codazzi if and only if

Fi 9y + Fdyi = Figye + Fiigyj = F i + Fig (36)
Foygrp + F gra = Fgory + Flagrp = Flgfra + Foginy, (37)
Fy9ys + Fydir = Fi.ys + Fir = Fiogye + F;:ﬁ.’]iw (38)
Fli9ns + Fyfar = Fpofc + F Ggy = Foggu + Flyfay. (39)

Proof. It is easy to see that

sV N
(Ve)Ei Ej) = (Ve 9(Ei, E)) = Fygyj = Fygyi,

sV y . (40)
(ing)(Ej/ Ey) = (VE,' 9)(E]'/ Ex) - Fﬁgyk - Fkig)’]"

sV
(Ve g)Ek Ei) = (VE, 9)(Ek, Ei) - sz!]yi —F gy

Since V is a Codazzi, then Vg is totally symmetric with respect to {E;, E;, Ex}. Thus using (40) we deduce that
SVV is totally symmetric with respect to {E;, Ej, Ei} if and only if (36) holds. Also, in the similar way we derive
that %/ is totally symmetric with respect to {E,, Eg, E, } if and only if (37) holds. Moreover, it follows that the
totally symmetric property of SVV with respect {E;, Ex, Eg} is equivalent with (38) and the totally symmetric

%
property of V with respect {E,, Eg, E¢} is equivalent with (39). O

1%
Corollary 4.2. Let V be a Codazzi connection on (M, D, D*). Then the Schouten-Van Kampen connection V

determined by V is Codazzi if and only if

cm%’ﬁ + F,gkgir = F;;i%/ﬁ +Figie = 0, (41)
F,gagrk + angﬂr = FZ,sgrk + FZ;;%V =0. (42)

Example 4.3. Let V be a statistical connection on Riemannian manifold (M, g) and C be the cubic tensor field of V
with the coefficients C;j. It is easy to check that V given by

— g 9
V@].é,' :rk]'i Ok — %(yl R’;ﬂ +ger,vr]-)8,-<,

— g p
Vo= 3/ R =97 Cody + T =36 Coph -
Ya]-éi = 3(y' RY; =9 Cini)ox = 39" Cjridk,

V&;5f = _%gerirj(Sk,

sv
is a Codazzi connection on (TM, g°) (see [5], for more details). Then the Schouten-Van Kampen connection V
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determined by V is as follows

sV I

Vs, 0i =I%ji Ok,

il Tk 1k

Ve, 91 = (I%ji =39 Cirj)og,

v 1.1 . k kr
VBJT 6i = E(y lei _9 eri)ékr

(44)

sV
Vo, d; = 0.
1%
Now we study the Codazzi condition for V. Since g°(6;, d;) = 0, then we have VTM = (H TM)*. So we must to check
relations (41) and (42), only. As g°(5;,6;) = g°(d;,9;) = gij, then (41) and (42) reduce to the following, respectively:
F;?]‘grk + F;';]gzr = F;igrk + F;';lgr] =0, (45)

F;]*grk + F]i]'gzr = F;—lgrk + F;;;g]r =0, (46)
where FE}B’ A,B,C e i, i}, are coefficients of V. Since C is totally symmetric, then it is easy to see that

Ffjgrk + F;';]gzr = F;‘grk + F,Elgr] = F;]'grk + F;i]'gzr = F;—igrk + FZ;_’]]r = _Cijk-

sv

Thus (45) and (46) are hold if and only if Cij = 0. Therefore, V is Codazzi connection if and only if V reduces to the
Levi-Civita connection on M.
Example 4.4. Let V be a statistical connection on Riemannian manifold (M, g) and C be the cubic tensor field of V
with the coefficients Cijx. It is easy to check that V given by

