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Abstract. In this paper we establish Lebesgue-type inequalities for 27n-periodic functions f, which are
defined by generalized Poisson integrals of the functions ¢ from L,, 1 < p < co. In these inequalities
uniform norms of deviations of Fourier sums ||f — S,-1llc are expressed via best approximations E,(¢)r, of

functions ¢ by trigonometric polynomials in the metric of space L,. We show that obtained estimates are
asymptotically best possible.

1. Introduction

Let L, 1 < p < oo, be the space of 2n—periodic functions f summable to the power p on [0,2m), in

21 1
which the norm is given by the formula ||f]|, = ( f Lf(HF dt)p ; Lo be the space of measurable and essentially
0

bounded 2m—periodic functions f with the norm ||f|l = esssup|f(t)|; C be the space of continuous 2n—
t
periodic functions f, in which the norm is specified by the equality ||f|lc = max £ ().

Denote by Cg”Lp, a>0,r>0, eR, 1<p< oo, the set of all 2r—periodic functions, representable for
all x € R as convolutions of the form (see, e.g., [20, Ch.3, 7-8])

n
1

fx) = % + = f Porp(x = p(t)dt, a € R, @ 11, (1)

-7

where ¢ € L, and P, ,4(t) are the following generated kernels
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o)

T
Py p(t) = Z e cos kt - ﬁ?), a,r>0, BeR. ()
k=1

The kernels P, ;4 of the form (2) are called generalized Poisson kernels. For r = 1and 8 = 0 the kernels P, ;4
are usual Poisson kernels of harmonic functions.

If the functions f and ¢ are related by the equality (1), then the function f in this equality is called
generalized Poisson integral of the function ¢ and is denoted by 7, g’r(qo)( f()=J9, g’r(qo, -)). The function ¢

in equality (1) is called generalized derivative of the function f and is denoted by f;’ (p() = fg"r(-)).
The set of functions f from Cg’er, 1 < p < oo, such that f‘” € B,, where

By={p: ligll, <1},

we will denote by Cj7.

The sets of generalized Poisson integrals Cg’er are closely related with the well-known Gevrey classes
(see, e.g. [21]).

Let 72,-1 be the space of all trigonometric polynomials of degree at most 7 — 1 and let E; (f)., be the best
approximation of the function f € L, in the metric of space L,, 1 < p < oo, by the trigonometric polynomials
ty-1 of degreen — 1, i.e,,

Ef, =, inf [If = tucall

n-1€T2n-1

Analogously, by E,(f)c we denote the best uniform approximation of the function f from C by trigonometric
polynomials of degree n — 1, i.e.,

E.(f)c= inf |If —t,1llc.

tr-1€T2n-1

Let p,(f; x) be the following quantity
Pu(f;%) := f(xX) = Sua(f5 %), €)

where S,,_1(f; -) are the partial Fourier sums of degree n — 1 of a function f.
One can estimate the norms ||p,(f; -)llc via E,(f)c by Lebesgue inequalities

”Pn(fr )“C < (1 + Ln—l)En(f)C/ n €N, (4)

where quantites L,,_; are Lebesgue constants of the Fourier sums of the form

Lot = f IDuor (Bt = JEEE Isin@n = DA,

sin t

1
sin(n — 3)t
D,—1(t) ——+Zcos t——z.

2s1n§

Fejer [3] established the asymptotic equality for Lebesgue constants L,
4
Ly=—=Inn+0(1), n— co.
T

More exact estimates for the differences L, — % In(n + a), a > 0, as n € IN were found in works [1], [2],
[4], [8], [18] and [28].
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In particular, it follows from [20] (see also [8, p.97]) that

4
Ly — = Inn| < 1,271, neN.
Tt

Then, the inequality (4) can be written in the form

lou(f: e < (%lnn + Ry En(fc, (5)

where |R,)| < 2,271.

On the whole space C the inequality(5) is asymptotically exact. At the same there exist subsets of
functions from C and for elements of these subsets the inequality (5) is not exact even by order (see, e.g.,
[24, p. 435]).

In the paper [10] the following estimate was established

' 2n-1 Ev(f)C
lpu(Fi e < ), =22,

v=n

feC n—- oo,

(here K is some absolute constant) and it was proved that this constant is exact by the order on the classes
C(e) :={f € C: Eu(f)c < &, v € N}, where {¢,} is a sequence of nonnegative numbers, such that ¢, | 0
as v — oo.

