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Abstract. In this paper we establish Lebesgue-type inequalities for 2π-periodic functions f , which are
defined by generalized Poisson integrals of the functions ϕ from Lp, 1 ≤ p < ∞. In these inequalities
uniform norms of deviations of Fourier sums ‖ f − Sn−1‖C are expressed via best approximations En(ϕ)Lp of
functions ϕ by trigonometric polynomials in the metric of space Lp. We show that obtained estimates are
asymptotically best possible.

1. Introduction

Let Lp, 1 ≤ p < ∞, be the space of 2π–periodic functions f summable to the power p on [0, 2π), in

which the norm is given by the formula ‖ f ‖p =
( 2π∫

0
| f (t)|pdt

) 1
p ; L∞ be the space of measurable and essentially

bounded 2π–periodic functions f with the norm ‖ f ‖∞ = ess sup
t
| f (t)|; C be the space of continuous 2π–

periodic functions f , in which the norm is specified by the equality ‖ f ‖C = max
t
| f (t)|.

Denote by Cα,rβ Lp, α > 0, r > 0, β ∈ R, 1 ≤ p ≤ ∞, the set of all 2π–periodic functions, representable for
all x ∈ R as convolutions of the form (see, e.g., [20, Ch.3, 7-8])

f (x) =
a0

2
+

1
π

π∫
−π

Pα,r,β(x − t)ϕ(t)dt, a0 ∈ R, ϕ ⊥ 1, (1)

where ϕ ∈ Lp and Pα,r,β(t) are the following generated kernels
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Pα,r,β(t) =

∞∑
k=1

e−αkr
cos

(
kt −

βπ

2

)
, α, r > 0, β ∈ R. (2)

The kernels Pα,r,β of the form (2) are called generalized Poisson kernels. For r = 1 and β = 0 the kernels Pα,r,β
are usual Poisson kernels of harmonic functions.

If the functions f and ϕ are related by the equality (1), then the function f in this equality is called
generalized Poisson integral of the function ϕ and is denoted by Jα,r

β (ϕ)( f (·) = Jα,r
β (ϕ, ·)). The function ϕ

in equality (1) is called generalized derivative of the function f and is denoted by f α,rβ (ϕ(·) = f α,rβ (·)).
The set of functions f from Cα,rβ Lp, 1 ≤ p ≤ ∞, such that f α,rβ ∈ Bp, where

Bp =
{
ϕ : ||ϕ||p ≤ 1

}
,

we will denote by Cα,rβ,p.
The sets of generalized Poisson integrals Cα,rβ Lp are closely related with the well–known Gevrey classes

(see, e.g. [21]).
Let τ2n−1 be the space of all trigonometric polynomials of degree at most n− 1 and let En( f )Lp be the best

approximation of the function f ∈ Lp in the metric of space Lp, 1 ≤ p ≤ ∞, by the trigonometric polynomials
tn−1 of degree n − 1, i.e.,

En( f )Lp = inf
tn−1∈τ2n−1

‖ f − tn−1‖p.

Analogously, by En( f )C we denote the best uniform approximation of the function f from C by trigonometric
polynomials of degree n − 1, i.e.,

En( f )C = inf
tn−1∈τ2n−1

‖ f − tn−1‖C.

Let ρn( f ; x) be the following quantity

ρn( f ; x) := f (x) − Sn−1( f ; x), (3)

where Sn−1( f ; ·) are the partial Fourier sums of degree n − 1 of a function f .
One can estimate the norms ‖ρn( f ; ·)‖C via En( f )C by Lebesgue inequalities

‖ρn( f ; ·)‖C ≤ (1 + Ln−1)En( f )C, n ∈N, (4)

where quantites Ln−1 are Lebesgue constants of the Fourier sums of the form

Ln−1 =
1
π

π∫
−π

|Dn−1(t)|dt =
2
π

π
2∫

0

| sin(2n − 1)t|
sin t

dt,

Dn−1(t) :=
1
2

+

∞∑
k=1

cos kt =
sin(n − 1

2 )t

2 sin t
2

.

Fejer [3] established the asymptotic equality for Lebesgue constants Ln

Ln =
4
π2 ln n + O(1), n→∞.