— g g
V(S,.(Si = (I‘kﬁ —%Kﬁ‘])ék + yl R;C]l 8;},

_ g

Vs,0; = (T —%K:Fj)ﬁ,;, (47)
V.6 = —%Kfj(?,;,

V05 =0,

sv
is a Codazzi connection on (TM, g") (see [15], for more details). Then the Schouten-Van Kampen connection V
determined by V is as follows
sV g
Vs, 0i = (i —%Kf-(]-)ék,
sV g
Ve, 9; = (i —3K})o%, (48)

£1% SV
Vo, O; =V, d; =0.

sv
Now we study the Codazzi condition for V. Using (4), equations (36)-(39) reduce to the following

Fogrj + F;kg”' = F;z‘!]rk + Fiigrj = Flijgri + Fi?jgrk/ (49)
F%’(grj + F;j(gri = P%grk + F%grj = F%gri + F%grk/ (50)
Ffjfgrk + F}i]’glr =0, (51)

F;kgyj + F;’Tkgn‘ =0. (52)
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It is easy to check that all sides of (49), (50) and (52) are zero, and so these equations are hold. But (51) is equivalent
sV
with K:.'].g,k + K]ngir = 0. Using (6), the last equation is equivalent with K:.'].g,k =0or Kfj = 0. Thus V is Codazzi

connection if and only if V reduces to the Levi-Civita connection on M. In this case V reduces to the Levi-Civita

gh
connection of (TM, g"), i.e., V.

— sy —
Theorem 4.5. Let V be a linear connection on M and V be the Schouten-Van Kampen connection determined by V.

— sv
. . . . . . , . . k _ B _
If V is torsion-free, then V is torsion-free if and only if D and O’ are involutive and F; = F, = 0.

- (7
Proof. Itis easy to see that the local components of the torsion tensor fields T and T of V and Schouten—Van
Kampen with respect to he non— holonomic frame field {E4} are as follow:

Tk _ rk k k  Ta _pa _pa _ yra
TAB - FAB - FBA - VAB' TAB - FAB FBA VAB’ (53)
and
SV sV
k _ Ttk _ 1k _1/k a _ _yra
Ty =F—Fi=Viy T =-Vi
SV SV

™ —_ 70 = _yP (54)
at 14 atl

ai’

SV %
k _ _ Tk _pk _ 1k
Tia - Tai - Fia Vi

i/

sV SV) y ) y
k _ k ) _ 4 ’
Taﬁ - _Vaﬁ’ Taﬁ - Faﬁ - Fﬁa - Vaﬁ'

Since V is torsion-free, then we have ng = 0. Thus using (53), (54) reduces to

svk sv 3% svk SVk B SVﬁ SV‘8 svk §
—_ 7V — — /0 — — — — —
Tij - Taﬁ =0, Tto; - _Vijx’ Tia - Tozi =F Tai - Tia - Fia’ Taﬁ - _Vaﬁ' (55)

ai’

5%
From the above equation we conclude that T= 0 if and only if VZ =0 (i.e., Dis involutive), ny = 0 (e, D

is involutive) and F’; .= Ffa = 0. These complete the proof. [

Theorems 4.1 and 4.5 imply the following

— 1% —
Corollary 4.6. Let V be a linear connection on M and V be the Schouten-Van Kampen connection determined by V.

— %
If V is statistical connection, then V is statistical connection if and only if D, O’ are involutive, F’;i = Fﬁx = 0and
moreover, (36)-(39) are hold.

Example 4.7. We consider the Codazzi connection V introduced by Example 4.3. It is easy to check that it is torsion-
sv
free and so it is a statistical connection on (TM, g°). Now we study the conditions that V can be statistical connection.
sv
Since V is Codazzi connection if and only if V reduces to the Levi-Civita connection on M, then according to Corollary

%
4.6, V is statistical if and only if V reduces to the Levi-Civita connection on M, also HTM and VTM are involutive
and moreover F];’i = Ffj = 0. It is known that VTM is involutive, but HTM is not involutive, unless Rfﬂ =0, for all

i,j,k,1€{l,--- ,n}. Indeed, HTM is involutive if and only if M is locally flat. Considering Rfjl =0, from (43) we get
. sv
F’]Sl, = Fi‘] = 0. Thus V is statistical if and only if M is locally flat manifold and V reduces to the Lev-Civita connection

sV~
on (M, g). Note that in this case, V and V are the same and they reduce to the Levi-Civita connection of (TM, g°).
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sv
Example 4.8. Using Corollary 4.6, it is easy to see that V given by Example 4.4 is statistical connection on (TM, g")
if and only if V reduces to the locally flat Levi-Civita connection on (M, g).

