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Abstract. In this paper, various coefficient bounds of functions in some classes which are defined by
subordination are estimated. Some special consequences of the main results are also presented. Moreover,
it is pointed out that the given bounds improve and generalize some of the pervious results.

1. Introduction and Preliminaries

LetA be the class of functions of the form

f (z) = z +

∞∑
n=2

anzn, (1)

which are analytic in the open unit diskU := {z ∈ C : |z| < 1}, and let S be the subclass ofA consisting of all
univalent functions inU.

Using the concept of subordination, Ma and Minda [24] introduced the subclasses of starlike and convex
functions in which either of the quantity z f ′(z)/ f (z) or 1 + z f ′′(z)/ f ′(z) is subordinate to a more general
superordinate function. To this goal, they defined an analytic univalent function ϕ with positive real part
inU, ϕ(U) is symmetric with respect to the real axis and starlike with the conditions ϕ(0) = 1 and ϕ′(0) > 0.
They defined the classes consisting of several well-known classes as follows:

S
∗(ϕ) :=

{
f ∈ A :

z f ′(z)
f (z)

≺ ϕ(z), z ∈ U
}

and

K (ϕ) :=
{

f ∈ A : 1 +
z f ′′(z)
f ′(z)

≺ ϕ(z), z ∈ U
}
,
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where ≺ stands for the usual subordination for analytic functions inU. For example, the classes S∗(ϕ) and
K (ϕ) for ϕ(z) = (1 + Az)/(1 + Bz) (−1 ≤ B < A ≤ 1) reduce to the classes S∗[A,B] and K [A,B] of Janowski
starlike and Janowski convex functions, respectively. Note that if 0 ≤ α < 1, then S∗[1 − 2α,−1] =: S∗(α),
the classes of starlike functions of order α and K [1 − 2α,−1] =: K (α) the convex functions of order α.
In particular, S∗ := S∗(0) and K := K (0) are the well-known classes of starlike functions and of convex
functions inU, respectively.

Setting ϕ(z) =
√

1 + z we get the class S∗l of consisting of functions f such that w = z f ′(z)/ f (z) lies in the
region bounded by the right half of the lemniscate of Bernoulli given by

∣∣∣w2
− 1

∣∣∣ < 1 which was investigated
by Sokół and Stankiewicz [32]. In [31], Sokół generalized this class by introducing a more general class
S
∗

lλ
=: S∗(

√
1 + λz), λ ∈ (0, 1]. Moreover, the feature of the class S∗s := S∗(1 + sin z) such that the quantity

w = z f ′(z)/ f (z) lies in an eight-shaped region in the right-half plane was studied by Cho et al. in [13]. Raina
and Sokół [29] considered the class S∗

$
:= S∗q, where q(z) = z +

√

1 + z2. They have proved that f ∈ S∗
$

if

and only if z f ′(z)/ f (z) ∈ R where R := {z ∈ C :
∣∣∣w2
− 1

∣∣∣ < 2|w|}.
Further, in a survey-cum-expository article [33] by Srivastava, it was indicated that the recent and future

applications and importance of the classical q-calculus and the fractional q-calculus in geometric function
theory of complex analysis motivate researchers to study many of these and other related subjects in this
filed.

It is known that the image of U under every function f ∈ S contains a disk of radius 1/4. Therefore,
every function f ∈ S has an inverse f−1, which is defined by f−1 (

f (z)
)

= z (z ∈ U), and f
(

f−1 (w)
)

=

w
(
|w| < r0( f ); r0( f ) ≥ 1/4

)
, where

f−1(w) = w − a2w2 + (2a2
2 − a3)w3

− (5a3
2 − 5a2a3 + a4)w4 + · · · =: w +

∞∑
n=2

cnwn. (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U. Let Σ denote the
class of bi-univalent functions inU. Lewin [23] studied the bi-univalent function class Σ and obtained the
bound for the second Taylor-Maclaurin coefficient |a2|. A brief historical overview of functions in the class
Σ can be found in the work of Srivastava et al. [37], which is a fundamental research on the bi-univalent
function class Σ, as well as in the references cited therein. In a number of sequels to [37], bounds for the
first two Taylor-Maclaurin coefficients |a2| and |a3| of different subclasses of bi-univalent functions were
given, for example, see [5, 9, 16, 34, 35, 41]. In fact, the study of analytic and bi-univalent functions was
successfully revived by the pioneering work of Srivastava et al. [37] in recent years regarding the numerous
papers on the subject.