More exact estimates for the differences Ln −
4
π2 ln(n + a), a > 0, as n ∈ N were found in works [1], [2],

[4], [8], [18] and [28].
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In particular, it follows from [20] (see also [8, p.97]) that∣∣∣∣∣Ln−1 −
4
π2 ln n

∣∣∣∣∣ < 1, 271, n ∈N.

Then, the inequality (4) can be written in the form

‖ρn( f ; ·)‖C ≤
( 4
π2 ln n + Rn

)
En( f )C, (5)

where |Rn| < 2, 271.
On the whole space C the inequality(5) is asymptotically exact. At the same there exist subsets of

functions from C and for elements of these subsets the inequality (5) is not exact even by order (see, e.g.,
[24, p. 435]).

In the paper [10] the following estimate was established

‖ρn( f ; ·)‖C ≤
2n−1∑
v=n

Ev( f )C

v − n + 1
, f ∈ C, n→∞,

(here K is some absolute constant) and it was proved that this constant is exact by the order on the classes
C(ε) := { f ∈ C : Ev( f )C ≤ εv, v ∈ N}, where {εv}

∞

v=0 is a sequence of nonnegative numbers, such that εv ↓ 0
as v→∞.

In [6], [7], [14], [22] and [24] the analogs of the Lebesque inequalities for functions f ∈ Cα,rβ Lp have been
found in the case r ∈ (0, 1) and p = ∞, and also in the case r ≥ 1 and 1 ≤ p ≤ ∞, where the estimates for the
deviations ‖ f (·)− Sn−1( f ; ·)‖C are expressed in terms of the best approximations En( f α,rβ )Lp . Namely, in [24] it
was proved that for arbitrary f ∈ Cα,rβ , r ∈ (0, 1), β ∈ R, the following inequality holds

‖ f (·) − Sn−1( f ; ·)‖C ≤
( 4
π2 ln n1−r + O(1)

)
e−αnr

En( f α,rβ )C, (6)

where O(1) is a quantity uniformly bounded with respect to n, β and
f ∈ Cα,rβ C. It was also shown that for any function f ∈ Cα,rβ C and for every n ∈ N one can find a func-
tion F (·) = F ( f ; n; ·) in the set Cα,rβ C, such that En(F α,r

β )C = En( f α,rβ )C and for this function the relation (6)
becomes an equality.

Least upper bounds of the quantity ‖ρn( f ; ·)‖C over the classes Cα,rβ,p, we denote by En(Cα,rβ,p)C, i.e.,

En(Cα,rβ,p)C = sup
f∈Cα,rβ,p

‖ρn( f ; ·)‖C, r > 0, α > 0, 1 ≤ p ≤ ∞. (7)

Asymptotic behaviour of the quantities En(Cα,rβ,p)C of the form (7) was studied in [9], [11], [15]–[17], [19],
[20], [23], [25], [27].

The present paper is a continuation of [6], [7], [14], [22] and [24] and is devoted to obtaining of asymp-
totically best possible analogs of Lebesgue-type inequalities on the sets Cα,rβ Lp, r ∈ (0, 1) and p ∈ [1,∞). This
case has not been considered yet.

It should be also noticed that asymptotically best possible Lebesgue inequalities on classes of generalized
Poisson integrals Cα,rβ Lp for r ∈ (0, 1), p = ∞ and r ≥ 1, 1 ≤ p ≤ ∞ were also established for approximations
by Lagrange trigonometric interpolation polynomials with uniform distribution of interpolation nodes (see,
e.g., [12], [13], [26]).

2. Main results

Let us formulate the results of the paper.
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By F(a, b; c; d) we denote Gauss hypergeometric function

F(a, b; c; z) = 1 +

∞∑
k=1

(a)k(b)k

(c)k

zk

k!
, (8)

(x)k := x(x + 1)(x + 2)...(x + k − 1).

For arbitrary α > 0, r ∈ (0, 1) and 1 ≤ p < ∞we denote by n0 = n0(α, r, p) the smallest integer n such that

1
αr

1
nr +

αrp
n1−r ≤

 1
14 , p = 1,

1
(3π)3 ·

p−1
p , 1 < p < ∞. (9)

The following theorem takes place.