1%
Theorem 4.9. Let V be a Codazzi connection on (M, D, D). Then the Vrinceanu connection V determined by V is
Codazzi if and only if

(@) Fugy; + F;'/k%'i = P}/i%/k + Fgyj = szgw' + Fg;‘grk'
(i1) V/Zkgiy - Fg;cgya - Fygir = FZkgiV = V’Lﬂkr - ingw — Fligr = FZing
= Via8ri + Vi gu = Fi0ri = Fy 9yi = Fio gk = F, iy,
(i) V"3 s + V’Zkgay — Fors = Flpgs = F pcdar = F ;kgm/
= Via8pr = FpaGrk = Fropr = Fio 96y = Vigar = Fugn = Figor = FGay,
(©) Fouop + Fyar = ook + Fy 05y = Fogre + Figfay-
Proof. The proof of (i) and (v) are the same of (36) and (39). It is easy to see that

V V
(Ve)(Ei, Ea) = (Ve, 9)(Ei, Ea) + V') 01y = F}0ya = FyGir = L, Gy,

(Ve Ea E) = (Ve 9)(Ea ER)+ V7 gy~ Elya — Flygie ~ gy, (56)
(Ve 9)(Ex, E) = (Ve, 9)E ED + Vi + Vit = o = Flui = Flufi — Fidiy-
Since V is a Codazzi, then Vg is totally symmetric with respect to {E;, Ei, E,}. Thus using (56) we deduce
that % is totally symmetric with respect to {E;, Ex, E,} if and only if (ii) holds. Also, in the similar way we
derive that % is totally symmetric with respect to {E,, Eg, Ex} if and only if (iii) holds. [

v
Corollary 4.10. Let V be a Codazzi connection on (M, D, D+). Then the Vrinceanu connection V determined by V
is Codazzi if and only if

(i) = Fyya = Fyudir = =Ffya = Frugr = ViaGri + Viogok = Fiogvi = Fipi
(i) Vs + VIZkgay — Foudvs ~ F;;,k%y = ~Faadrc = Fyo 98y = ~Foprk = Fzﬁ%w
(i) Fo gk + Fradpy = Fopgni + F{ﬁgw =0.
Example 4.11. Let V be a statistical connection on Riemannian manifold (M, g), C be the cubic tensor field of V with

~ — g
the coefficients Cij and V be the Codazzi connection V given by (43) on (TM, g°). Since Vf] =0and V]’f =I*};, then
we have

Vk k
Fij:F'

\% Vv 9 V. ~
k _ k _1k .. k _ Tk
G Th=0, If=T%, It=F,

v —
and so the Vrdnceanu connection V determined by V is as follows

|4 gk |4 gk
zb‘j 61’ :1‘—'/ ji 61{/ Véj &Z :r ﬁ af(’ (57)
Va, 6i =V, 9; = 0.

Direct calculations give F% +F.gjr = —Cijk. So (iii) of the above corollary is hold if and only if Cij = 0, i.e., V reduces
to the Levi-Civita connection on (M, g). Using it, we get

] _ i i} g g g g
Vg + V],T,:gir -F.gr— F;fkgir =ik grj*+ T ik gir— Uik grj— T j gir = 0.



E. Peyghan, C. Arcus / Filomat 34:13 (2020), 43434358 4357

Similarly the second and third sentences of (ii) of the above corollary are zero, and so (ii) is holds. We have

. 1
Figrj + Fogir = _Eyl(Rkilj - Rjji) = 0.