In [6], [7], [14], [22] and [24] the analogs of the Lebesque inequalities for functions f € Cg'rL,, have been
found in the case r € (0,1) and p = o0, and also in the case r > 1 and 1 < p < oo, where the estimates for the
deviations [|f(-) — Su—1(f; -)llc are expressed in terms of the best approximations E,;( fg'r) L,- Namely, in [24] it
was proved that for arbitrary f € Cg’r, r€(0,1), B € R, the following inequality holds

1FO) = Swa(f e < (5 It + O Ex(f ) 6)

where O(1) is a quantity uniformly bounded with respect to n, p and
fe Cg’rC. It was also shown that for any function f € Cg’rC and for every n € IN one can find a func-

tion F(-) = F(f;n;-) in the set Cg’rC, such that E,,(Tﬁ“’r)c = E( f;"r)c and for this function the relation (6)
becomes an equality.
Least upper bounds of the quantity ||p,(f; -)llc over the classes C“’;, we denote by Sn(Cg’;)C, ie.,

En(Cyy)c = sup llou(fi)lle, >0, a>0, 1<p<co. 7)
CLX,V
By

Asymptotic behaviour of the quantities 8,1(Cg,’;)c of the form (7) was studied in [9], [11], [15]-[17], [19],

[20], [23], [25], [27].
The present paper is a continuation of [6], [7], [14], [22] and [24] and is devoted to obtaining of asymp-
totically best possible analogs of Lebesgue-type inequalities on the sets Cg’er, r€(0,1) and p € [1, o). This

case has not been considered yet.
It should be also noticed that asymptotically best possible Lebesgue inequalities on classes of generalized
Poisson integrals Cg”LP forr€ (0,1),p=occandr > 1,1 < p < oo were also established for approximations

by Lagrange trigonometric interpolation polynomials with uniform distribution of interpolation nodes (see,
e.g., [12], [13], [26]).

2. Main results

Let us formulate the results of the paper.
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By F(a, b; c;d) we denote Gauss hypergeometric function

D @On
F(a,b;c;z) =1 L. Or K’

O =x(x+D(x+2)...(x+k-1).
For arbitrary a > 0, r € (0,1) and 1 < p < oo we denote by ny = ng(a, 1, p) the smallest integer n such that

11 arp L, p=1,
—7+ﬂ${_1“.‘v_1 1<p< ©)
arn’  n G P p < co.

The following theorem takes place.
Theorem 2.1. Let0 <r<1,a >0, € Randn € N. Then in the case 1 < p < oo for any function f € Cy"L, and

n > no(a, 1, p), the following inequality holds
lcostlly 1,1 3-p" 3
deosth pr(2, 2220

IO = Sia(fle < ¥ (3 el @72
@7\ 1 @7 1 1,1
( L ., L —+—=1, 10
+7//P<( - p-1 )nT +(ar)1+ 71’)) G, P+P' a

where F(a, b; c; d) is Gauss hypergeometric function.
Moreover, for any function f € C;‘”Lp one can find a function F (x) = F (f; n; x), such that En(ﬁ;"r) 1, = Eu( f;‘") L
and for n > no(a, 1, p) the following equality holds
t -
Il cos |,y F% 13-p

||¢(->—Sn_1(1-“;-)||c:e-“"’nl'( T
Y (ar)r

(11)

(OCT’)T) 1 + (P)’? l))En(fﬁa’r)L,.r

' )/n,p((l ' N (1%

1,
p

| =
+

In (10) and (11) the quantity y,, = yup(a, 1, B) is such that [y, | < (14m)?
Proof. The first part of Theorem 2.1 was proved by the authors in the work [14]. That is why here we will

prove only the equality (11).
Denote
(12)

- pr
5(t Ze coskt—7)0<r<1 a>0, ek

k=n
The function P("> /;(t) is orthogonal to any trigonometric polynomial ¢,_; of degree not greater than n —1.