Theorem 2.1. Let 0 < r < 1, α > 0, β ∈ R and n ∈N. Then in the case 1 < p < ∞ for any function f ∈ Cα,rβ Lp and
n ≥ n0(α, r, p), the following inequality holds

‖ f (·) − Sn−1( f ; ·)‖C ≤ e−αnr
n

1−r
p

(
‖ cos t‖p′

π1+ 1
p′ (αr)

1
p

F
1
p′
(1
2
,

3 − p′

2
;

3
2

; 1
)

+ γn,p

((
1 +

(αr)
p′−1

p

p′ − 1

) 1

n
1−r

p

+
(p)

1
p′

(αr)1+ 1
p

1
nr

))
En( f α,rβ )Lp ,

1
p

+
1
p′

= 1, (10)

where F(a, b; c; d) is Gauss hypergeometric function.
Moreover, for any function f ∈ Cα,rβ Lp one can find a functionF (x) = F ( f ; n; x), such that En(F α,r

β )Lp = En( f α,rβ )Lp

and for n ≥ n0(α, r, p) the following equality holds

‖F (·) − Sn−1(F; ·)‖C = e−αnr
n

1−r
p

(
‖ cos t‖p′

π1+ 1
p′ (αr)

1
p

F
1
p′
(1
2
,

3 − p′

2
;

3
2

; 1
)

+ γn,p

((
1 +

(αr)
p′−1

p

p′ − 1

) 1

n
1−r

p

+
(p)

1
p′

(αr)1+ 1
p

1
nr

))
En( f α,rβ )Lp ,

1
p

+
1
p′

= 1. (11)

In (10) and (11) the quantity γn,p = γn,p(α, r, β) is such that |γn,p| ≤ (14π)2.

Proof. The first part of Theorem 2.1 was proved by the authors in the work [14]. That is why here we will
prove only the equality (11).

Denote

P(n)
α,r,β(t) :=

∞∑
k=n

e−αkr
cos

(
kt −

βπ

2

)
, 0 < r < 1, α > 0, β ∈ R. (12)

The function P(n)
α,r,β(t) is orthogonal to any trigonometric polynomial tn−1 of degree not greater than n− 1.

Hence, for f ∈ Cα,rβ Lp, 1 ≤ p ≤ ∞ and for any polynomial tn−1 ∈ τ2n−1 at every point x ∈ R the following
equality holds

ρn( f ; x) = f (x) − Sn−1( f ; x) =
1
π

π∫
−π

δn(t)P(n)
α,r,β(x − t)dt, (13)

where

δn(x) = δn(α, r, β; x) := f α,rβ (x) − tn−1(x). (14)
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To prove the second part of Theorem 2.1, according to the equality (13), for arbitrary ϕ ∈ Lp we should
find the function Φ(·) = Φ(ϕ,n; ·) ∈ Lp, such that En(Φ)Lp = En(ϕ)Lp and for all n ≥ n0(α, r, p) the following
equality holds

1
π

∣∣∣∣∣∣∣∣
π∫
−π

(Φ(t) − t∗n−1(t))P(n)
α,r,β(0 − t)dt

∣∣∣∣∣∣∣∣ = e−αnr
n

1−r
p

 ‖ cos t‖p′

π1+ 1
p′ (αr)

1
p

F
1
p′
(1
2
,

3 − p′

2
;

3
2

; 1
)

+γn,p

((
1 +

(αr)
p′−1

p

p′ − 1

) 1

n
1−r

p

+
(p)

1
p′

(αr)1+ 1
p

1
nr

) En(ϕ)Lp ,
1
p

+
1
p′

= 1, (15)

where t∗n−1 is the polynomial of the best approximation of the degree n− 1 of the function Φ in the space Lp,
|γn,p| ≤ (14π)2.

In this case for an arbitrary function f ∈ Cα,rβ Lp, 1 < p < ∞, there exists a function Φ(·) = Φ( f α,rβ ; ·), such
that En(Φ)Lp = En( f α,rβ )Lp , and for n ≥ n0(α, r, p) the formula (15) holds, where as function ϕ we take the
function f α,rβ .

Let us assume

F (·) = Jα,r
β

(
Φ(·) −

a0

2

)
,

where

a0 = a0(Φ) :=
1
π

π∫
−π

Φ(t)dt.