Finding the upper bound for coefficients have been one of the central topic of research in geometric
function theory as it gives several properties of functions. In particular, bound for the second coefficient
gives growth and distortion theorems for functions in the classS. According to [37], many authors put effort
to review and study various subclasses of the class Σ of bi-univalent functions in recent years, for example,
see [9, 16, 34, 35, 41]. In the literature, several authors used the Faber polynomial expansions to determine
the general coefficient bounds of |an| for the analytic bi-univalent functions [6, 18, 20, 36, 38–40, 45, 46].
It is remarkable that Faber polynomials play an important act in geometric function theory which was
introduced by Faber [15].

Thorough this paper, we assume that ϕ is an analytic function with positive real part in the unit disk
U and ϕ(U) is symmetric with respect to the real axis, satisfying ϕ(0) = 1, ϕ′(0) > 0 such that it has series
expansion of the form

ϕ(z) = 1 + B1z + B2z2 + B3z3 + · · · (B1 > 0). (3)

A functionω : U→ C is called a Schwarz function ifω is a analytic function inUwithω(0) = 0 and |ω(z)| < 1
for all z ∈ U. Clearly, a Schwarz function ω is the form

ω(z) = w1z + w2z2 + · · · .
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We denote by Ω the set of all Schwarz functions on U. Denote by f ∗ Θ the Hadamard product (or
convolution) of the functions f and Θ, that is, if f (z) = z +

∑
∞

n=2 anzn and Θ(z) = z +
∑
∞

n=2 bnzn, then

(
f ∗Θ

)
(z) = z +

∞∑
n=2

anbnzn.

Recently, Bulut [9] introduced a comprehensive subclass of analytic bi-univalent functions and obtained
non-sharp estimates of first two coefficients of functions in this class as follows.

Definition 1.1. [9] Let the function f , defined by (1), be in the classA and let

Θ ∈ Σ and Θ (z) = z +

∞∑
n=2

bnzn, (bn > 0) .

We say that

f ∈ Hλ,µ
Σ

(
ϕ; Θ

) (
λ ≥ 1, µ ≥ 0

)
,

if the following conditions are satisfied:

f ∈ Σ,

(1 − λ)
( (

f ∗Θ
)

(z)
z

)µ
+ λ

(
f ∗Θ

)′ (z)
( (

f ∗Θ
)

(z)
z

)µ−1

≺ ϕ (z) (z ∈ U)

and

(1 − λ)

 ( f ∗Θ
)−1 (w)
w

µ + λ
((

f ∗Θ
)−1

)′
(w)

 ( f ∗Θ
)−1 (w)
w

µ−1

≺ ϕ (w) (w ∈ U) ,

where the function
(

f ∗Θ
)−1 is given by(

f ∗Θ
)−1 (w) = w − a2b2w2 +

(
2a2

2b2
2 − a3b3

)
w3
−

(
5a3

2b3
2 − 5a2b2a3b3 + a4b4

)
w4 + · · · .

Definition 1.2. [21] For 0 ≤ γ ≤ 1, the classVγ(ϕ) consists of functions f ∈ A satisfying the following subordina-
tion:

γ f ′(z) + (1 − γ)
z f ′(z)

f (z)
≺ ϕ (z) (z ∈ U) .

Note thatV0(ϕ) =: S∗(ϕ) andV1(ϕ) =: C(ϕ) =
{
f ∈ A : f ′(z) ≺ ϕ(z), z ∈ U

}
is a subclass of close-to-convex

function. Thus, this class provides a continuous passage from a subclass of starlike functions to the subclass
of close-to-convex functions when γ varies from 0 to 1.

Theorem 1.3. [46] For λ ≥ 1 and µ ≥ 0, let f ∈ Hλ,µ
Σ

(
ϕ; Θ

)
be given by (1). If ak = 0 for 2 ≤ k ≤ n − 1, then

|an| ≤
B1

[µ + (n − 1)λ]bn
(n ≥ 3).