Hence, for f € Cy er, 1 < p £ o0 and for any polynomial t,_; € Tp,—1 at every point x € R the following

equality holds
(13)

Tt

Pu(f7%) = f(X) = Sua(f52) = % f Ou()PY) o(x = By,

=T

where
(14)

0u() = Oulat, 1, 5) 1= £ () = tya ()
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To prove the second part of Theorem 2.1, according to the equality (13), for arbitrary ¢ € L, we should
find the function ®(-) = ®(¢, n;-) € Ly, such that E,;(P)r, = Ex(¢)1, and for all n > no(a, 7, p) the following
equality holds

=r t —p
et |l cos |,y Pﬁ(l, 3-p ;§;1)
1+p (0(7')” 2 2 2

1] R
- U(CD(t) () },ﬁ(o —fdt| =e

Tt
p-1

+yn,p((1+(ar)7> } N (2l 1)] En@), % %:L 15)

P=1705 )t

where t; . is the polynomial of the best approximation of the degree n — 1 of the function @ in the space L,
[Yupl < (1410,

In this case for an arbitrary function f € C;”Lp, 1 < p < oo, there exists a function @(-) = O( fl ;+), such
that Ex(®P)1, = En( fﬁ“”)Ln, and for n > ny(a, r,p) the formula (15) holds, where as function ¢ we take the
function fﬁ‘”

Let us assume

FO =3 (@0~ F),

where

TU

apg = Clo(CD) = % fq)(t)dt

-7

The function ¥ is the function, which we have looked for because ¥ € Cg’er and

En(7:ﬁa,r)Lp = En(q) - a_O)Lp = E"((D)LF’ = En(f;/y)L,,/

2

so (13), (10) and (15) imply (11).
At last, let us prove (15). Let ¢ € L), 1 < p < co. Then as a function ®(t) we consider the function

1-
() = [IPY)_ll, " IPY) ()P sign(P)_ ()En(p), (16)
For this function we have that
Il = 1PS) il PSP I, En@,
1 -1
= 1IP) il IPY) I En(@)r, = Eu(@),.

Now we show that the polynomial ¢, of best approximation of the degree n — 1 in the space L, of the
function @(t) equals identically to zero: ¢, | = 0.
For any t,_1 € 72,1

2n T
[ aoroarsign@o =115 €,y [ 0P =0
0 -7

Then, according to Proposition 1.4.12 of the work [5, p. 29] we can make conclusion that the polynomial
t_, = 0is the polynomial of the best approximation of the function ®(t) in the space L,, 1 < p < 0.
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For the function ®(t) of the form (16) we can write

U (- cenpl
= (@0 - 00p -

-1 f (1P o=t = 1 f qn(t)Pg'i_ﬁ(t)dt
= .,

=Tt

1 n n
=gwxﬁW”E@m fwMﬁme——W”AhE@n (17)

It follows from the relation (18) of the work [14] that for n > ng(a,7,p), 1 < p < oo, 7_7 + pl =1, the
following equality holds

1 e llcostlly 1,1 3-p" 3
_”Pfxni,s” ( 1+%(a:)% Z (E' > ;5;1)
P 1
) (ar)T 1 pV’ l )
+ ')/n,p((l + p -1 )7’1 - + ((X}’)1+% nr) 4 (18)

where the quantities 7/(2) yﬁ,zl),(a 1, B), satisfy the inequality |y(2)| < (14n)2.

Thus, from (18) and (17) we arrive at the equality (11). Theorem 2.1is proved. [

Theorem 2.2. Let 0 <r <1, a > 0,8 € R, n € N. Then, for any f € Cg’rh and n > no(a, ,1) the following
inequality holds:

1 1 1
(0(1’)2 nr nl r

() = Sua(fi e < e™'n'~ yui( =57 + ==)JEalfi - (19)

<7mr
Moreover, for any function f € Cg'rLl one can find a function ¥ (x) = F(f;n,x) in the set Cg"Ll, such that
En(?'ﬁ""’)L1 = En(fﬁ‘)"’)L1 and for n > no(a, r, 1) the following equality holds

1 1
0(7‘)2 nr nl r

I70) = SpmaEille = it (= + sy o + B s 20)

In (19) and (20) the quantity y,1 = yn1(a, 1, B) is such that ly, 1| < (147)>.

Proof. The first part of Theorem 2.2 was proved in [14].