The function F is the function, which we have looked for because F ∈ Cα,rβ Lp and

En(F α,r
β )Lp = En(Φ −

a0

2
)Lp = En(Φ)Lp = En( f α,rβ )Lp ,

so (13), (10) and (15) imply (11).
At last, let us prove (15). Let ϕ ∈ Lp, 1 < p < ∞. Then as a function Φ(t) we consider the function

Φ(t) = ‖P(n)
α,r,−β‖

1−p′

p′ |P
(n)
α,r,−β(t)|

p′−1sign(P(n)
α,r,−β(t))En(ϕ)Lp (16)

For this function we have that

‖Φ‖p = ‖P(n)
α,r,−β‖

1−p′

p′ ‖|P
(n)
α,r,−β|

p′−1
‖pEn(ϕ)Lp

= ‖P(n)
α,r,−β‖

1−p′

p′ ‖P
(n)
α,r,−β‖

p′−1
p′ En(ϕ)Lp = En(ϕ)Lp .

Now we show that the polynomial t∗n−1 of best approximation of the degree n − 1 in the space Lp of the
function Φ(t) equals identically to zero: t∗n−1 ≡ 0.

For any tn−1 ∈ τ2n−1

2π∫
0

tn−1(t)|Φ(t)|p−1sign(Φ(t))dt=‖P(n)
α,r,−β‖

−1
p′ (En(ϕ)Lp )p−1

π∫
−π

tn−1(t)P(n)
α,r,−β(t)dt = 0.

Then, according to Proposition 1.4.12 of the work [5, p. 29] we can make conclusion that the polynomial
t∗n−1 ≡ 0 is the polynomial of the best approximation of the function Φ(t) in the space Lp, 1 < p < ∞.
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For the function Φ(t) of the form (16) we can write

1
π

π∫
−π

(Φ(t) − t∗n−1(t))P(n)
α,r,β(−t)dt

=
1
π

π∫
−π

Φ(t)P(n)
α,r,β(−t)dt =

1
π

π∫
−π

Φ(t)P(n)
α,r,−β(t)dt

=
1
π
‖P(n)

α,r,−β‖
1−p′

p′ En(ϕ)Lp

π∫
−π

|P(n)
α,r,−β(t)|

p′dt =
1
π
‖P(n)

α,r,−β‖p′En(ϕ)Lp . (17)

It follows from the relation (18) of the work [14] that for n ≥ n0(α, r, p), 1 < p < ∞, 1
p + 1

p′ = 1, the
following equality holds

1
π

∥∥∥P(n)
α,r,β

∥∥∥
p′ = e−αnr

n
1−r

p

(
‖ cos t‖p′

π1+ 1
p′ (αr)

1
p

F
1
p′
(1
2
,

3 − p′

2
;

3
2

; 1
)

+ γ(2)
n,p

((
1 +

(αr)
p′−1

p

p′ − 1

) 1

n
1−r

p

+
p

1
p′

(αr)1+ 1
p

1
nr

))
, (18)

where the quantities γ(2)
n,p = γ(2)

n,p(α, r, β), satisfy the inequality |γ(2)
n,p| ≤ (14π)2.

Thus, from (18) and (17) we arrive at the equality (11). Theorem 2.1 is proved.

Theorem 2.2. Let 0 < r < 1, α > 0, β ∈ R, n ∈ N. Then, for any f ∈ Cα,rβ L1 and n ≥ n0(α, r, 1) the following
inequality holds:

‖ f (·) − Sn−1( f ; ·)‖C ≤ e−αnr
n1−r

( 1
παr

+ γn,1

( 1
(αr)2

1
nr +

1
n1−r

))
En( f α,rβ )L1 . (19)

Moreover, for any function f ∈ Cα,rβ L1 one can find a function F (x) = F ( f ; n, x) in the set Cα,rβ L1, such that
En(F α,r

β )L1 = En( f α,rβ )L1 and for n ≥ n0(α, r, 1) the following equality holds

‖F (·) − Sn−1(F; ·)‖C = e−αnr
n1−r

( 1
παr

+ γn,1

( 1
(αr)2

1
nr +

1
n1−r

))
En( f α,rβ )L1 . (20)

In (19) and (20) the quantity γn,1 = γn,1(α, r, β) is such that |γn,1| ≤ (14π)2.