Thus the first sentence of (i) of the above corollary is zero. Similarly, we deduce that the second sentence of it, is zero,
too. Moreover, since V]:f = V]Ck = 0, then the third sentence if it also is zero. Therefore (i) is hold. According to these

v
explanations we conclude that V is statistical connection if and only if V reduces to the Levi-Civita connection.

Example 4.12. Let V be a statistical connection on Riemannian manifold (M, g), C be the cubic tensor field of V
with the coefficients Cij and V be the Codazzi connection on (TM, g") given by Example 4.4. Then the Vriinceanu

v —
connection V determined by V is as follows

Vv g
Vs, 0i = (i —%Kfj)ék,

174 9

Vg)] 87 =1”k]~,~ 8,;, (58)

v 14

Vo, o =V, dJ; = 0.

4
Now we check the Codazzi conditions for V. Using (4), (i)-(v) of Theorem 4.9 reduces to the following

Figrj + Fiugri = Fygnc + Fiigvj = Figvi + Fign, (59)
V/]F"kgir - F;kgir = V,%gkr - F%gkr = _F]r;]fgri - F?]Tgkrr (60)
Figrj + Figir = Fagi = Fiagir = 0. (61)

We get
Figrj+ Fyri = Y (Riij + Ryi) = 0.

Thus the first sentence of (59) is zero. Similarly we the second and third sentences of (59) are zero and so (59) is holds.
Easily we can see that (61) is holds. We can see that the first and second sentences of (60) are equal to %K]’.k, while th

third sentence of is equal to K;k. Thus (60) is holds if and only if K;k =0, i.e., V reduces to the Levi-Civita connection

v
on (M, g). Therefore V is statistical if and only if V reduces to the Levi-Civita connection on (M, g).

v
Theorem 4.13. Let V be a linear connection on M and V be the Vrinceanu connection determined by V. If V is

v
torsion-free, then V is torsion-free if and only if D and O are involutive.

v
Proof. 1t is easy to see that the local components of the torsion tensor field T of Vrdnceanu connection with
respect to he non— holonomic frame field {E»} are as follow:

v %
Tk =pk —pk —yk Ta=_ye

ij T i i i i ij’
v % 1% 1%

o4 al al o4
v X k Vy Y Y ry
Th=-VE, Th=F.,—F, -V

ap ™ ap’ ap ™ ap’



E. Peyghan, C. Arcus / Filomat 34:13 (2020), 43434358 4358

Since V is torsion-free, then we have TgB = 0. Thus using (53), (62) reduces to

Vk Vk Vﬁ
Tmz — T i= 0, T

[2% a.

—_77 — a _ r
T} =T,,=0, Tj=-V,

ij’

Vﬁ 1%
— — k _ k
;== T=0, The= -V, (63)

v
From the above equation we conclude that T= 0 if and only if Vl’]“ =0 (i.e, Disinvolutive), V¥ g =0(e, 2
is involutive). [

v
Corollary 4.14. Let V be a linear connection on M and V be the Vrinceanu connection determined by V. If V is

v
statistical connection, then V is statistical connection if and only if D, O are involutive and moreover, (i)-(v) of
Theorem 4.9 are hold.

Example 4.15. We consider the statistical connection V introduced by Example 4.3 on (TM, g°). Now we study the
conditions that % can be statistical connection. Since % is Codazzi linear connection if and only if V reduces to the
Levi-Civita connection, then according to Corollary 4.14, % is statistical if and only if HTM and VTM are involutive
and moreover V reduces to the Levi-Civita connection. Thus % is statistical if and only if reduces to the flat Lev-Civita

%4 —
connection on (M, g). Note that in this case, V and V are the same and they reduce to the Levi-Civita connection of
(TM, g°).

v
Example 4.16. Similar to the above example, it is easy to see that V given by Example 4.4 is statistical connection
on (TM, ¢") if and only if V reduces to the locally flat Levi-Civita connection on (M, g).
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