The present paper is motivated essentially by the recent works ([3, 28, 37, 46]) and the aim of this paper
is to study the coefficient estimates of some classes. In Section 2, we use the Faber polynomial expansions
to derive bounds for the coefficients |an| for the functions of a general class that our results improve some
of the previously ones. In Section 3, we obtain the sharp bounds on the functional |a2a3 − a4| for the class
Vγ(ϕ), which can be studied in the third Hankel determinant H3(1) for various classes of analytic and
univalent functions, [7, 8, 11, 12]. We remark in passing that the Hankel determinants (like the second
Hankel determinant, see [17]) play an important role in the study of the singularities and power series with
integral coefficients, [26, 27].
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2. Coefficient bounds |an| of the classHλ,µ

Σ

(
ϕ;Θ

)
In this section, we find a smaller upper bound and more accurate estimation of coefficients |an| (n ≥ 3)

of analytic bi-univalent functions in the class Hλ,µ
Σ

(
ϕ; Θ

)
. To prove of our results, we need the following

lemmas.

Lemma 2.1. [1, 2] Let f ∈ S be given by (1), the coefficients of its inverse map 1 = f−1 are given in terms of the
Faber polynomials of f with

1(w) = f−1(w) = w +

∞∑
n=2

1
n

K−n
n−1(a2, a3, . . . , an)wn, (4)

where

K−n
n−1 =

(−n)!
(−2n + 1)!(n − 1)!

an−1
2 +

(−n)!
(2(−n + 1))!(n − 3)!

an−3
2 a3

+
(−n)!

(−2n + 3)!(n − 4)!
an−4

2 a4 +
(−n)!

(2(−n + 2))!(n − 5)!
an−5

2

[
a5 + (−n + 2)a2

3

]
+

(−n)!
(−2n + 5)!(n − 6)!

an−6
2 [a6 + (−2n + 5)a3a4] +

∑
j≥7

an− j
2 V j

such that V j (7 ≤ j ≤ n) is a homogeneous polynomial in the variables a2, a3, . . . , an, and the expressions such as (for
example) (−n)! are to be interpreted symbolically by

(−n)! ≡ Γ(1 − n) := (−n)(−n − 1)(−n − 2) · · · , with n ∈N0 :=N ∪ {0}, N := {1, 2, 3, · · · }.

In particular, the first three terms of K−n
n−1 are given by

K−2
1 = −2a2, K−3

2 = 3
(
2a2

2 − a3

)
and K−4

3 = −4
(
5a3

2 − 5a2a3 + a4

)
.

In general, for any real number p the expansion of Kp
n is given below (see for details, [1]; see also [2, p. 349])

Kp
n = pan+1 +

p(p − 1)
2

D2
n +

p!
(p − 3)!3!

D3
n + · · · +

p!
(p − n)!n!

Dn
n, (5)

where Dp
n = Dp

n(a2, a3, . . . , an+1) (see for details [42]). We also have

Dm
n (a2, a3, . . . , an+1) =

∞∑
n=1

m!(a2)µ1 · . . . · (an+1)µn

µ1! · . . . · µn!
, (6)

where the sum is taken over all nonnegative integers µ1, . . . , µn satisfying the conditions{
µ1 + µ2 + · · · + µn = m
µ1 + 2µ2 + · · · + nµn = n.

It is clear that Dn
n(a2, a3, . . . , an+1) = an

2 .

Lemma 2.2. [46] Let f ∈ Hλ,µ
Σ

(
ϕ; Θ

)
. Then we have the following expansion:

(1 − λ)
(

f ∗Θ(z)
z

)µ
+ λ( f ∗Θ)′(z)

(
f ∗Θ(z)

z

)µ−1

=1 +

∞∑
n=2

Fn−1(a2b2, a3b3, · · · , anbn)zn−1,
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where

Fn−1(a2b2, a3b3, · · · , anbn) =

(
µ + (n − 1)λ

µ

)
Kµ

n−1(a2b2, a3b3, · · · , anbn)

= [µ + (n − 1)λ](µ − 1)! ×

 ∑
i1+···+(n−1)in−1=n−1

(a2b2)i1 (a3b3)i2 · · · (anbn)in−1

i1!i2! · · · in−1![µ − (i1 + i2 + · · · + in−1)]!

 .
Lemma 2.3. [46] Let f ∈ Hλ,µ

Σ

(
ϕ; Θ

)
. Then we have the following expansion:

(1 − λ)
(

( f ∗Θ)−1(w)
w

)µ
+ λ(( f ∗Θ)−1)′(w)

(
( f ∗Θ)−1(w)

w

)µ−1

=1 +

∞∑
n=2

Fn−1(A2,A3, · · · ,An)wn−1,

where

Fn−1 =

(
µ + (n − 1)λ

µ

)
Kµ

n−1 and An =
1
n

K−n
n−1(a2b2, a3b3, · · · , anbn).