Proof. The first part of Theorem 2.2 was proved in [14].
So let us prove the second part of Theorem 2.2. For this we need for any function ϕ ∈ L1 to find the

function Φ(·) = Φ(ϕ, ·) ∈ L1, such that En(Φ)L1 = En(ϕ)L1 and for all n ≥ n0(α, r, 1) the following equality
holds

1
π

∣∣∣∣∣∣∣∣
π∫
−π

(
Φ(t) − t∗n−1(t)

)
P(n)
α,r,β(0 − t)dt

∣∣∣∣∣∣∣∣ = e−αnr
n1−r

( 1
παr

+ γn,1

( 1
(αr)2

1
nr +

1
n1−r

))
En(ϕ)L1 , (21)

where t∗n−1 is the polynomial of the best approximation of degree n− 1 of the function Φ in the space L1 and
|γn,1| ≤ (14π)2.

In this case for any function f ∈ Cα,rβ L1 there exists a function Φ(·) = Φ( f α,rβ ; ·), such that En(Φ)L1 = En( f α,rβ ),
and for n ≥ n0(α, r, 1) the formula (21) holds, where as function ϕ we will take the function f α,rβ .
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Let us consider the function

F (·) = Jα,r
β (Φ(·) −

a0

2
),

where

a0 = a0(Φ) :=
1
π

π∫
−π

Φ(t)dt.

The function F is the function, which we look for, because F ∈ Cα,rβ L1 and

En(F α,r
β )L1 = En(Φ −

a0

2
)L1 = En(Φ)L1 = En( f α,rβ )L1 ,

and on the basis (13), (19) and (21) the formula (20) holds.
Let us prove (21). Let t∗ be the point from the interval T =

[
π(1−β)

2n , 2π+
π(1−β)

2n

)
, where the function |P(n)

α,r,−β|

attains its largest value, i.e.,

|P(n)
α,r,−β(t

∗)| = ‖P(n)
α,r,−β‖C = ‖P(n)

α,r,β‖C.

Let put ∆n
k :=

[
(k−1)π

n +
π(1−β)

2n , kπ
n +

π(1−β)
2n

)
, k = 1, ..., 2n. By k∗ we denote the number, such that t∗ ∈ ∆n

k∗ .

Taking into accoun, that function P(n)
α,r,−β is absolutely continuous, so for arbitrary ε > 0 there exists a segment

`∗ = [ξ∗, ξ∗ + δ] ⊂ ∆n
k∗ , such that for arbitrary t ∈ `∗ the following inequality holds |P(n)

α,r,−β(t)| > ‖P
(n)
α,r,β‖C − ε. It

is clear that mes `∗ = |`∗| = δ < π
n .

For arbitrary ϕ ∈ L1 and ε > 0 we consider the function Φε(t), which on the segment T is defined with a
help of equalities

Φε(t) =

En(ϕ)L1
1−ε(2π−δ)

δ sign cos
(
nt +

βπ
2

)
, t ∈ `∗,

En(ϕ)L1ε sign cos
(
nt +

βπ
2

)
, t ∈ T \ `∗.

For the function Φε(t) for arbitrary small values of ε > 0 (ε ∈ (0, 1
2π )) the following equality holds

‖Φε‖1 = En(ϕ)L1

1 − ε(2π − δ)
δ

∫
`∗

∣∣∣∣sign cos
(
nt +

βπ

2

)∣∣∣∣dt

+ En(ϕ)L1ε

∫
T\`∗

∣∣∣∣sign cos
(
nt +

βπ

2

)∣∣∣∣dt

= En(ϕ)L1

(
1 − ε(2π − δ)

δ
δ + ε(2π − δ)

)
= En(ϕ)L1 . (22)

It should be noticed that

signΦε(t) = sign cos
(
nt +

βπ

2

)
. (23)

Since for arbitrary trigonometric polynomial tn−1 ∈ τ2n−1

2π∫
0

tn−1(t)sign cos
(
nt +

βπ

2

)
dt = 0,
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so, taking into account (23)

2π∫
0

tn−1(t)sign
(
Φε(t) − 0

)
dt = 0, tn−1 ∈ τ2n−1.