So let us prove the second part of Theorem 2.2. For this we need for any function ¢ € L; to find the
function @(-) = ®(¢, ) € Ly, such that E,(®);, = E.(¢), and for all n > ny(a, r,1) the following equality
holds

% U(@(t) - t;_l(t)) Pgl:ﬁ( —fydt] = e‘“”rnl"($ + yn,l(ﬁ% + %))E"((p)hr 1)

T

where t; _, is the polynomial of the best approximation of degree n — 1 of the function @ in the space L; and
[ymal < (14m)%.
In this case for any function f € C"‘ "L, there exists a function ®(-) = O(f;"’; ), such that E, (D), = Ej( f ,

and for n > ny(a, r, 1) the formula (21) holds, where as function ¢ we will take the function f .
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Let us consider the function
— () - D
GORNACORES

where

TU

ap = aO(QJ) = % fq)(t)dt

-
The function F is the function, which we look for, because F € C;”Ll and

r a T
E(T3" ) = En(@ = )1, = En(@)1, = Eul 1,
and on the basis (13), (19) and (21) the formula (20) holds.
Let us prove (21). Let t* be the point from the interval T = [
attains its largest value, i.e.,

n(1-p)
2n

, 21+ %), where the function IPZTY,_ISI

P @ =1PS)_lic = IPY) lic-

a,r,—p e ,

Let put A} := [(k_nl L n(;ﬁ ), ’% + n(;’g ) ), k =1,..,2n. By k* we denote the number, such that t* € A}L.
Taking into accoun, that function P(a”,z,_ p is absolutely continuous, so for arbitrary € > 0 there exists a segment
€ =[&,& +5] € A, such that for arbitrary t € ¢* the following inequality holds [P$))_(t)] > IIPY) Jlc - e. It
is clear that mes " = |€*| = 6 < 7.

For arbitrary ¢ € L; and € > 0 we consider the function ®,(t), which on the segment T is defined with a
help of equalities

E 1220 gion cos nt+’g—n, telr,
cps(t)z{ () =5 sign cos (nt + )

E.(p)1, € sign cos (nt + ’%n), teT\ L.

For the function @ (t) for arbitrary small values of € > 0 (¢ € (0, lﬂ)) the following equality holds

|D,l1 = E,,(go)hw f‘sign cos (nt + ‘87“)|dt
4

+ Eq (@), € f 'sign cos (nt + ﬁ;)|dt

T\
= o, (G0 4 con-0)) = B @)
It should be noticed that
sign®,(t) = sign cos (nt + %) (23)

Since for arbitrary trigonometric polynomial ¢, € 72,1

2n

. By
ftnl(t)ﬂgn cos (nt + T)dt =0,
0
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so, taking into account (23)

2n
f a1 (£)sign(@e(t) = 0)dt =0, £,y € Toy1.
0

According to Proposition 1.4.12 of the work [5, p.29], the polynomial ¢/, = 0 is a polynomial of the
best approximation of the function @, in the metric of the space Ly, i.e., E,(®;)r, = ||D¢ll1, so (22) yields

E?’l((DS)Ll = Eﬂ((P)Ll .
Moreover, for the function @,

T

1 r * n 1 n
- f (©e() = b, ()P (1)t = — f O (OPY) (bt

1-e@2n-0)
_T]Sn((p)L1 fs1gn cos (nt +

£

BT\ S
)P( ) (Dt

+%E,,(g0)L1fs1gncos(nt+ ﬁ—)P(n ﬁ(t)dt (24)

2
T\

Taking into account that sign®,.(t) = (=D te AI((”), k=1,..,2n, and also the embedding ¢* C A,(:f), we
get

1- 8(271 - 6) ﬁ (n)
TEn(go)L1 fs1gn cos (nt + ?) (t)dt
€=(»

| e, [ B0

o+

1-en—-9)
>—————E(p)r, (IP) sllc — ¢)

1-2me
>

En(@)r, (IP) llc = ¢)
1
=—Eu(@)r, (IPY) pllc = 2mellPS) lle — € + 27e?)
1
SEx(p), (Pl = (2Pl + ). 25)

Also, it is not hard to see that

£ ﬁ_ () (n)
—Ex(p)L, f sign cos (nt + = )P\ _(Ddt| < En((p)LlllP ! llc. (26)

T\¢*

Formulas (24)—(26) yield the following inequality

Ul@g(t) — b (P (bt
TC

SEu) (1Pl = (2 + )P e + 2)). (27)
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()
a,rp
that this estimate can be improved, if we decrease the diapason for the remainder.