Lemma 2.4. [46] Let f ∈ Hλ,µ
Σ

(
ϕ; Θ

)
. Then

Fn−1(a2b2, a3b3, · · · , anbn) =

n−1∑
k=1

BkDk
n−1(p1, p2, · · · , pn−1) (7)

and

Fn−1(A2,A3, · · · ,An) =

n−1∑
k=1

BkDk
n−1(q1, q2, · · · , qn−1), (8)

where Fn−1 and An are given by Lemma 2.3.

Lemma 2.5. [3] Let f (z) = z +
∞∑

k=n
akzk; (n ≥ 2) be a univalent function inU and

f−1(w) = w +

∞∑
k=n

ckwk; (|w| < r0( f ); r0( f ) ≥
1
4

).

Then

c2n−1 = na2
n − a2n−1 and ck = −ak for (n ≤ k ≤ 2n − 2).

Theorem 2.6. Let f (z) = z +
∞∑

k=n
akzk
∈ H

λ,µ
Σ

(
ϕ; Θ

)
be given by (1). Then

|an| ≤ min

 B1

[µ + (n − 1)λ]bn
,

√
2B1

n[µ + (2n − 2)λ]b2n−1

 (n ≥ 3) (9)

and

|na2
n − a2n−1| ≤

B1

[µ + (2n − 2)λ]b2n−1
.



D. Alimohammadi et al. / Filomat 34:14 (2020), 4709–4721 4714

Proof. Let f (z) = z +
∞∑

k=n
akzk
∈ H

λ,µ
Σ

(
ϕ; Θ

)
. Then there are two functions u, v ∈ Ω with u(z) =

∞∑
n=1

pnzn and

v(z) =
∞∑

n=1
qnzn, respectively, so that

(1 − λ)
(

f ∗Θ(z)
z

)µ
+ λ( f ∗Θ)′(z)

(
f ∗Θ(z)

z

)µ−1

= ϕ(u(z))

and

(1 − λ)
(

( f ∗Θ)−1(w)
w

)µ
+ λ(( f ∗Θ)−1)′(w)

(
( f ∗Θ)−1(w)

w

)µ−1

= ϕ(v(w)),

where by the relations (6) and (3) we have,

ϕ(u(z)) = 1 + B1p1z + (B1p2 + B2p2
1)z2 + · · · = 1 +

∞∑
n=1

n∑
k=1

BkDk
n(p1, p2, · · · , pn)zn

and

ϕ(v(w)) = 1 +

∞∑
n=1

n∑
k=1

BkDk
n(q1, q2, · · · , qn)wn.

Since ak = 0 for 2 ≤ k ≤ n − 1, so from Lemma 2.3, by the definition of Kp
n in (5), we obtain An = −anbn and

since B1 > 0 we have p1 = · · · = pn−2 = 0, q1 = · · · = qn−2 = 0. From Lemmas 2.2-2.4 according to (7) and (8),
we have

[µ + (n − 1)λ]anbn = B1pn−1

and

−[µ + (n − 1)λ]anbn = B1qn−1.

Now, taking the absolute values of the above equalities and applying Lemma 3.1 with |pn−1| ≤ 1 − |p1|
2
≤

1, |qn−1| ≤ 1 − |q1|
2
≤ 1, it yields

|an| ≤
B1

[µ + (n − 1)λ]bn
(n ≥ 3). (10)

On other the hand, using Lemma 2.5, we have cn = −an for k = n and so according to the above inequality,
it yields

|cn| ≤
B1

[µ + (n − 1)λ]bn
(n ≥ 3). (11)

Also, in view of Lemma 2.5, using the inequalities (10) and (11), we obtain

|an| ≤

√
|a2n−1| + |c2n−1|

n
≤

√
2B1

n[µ + (2n − 2)λ]b2n−1
(n ≥ 3). (12)

From (10) and (12) we conclude that the inequality (9) holds. Also, by (11) and using Lemma 2.5, we get

|na2
n − a2n−1| = |c2n−1| ≤

B1

[µ + (2n − 2)λ]b2n−1
.

This completes the proof.