According to Proposition 1.4.12 of the work [5, p.29], the polynomial t∗n−1 ≡ 0 is a polynomial of the
best approximation of the function Φε in the metric of the space L1, i.e., En(Φε)L1 = ‖Φε‖1, so (22) yields
En(Φε)L1 = En(ϕ)L1 .

Moreover, for the function Φε

1
π

π∫
−π

(Φε(t) − t∗n−1(t))P(n)
α,r,β(−t)dt =

1
π

π∫
−π

Φε(t)P
(n)
α,r,−β(t)dt

=
1 − ε(2π − δ)

πδ
En(ϕ)L1

∫
`∗

sign cos
(
nt +

βπ

2

)
P(n)
α,r,−β(t)dt

+
ε
π

En(ϕ)L1

∫
T\`∗

sign cos
(
nt +

βπ

2

)
P(n)
α,r,−β(t)dt. (24)

Taking into account that signΦε(t) = (−1)k, t ∈ ∆(n)
k , k = 1, ..., 2n, and also the embedding `∗ ⊂ ∆(n)

k∗ , we
get ∣∣∣∣∣∣∣∣1 − ε(2π − δ)

πδ
En(ϕ)L1

∫
`∗

sign cos
(
nt +

βπ

2

)
P(n)
α,r,−β(t)dt

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣(−1)k∗ 1 − ε(2π − δ)
πδ

En(ϕ)L1

∫
`∗

P(n)
α,r,−β(t)dt

∣∣∣∣∣∣∣∣
≥

1 − ε(2π − δ)
π

En(ϕ)L1

(
‖P(n)

α,r,β‖C − ε
)

>
1 − 2πε
π

En(ϕ)L1

(
‖P(n)

α,r,β‖C − ε
)

=
1
π

En(ϕ)L1

(
‖P(n)

α,r,β‖C − 2πε‖P(n)
α,r,β‖C − ε + 2πε2

)
>En(ϕ)L1

( 1
π
‖P(n)

α,r,β‖C − ε
(
2‖P(n)

α,r,β‖C +
1
π

))
. (25)

Also, it is not hard to see that∣∣∣∣∣∣∣∣∣
ε
π

En(ϕ)L1

∫
T\`∗

sign cos
(
nt +

βπ

2

)
P(n)
α,r,−β(t)dt

∣∣∣∣∣∣∣∣∣ ≤
ε
π

En(ϕ)L1‖P
(n)
α,r,β‖C. (26)

Formulas (24)–(26) yield the following inequality∣∣∣∣∣∣∣∣
π∫
−π

1
π

(Φε(t) − t∗n−1(t))P(n)
α,r,β(−t)dt

∣∣∣∣∣∣∣∣
>En(ϕ)L1

( 1
π
‖P(n)

α,r,β‖C − ε
((

2 +
1
π

)
‖P(n)

α,r,β‖C +
1
π

))
. (27)
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It should be noticed that asymptotic estimate for the quantity ‖P(n)
α,r,β‖∞ was obtained in [17]. Let us show

that this estimate can be improved, if we decrease the diapason for the remainder.
Formulas (34), (50)–(52) of the work [17], and also Remark 1 from [17] allow us to write that for any

n ∈N

‖P(n)
α,r,β‖∞ = ‖Pα,r,n‖∞

(
1 + δ(1)

n
Mn

n

)
, (28)

where

Pα,r,n(t) :=
∞∑

k=0

e−α(k+n)r
eikt,

Mn := sup
t∈R

|P′α,r,n(t)|
|Pα,r,n(t)|

,

and for δ(1)
n = δ(1)

n (α, r, β) the following estimate takes place |δ(1)
n | ≤ 5

√
2π.