Formulas (34), (50)-(52) of the work [17], and also Remark 1 from [17] allow us to write that for any

neN

It should be noticed that asymptotic estimate for the quantity ||P’ " .|l was obtained in [17]. Let us show

M,
1P gl = 1P allo(1 + 610 =), (28)
where
Pa,r,n(t) = Z e—a(k+n)reikt,
k=0
M =su |PDL Vﬂ(t)l
telR |Parn(t)|
and for 6,(11) = 6n1)(0z, 1, B) the following estimate takes place Ic‘i,(})l <5v2m.
Then, as it follows from the estimates (87) and (99) of the work [17] for n > ng(a, 1, 1)
e 1-r ar 14
Pasalls = et (14 O+ =5)), 1Ol < 15 (29)
and
M, < 784”2(”1_7 +arn’) (30)
"7 '
Combining formulas (28)—(30), we obtain that for n > ny(a, 1, 1)
Pl e~ i 1-r ar My
P o = S (1 O+ ) (145020
. 1 1 ar
= 1- -
- r(mn - <(ar)2n’ + nl_r)), (31)
where
b < L(%, 784m°5 V2 14-5V2m- 784\ _ 14 ( 3920 \/§n3) 32)
Vel =2\13 117 13-117-14 Y 117
Let us choose € small enough that
((14n)2 137_[ (1 + 392?1\é§n3 ))e—anV 1- r(amf + ,ﬁfv
&< oo - (33)
@+ LIPY) I + L
and for this ¢ we put
D(t) = D(t). (34)

The function @(t) is the function, which we have looked for, because E,,(®);, = E,(¢)1, and according to
(27), (31)—(33) for n > ng(a,7,1)

1 . ()
2 @0~ 097 (-

14 3920 \/ETCS r 1 ar
(1) 2_ 1% —an’ 1
>En((P)L1( ”P ‘BHC €14 ) - 13 <1+—117 )e an n r(_arny + nl_r)

R B | 1 ar
e (% _(14n)2((ar)2n’ T r)) Frlh >
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On the other hand, according to (13) for f € Cg’rLl we get

)= SualFille = = [ G0 = 64 OIP) x = 0t < 2P B, (36)

where t* | € 72,1 is the polynomial of the best approximation of the function fg" in the space L;.
Formulas (35), (36), (31) and (32) imply (21). Theorem 2.2 is proved. [

As it was already mentioned, the inequalities (10) and (19) were proved in [14]. At the same time
the problem about asymptotically best possible upper estimates of uniform norms of deviations of partial
Fourier sums of the function f from Cy"L, 1 < p < co, remains open. Theorems 2.1 and 2.2 give the full
answer on this question: the asymptotic equalities (11) and (20) prove that the estimates (10) and (19) are
asymptotically best possible for functions from C3”L, in the cases 1 < p < oo snd p = 1 respectively. At
the very end, we notice that inequalities (10) and (19) are asymptotically best possible on such important
subsets from Cg’er as sets Cg”;, 1<p<oco

Indeed, if f € Cy), then |If;
both sides of inequality (10) over the classes Cg/’;, 1 < p < oo, we arrive at the inequality

lp < 1and E,(f;"), <1,1 < p < co. Considering the least upper bounds of

.oler costlly 1,1 3—9p" 3
En(Cyrye <e ' ( I cos 7 (— P -—-1)

7_[1+pl,(ar)% 2/ 2 4 2/
A 3
(G s P L) L Ly (37)
p -1 nr (0(7’)147J n p P

Comparing this relation with the estimate of Theorem 4 from [16] (see also [17]), we conclude that
inequality (10) on the classes Cg’;, 1 < p < o0, is asymptotically best possible.

In the same way, the asymptotic sharpness of the estimate (19) on the classes Cg’r

Y follows from comparing

inequality

) 1 11 1
a,r —an”__1-r _ R
Sn(cﬁ,p)c <e n (@ + Vn,l((ar)Z ; + nl-r )) (38)

and formula (18) from [17].
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