In particular, we get the following corollaries.
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Corollary 2.7. Let f (z) = z +
∞∑

k=n
akzk
∈ H

λ,µ
Σ

( 1+(1−2β)z
1−z ; z

1−z

)
be given by (1). Then

|an| ≤ min

 2(1 − β)
[µ + (n − 1)λ]

,

√
4(1 − β)

n[µ + (2n − 2)λ]

 (n ≥ 3)

and

|na2
n − a2n−1| ≤

2(1 − β)
[µ + (2n − 2)λ]

.

Proof. For

Θ(z) =
z

1 − z

and

ϕ(z) =
1 + (1 − 2β)z

1 − z
= 1 + 2(1 − β)z + 2(1 − β)z2 + · · · (0 ≤ β < 1, z ∈ U),

where B1 = 2(1 − β) in Theorem 2.6, it gives the result stated in the corollary.

Remark 2.8. (i) The bound for |an| in Theorem 2.6 is a improvement of the estimation given in Theorem 1.3.

(ii) From Corollary 2.7, the bound for |an| is smaller than the estimate obtained in [10, Theorem 1].

(iii) Letting λ = µ = 1, λ = 1 and µ = 1 in Corollary 2.7, we obtain an improvement of the estimates obtained in
[20, Theorem 2.1], [18, Theorem 1] and [19, Theorem 2.1], respectively.

Corollary 2.9. Let f (z) = z +
∞∑

k=n
akzk
∈ H

λ,µ
Σ

((
1+z
1−z

)α
; z

1−z

)
be given by (1). Then

|an| ≤ min

 2α
[µ + (n − 1)λ]

,

√
4α

n[µ + (2n − 2)λ]

 (n ≥ 3)

and

|na2
n − a2n−1| ≤

2α
[µ + (2n − 2)λ]

.

Proof. For

Θ(z) =
z

1 − z

and

ϕ(z) =
(1 + z

1 − z

)α
= 1 + 2αz + 2α2z2 + · · · (0 < α ≤ 1, z ∈ U),

where B1 = 2α in Theorem 2.6, it gives the required result.
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3. Coefficient bounds |a2a3 − a4| of theVγ(ϕ)

In this section, we obtain the sharp bounds on the functional |a2a3 − a4| for the classVγ(ϕ). For this goal,
we need the following lemmas.

Lemma 3.1. [25, p. 172] Let ω ∈ Ω with ω(z) =
∞∑

n=1
wnzn for all z ∈ U. Then |w1| ≤ 1 and

|wn| ≤ 1 − |w1|
2 for all n ∈Nwith n ≥ 2.

Lemma 3.2. [4, 28] If ω ∈ Ω with ω(z) =
∞∑

n=1
wnzn (z ∈ U), then for any real numbers q1 and q2, the following sharp

estimate holds:

|p3 + q1w1w2 + q2w3
1| ≤ H(q1; q2),

where

H(q1; q2) =



1 if (q1, q2) ∈ D1 ∪D2 ∪ {(2, 1)},
|q2| if (q1, q2) ∈ ∪7

k=3Dk,

2
3 (|q1| + 1)

(
|q1 |+1

3(|q1 |+1+q2)

) 1
2 if (q1, q2) ∈ D8 ∪D9,

q2

3

(
q2

1−4
q2

1−4q2

) (
q2

1−4
3(q2−1)

) 1
2

if (q1, q2) ∈ D10 ∪D11 \{(2, 1)},

2
3 (|q1| − 1)

(
|q1 |−1

3(|q1 |−1−q2)

) 1
2 if (q1, q2) ∈ D12,

and the sets Dk, k = 1, 2, . . . , 12 are defined as follows:

D1 =
{
(q1, q2) : |q1| ≤

1
2
, |q2| ≤ 1

}
,

D2 =
{
(q1, q2) :

1
2
≤ |q1| ≤ 2,

4
27

(
(|q1| + 1)3

)
− (|q1| + 1) ≤ q2 ≤ 1

}
,

D3 =
{
(q1, q2) : |q1| ≤

1
2
, q2 ≤ −1

}
,

D4 =
{
(q1, q2) : |q1| ≥

1
2
, q2 ≤ −

2
3

(|q1| + 1)
}
,

D5 =
{
(q1, q2) : |q1| ≤ 2, q2 ≥ 1

}
,

D6 =
{
(q1, q2) : 2 ≤ |q1| ≤ 4, q2 ≥

1
12

(q2
1 + 8)