Then, as it follows from the estimates (87) and (99) of the work [17] for n ≥ n0(α, r, 1)

‖Pα,r,n‖∞ =
e−αnr

αr
n1−r

(
1 + θα,r,n

(1 − r
αrnr +

αr
n1−r

))
, |θα,r,n| ≤

14
13

(29)

and

Mn ≤
784π2

117

(n1−r

αr
+ αrnr

)
. (30)

Combining formulas (28)–(30), we obtain that for n ≥ n0(α, r, 1)

1
π
‖P(n)

α,r,β‖∞ =
e−αnr

αrπ
n1−r

(
1 + θα,r,n

(1 − r
αrnr +

αr
n1−r

)) (
1 + δ(1)

n
Mn

n

)
= e−αnr

n1−r
( 1
αrπ

+ γn,1

( 1
(αr)2nr +

αr
n1−r

))
, (31)

where

|γn,1| ≤
1
π

(
14
13

+
784π25

√
2π

117
+

14 · 5
√

2π · 784π2

13 · 117 · 14

)
=

14
13π

(
1 +

3920
√

2π3

117

)
. (32)

Let us choose ε small enough that

ε <

(
(14π)2

−
14

13π

(
1 + 3920

√
2π3

117

))
e−αnr n1−r( 1

αrnr + αr
n1−r )

(2 + 1
π )‖P(n)

α,r,β‖∞ + 1
π

(33)

and for this ε we put

Φ(t) = Φε(t). (34)

The function Φ(t) is the function, which we have looked for, because En(Φ)L1 = En(ϕ)L1 and according to
(27), (31)–(33) for n ≥ n0(α, r, 1)∣∣∣∣∣ 1

π
(Φ(t) − t∗n−1(t))P(n)

α,r,β(−t)dt
∣∣∣∣∣

>En(ϕ)L1

(
1
π
‖P(n)

α,r,β‖C−

(
(14π)2

−
14

13π

(
1+

3920
√

2π3

117

))
e−αnr

n1−r
( 1
αrnr +

αr
n1−r

))
≥ e−αnr

n1−r
(

1
αrπ
− (14π)2

( 1
(αr)2nr +

αr
n1−r

))
En(ϕ)L1 . (35)
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On the other hand, according to (13) for f ∈ Cα,rβ L1 we get

‖ f (·) − Sn−1( f ; ·)‖C =
1
π

π∫
−π

( f α,rβ (t) − t∗n−1(t))P(n)
α,r,β(x − t)dt ≤

1
π
‖P(n)

α,r,β‖∞En( f α,rβ )L1 , (36)

where t∗n−1 ∈ τ2n−1 is the polynomial of the best approximation of the function f α,rβ in the space L1.
Formulas (35), (36), (31) and (32) imply (21). Theorem 2.2 is proved.

As it was already mentioned, the inequalities (10) and (19) were proved in [14]. At the same time
the problem about asymptotically best possible upper estimates of uniform norms of deviations of partial
Fourier sums of the function f from Cα,rβ Lp, 1 ≤ p < ∞, remains open. Theorems 2.1 and 2.2 give the full
answer on this question: the asymptotic equalities (11) and (20) prove that the estimates (10) and (19) are
asymptotically best possible for functions from Cα,rβ Lp in the cases 1 < p < ∞ snd p = 1 respectively. At
the very end, we notice that inequalities (10) and (19) are asymptotically best possible on such important
subsets from Cα,rβ Lp as sets Cα,rβ,p, 1 ≤ p < ∞.

Indeed, if f ∈ Cα,rβ,p, then ‖ f α,rβ ‖p ≤ 1 and En( f α,rβ )Lp ≤ 1, 1 ≤ p < ∞. Considering the least upper bounds of
both sides of inequality (10) over the classes Cα,rβ,p, 1 < p < ∞, we arrive at the inequality

En(Cα,rβ,p)C ≤ e−αnr
n

1−r
p

(
‖ cos t‖p′

π1+ 1
p′ (αr)

1
p

F
1
p′
(1
2
,

3 − p′

2
;

3
2

; 1
)

+ γn,p

((
1 +

(αr)
p′−1

p

p′ − 1

) 1

n
1−r

p

+
(p)

1
p′

(αr)1+ 1
p

1
nr

))
,

1
p

+
1
p′

= 1. (37)

Comparing this relation with the estimate of Theorem 4 from [16] (see also [17]), we conclude that
inequality (10) on the classes Cα,rβ,p, 1 < p < ∞, is asymptotically best possible.

In the same way, the asymptotic sharpness of the estimate (19) on the classes Cα,rβ,1 follows from comparing
inequality

En(Cα,rβ,p)C ≤ e−αnr
n1−r

( 1
παr

+ γn,1

( 1
(αr)2

1
nr +

1
n1−r

))
(38)

and formula (18) from [17].
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