}
,

D7 =
{
(q1, q2) : |q1| ≥ 4, q2 ≥

2
3

(|q1| − 1)
}
,

D8 =
{
(q1, q2) :

1
2
≤ |q1| ≤ 2, −

2
3

(|q1| + 1) ≤ q2 ≤
4

27

(
(|q1| + 1)3

)
− (|q1| + 1)

}
,

D9 =

(q1, q2) : |q1| ≥ 2, −
2
3

(|q1| + 1) ≤ q2 ≤
2|q1|(|q1| + 1)

q2
1 + 2|q1| + 4

 ,
D10 =

(q1, q2) : 2 ≤ |q1| ≤ 4,
2|q1|(|q1| + 1)

q2
1 + 2|q1| + 4

≤ q2 ≤
1
12

(q2
1 + 8)

 ,
D11 =

(q1, q2) : |q1| ≥ 4,
2|q1|(|q1| + 1)

q2
1 + 2|q1| + 4

≤ q2 ≤
2|q1|(|q1| − 1)

q2
1 − 2|q1| + 4

 ,
D12 =

(q1, q2) : |q1| ≥ 4,
2|q1|(|q1| − 1)

q2
1 − 2|q1| + 4

≤ q2 ≤
2
3

(|q1| − 1)

 .
Theorem 3.3. If the function f ∈ Vγ(ϕ) has the power expansion series given by (1), then

|a2a3 − a4| ≤
B1

3 + γ
H(q1; q2), (13)
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where H(q1; q2) is given by Lemma 3.2 and

q1 =
2B2

B1
+

B1[3(1 − γ) − (3 + γ)]
(1 + γ)(2 + γ)

,

q2 =

(
3(1 − γ) − (3 + γ)

) (
B2(1 + γ)2 + B2

1(1 − γ)
)

(1 + γ)3(2 + γ)
−

B2
1(1 − γ)

(1 + γ)3 +
B3

B1
.

(14)

The bound (13) is sharp.

Proof. If f ∈ Vγ(ϕ) has the form (1), by the definition of the subordination there exists ν ∈ Ω, with

ν(z) =
∞∑

n=1
dnzn, z ∈ U, such that

γ f ′(z) + (1 − γ)
z f ′(z)

f (z)
= ϕ(ν(z)) = 1 + B1d1z +

(
B1d2 + B2d2

1

)
z2

+
(
B1d3 + 2d1d2B2 + B3d3

1

)
z3 + · · · (z ∈ U).

Comparing the corresponding coefficients of the above relation, it follows that
a2(1 + γ) = B1d1,
(2 + γ)a3 − (1 − γ)a2

2 = B1d2 + B2d2
1,

(3 + γ)a4 − (1 − γ)
(
3a2a3 − a3

2

)
= B1d3 + 2d1d2B2 + B3d3

1.

Then from above equations we get
a2 = B1d1

1+γ ,

a3 = 1
2+γ

[
B1d2 + d2

1

(
B2 +

B2
1(1−γ)

(1+γ)2

)]
,

a4 = 1
3+γ

[
B1d3 +

(
2B2 +

3B2
1(1−γ)

(1+γ)(2+γ)

)
d1d2 +

(
3B1(1−γ)(B2(1+γ)2+B2

1(1−γ))
(1+γ)3(2+γ) −

B3
1(1−γ)

(1+γ)3 + B3

)
d3

1

]
.

Therefore

a4 − a2a3 =
B1

3 + γ

(
d3 +

[
2B2

B1
+

B1[3(1 − γ) − (3 + γ)]
(1 + γ)(2 + γ)

]
d1d2

+
[ (3(1 − γ) − (3 + γ)

) (
B2(1 + γ)2 + B2

1(1 − γ)
)

(1 + γ)3(2 + γ)
−

B2
1(1 − γ)

(1 + γ)3 +
B3

B1

]
d3

1

)
.

Now by Lemma 3.2 we have

|a2a3 − a4| =
B1

3 + γ

∣∣∣∣∣d3 +

[
2B2

B1
+

B1[3(1 − γ) − (3 + γ)]
(1 + γ)(2 + γ)

]
d1d2

+
[ (3(1 − γ) − (3 + γ)

) (
B2(1 + γ)2 + B2

1(1 − γ)
)

(1 + γ)3(2 + γ)
−

B2
1(1 − γ)

(1 + γ)3 +
B3

B1

]
d3

1

∣∣∣∣∣
≤

B1

3 + γ
H(q1; q2),

where q1 and q2 are given in (14). This completes the proof.

For γ = 0 in Theorem 3.3, we obtain the following result.
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Corollary 3.4. If the function f ∈ S∗(ϕ) has the power expansion series given by (1), then

|a2a3 − a4| ≤
B1

3
H(q1; q2),

where H(q1; q2) is given by Lemma 3.2, q1 = 2B2/B1 and q2 = (B3 − B3
1)/B1. The bound is sharp.

Corollary 3.5. [11, Theorem 2.1] If the function f ∈ S∗(α) has the power expansion series given by (1), then

|a2a3 − a4| ≤


2
3 (1 − α)[4(1 − α)2

− 1], 0 ≤ α ≤ 1 −
√

3/2,

2(1−α)

3
√

1−(1−α)2
, 1 −

√
3/2 < α < 1.

The bounds are sharp.

Proof. For

ϕ(z) =
1 + (1 − 2α)z

1 − z
= 1 + 2(1 − α)z + 2(1 − α)z2 + · · · (0 ≤ α < 1, z ∈ U),

where B1 = B2 = B3 = 2(1− β) and q1 = 2, q2 = 1− 4(1− α)2 (with respect to D4 and D8) in Corollary 3.4, we
obtain the required result.

Corollary 3.6. [14, Theorem 2.1(2)] If the function f ∈ S∗q has the power expansion series given by (1), then

|a2a3 − a4| ≤
4
√

6
27

.

The bound is sharp.

Proof. For

ϕ(z) = z +
√

1 + z2 = 1 +

∞∑
n=1

Bnzn = 1 + z +
z2

2
−

z4

8
+ · · · (z ∈ U),

where q1 = 1, q2 = −1 (with respect to D8) in Corollary 3.4, it gives the result stated in the corollary.

Corollary 3.7. [14, Theorem 3.1(2)] If the function f ∈ S∗lλ has the power expansion series given by (1), then

|a2a3 − a4| ≤
λ
6
.

The bound is sharp.

Proof. If we take

ϕ(z) =
√

1 + λz = 1 +

∞∑
n=1

Bnzn = 1 +
λ
2

z −
λ2

8
z2 +

λ3

16
z3 + · · · (λ ∈ (0, 1], z ∈ U),

where q1 = −λ/2, q2 = −λ2/8 (with respect to D1) in Corollary 3.4, then we have the required result.

Corollary 3.8. [22, Theorem 3.2] If the function f ∈ S∗B has the power expansion series given by (1), then

|a2a3 − a4| ≤
2
3

√
6
17
.

The bound is sharp.
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Proof. Letting

ϕ(z) = eez
−1 = 1 +

∞∑
n=1

Bnzn = 1 + z + z2 +
5
6

z3 + · · · (z ∈ U),

where q1 = 2, q2 = −1/6 (with respect to D8) in Corollary 3.4, it gives the result stated in the corollary.

Taking

ϕ(z) = 1 + sin z = 1 +

∞∑
n=1

Bnzn = 1 + z −
z3

6
+ · · · (z ∈ U),

where q1 = 0, q2 = −7/6 (with respect to D3) in Corollary 3.4, we have a correction of the result obtained in
[44, Theorem 3] in the next result:

Corollary 3.9. If the function f ∈ S∗s has the power expansion series given by (1), then

|a2a3 − a4| ≤
7

18
.

The bound is sharp.

Corollary 3.10. [43, Corollary 2] If the function f ∈ S∗e has the power expansion series given by (1), then

|a2a3 − a4| ≤
8

9
√

7
.

The bound is sharp.

Proof. Setting

ϕ(z) = ez = 1 +

∞∑
n=1

Bnzn = 1 + z +
z2

2
+

z3

6
+ · · · (z ∈ U),

where q1 = 1, q2 = −5/6 (with respect to D8) in Corollary 3.4, we have the required result.

Remark 3.11. (i) For λ = 1 in Corollary 3.7, we obtain the result given in [30, Theorem 2.5].

(ii) Setting ϕ(z) = [(1 + z)/(1 − z)]α (0 < α ≤ 1) in Corollary 3.4, we obtain the estimate obtained in [12, Theorem
2.1].

(iii) Takeing γ = 1 and ϕ(z) = (1 + z)/(1 − z) in Theorem 3.3, we obtain the estimate obtained in [8, Theorem 2.1].
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