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Abstract. This work investigates the co-dynamics of Hepatitis E and HIV. Initially, we formulate a
co-infection dynamics model of Hepatitis E and HIV. Then, we analyze each model and discuss their
mathematical results. After that, we investigate the full model and present their basic mathematical
results. A bifurcation analysis for full model is investigated. Further, we formulate a mathematical model
with five controls. Optimal control model is formulated and the necessary results of the optimal control
characterization are presented. Moreover, numerical results with different control strategies are presented.
It is shown that each strategy has its own importance but for the disease elimination the combination of all
the five controls at the same time can best decrease the disease burden from the community.

1. Introduction

The Hepatitis E is an infectious disease, which is one of the types of Hepatitis. It is self-limiting and
sometimes becoming severe and especially in pregnant woman with recorded mortality rate of 20 percent
[1]. The middle-aged and especially males are the main targets of HEV in the individuals belong to devel-
oped countries [2–5]. The documents show the rapid increase in immunosuppressed transplants patients
[6] and hematological malignancies individuals [7]. The co-infection of HIV and HEV is documented in
2009 in UK and France [8, 9]. In 2015, the authors in [10] documented the facts of HIV-HEV co-infection
infected people. From 1985-2009, the data reveals the evidence of HEV and HIV co-infection either acute
or prior HEV infection is 4 % and 5 % respectively of 194 infected people. It is also shown that among
HIV infected individuals the acute Hepatitis individuals is considered one of the causes. In 2015, a study
conducted on patients of HIV-HEV infected persons from Italy and it is concluded that the conducted
research shows the presence of Hepatitis E in infected patients of HIV with a higher number of circulations,
whereas in the general population it is observed a low prevalence of HEV antibodies [11]. In [12], it is
documented the co-infection of HIV-HEV among patients in Spain with per year incidence rate in range
of 0 % to 0.9 %. In HIV infected patients, the route of HEV acquisition has not been determined yet. An
another study showed the presence of Hepatitis E and HIV in patients in Iran [13].

HIV/AIDS are confirmed by many studies that their spread in individuals is 7000 per day [14]. A large
number of death from HIV/AIDS is absolutely a life threat to human existence, particular in less developed
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countries like Pakistan, Bangladesh, India, and in sub-Saharan African, where there is a shortage of health
facilities. Recent literature shows that more than 30 million people have been killed due to HIV [15]. The
HIV has targeted mainly the population of youth, who constitute the working population. It may not be
quantified clearly the economic and social burden of HIV/AIDS in many countries. Thus, it is necessary
that some serious steps regarding the disease of HIV/AIDS should be taken in order to reduce further the
spread of disease. Therefore, mathematical models play an important role in disease epidemiology and
biological systems [16–19] to get insight into the disease.

Recent literature shows that the mathematical models have gained much attention regarding the disease
dynamics and its role in the spread and control [20, 21]. In [21], the authors investigated the co-dynamics
of HIV/AIDS and cryptosporidiosis. Similarly, many researchers investigated the HIV dynamics with pre-
vention and its impact on outbreak and epidemics([22–24]). Since HIV/AIDS is spreading very fast in the
communities, and it is noteworthy, that awareness and campaign must be there to get rid the disease. So, in
this regard many researchers highlighted this issue through mathematical modeling approach, see ([25–27]).
Besides this, HIV/AIDS and many other diseases, a lot of articles have been published to show the dynamics
of disease and its burden on the community ([20, 25, 26, 28–33]). In literature, very little attention has been
made to investigate the dynamics of Hepatitis E and there is no such model with HIV that describes their
co-infection. According to the author’s knowledge, no one not paid any attention to study the HIV and
Hepatitis E co-infection. So, this paper will briefly explain a mathematical modeling approach to explore
the co-infection dynamics of Hepatitis E and HIV/AIDS with different control strategies. The Hepatitis E
with optimal control is studied in [34].

The present paper describes the co-infection of Hepatitis E and HIV/AIDS. Both the diseases are very
severe and life threaten for the society. Therefore, it is important to formulate a mathematical model on
Hepatitis E and HIV. A detailed discussion on both the diseases have been presented in Section 1. The
remaining paper can be sectionized as per the following. The model formulation of HIV and Hepatitis E
as a co-infection model is investigated in Section 2. The formulation of only Hepatitis E model is given in
Section 3 and its mathematical results is investigated. In Section 4, we present only the HIV/AIDS model
and show its mathematical results. In Section 5, we discuss the full model of HIV/AIDS and Hepatitis E and
present their mathematical results. We formulate the control problem in Section 6 and show the necessary
results associated to the model. Numerical results are obtained and discussed with detailed by different
control strategies in Section 7 while in Section 8, the work is summarized by a brief conclusion.

2. Model Formulation

This section presents the model formulation of Hepatitis E and HIV/AIDS co-dynamics. Based on the
nature of both the diseases, we denote the total population of individuals by N(t) and subdividing into
seven different classes; susceptible individuals S(t), individuals exposed to Hepatitis E only E(t), individuals
infected with Hepatitis E only I(t), those recovered from Hepatitis E only by R(t), people infected with HIV
only H(t), those who infected with AIDS only A(t), individuals infected both from Hepatitis E and HIV, IHE.
Besides this, the microbacterium plays an important role in the disease spread of Hepatitis E only, so we
also include En class in the model. The Hepatitis E only individuals infected through the environment is
En. Thus, N = S + E + I + R +H + A + IHE, so we obtain the following system as per the above discussions:
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d
dt S = Λ − dS − (λ1 + λ2)S,

d
dt E = λ1S − (d + δ)E,

d
dt I = δE − (π + d + ψ)I − λ2I,

d
dt R = πI − dR,

d
dt En = θI − ηEn,

d
dt H = λ2S − (χ + d + ϑ)H −

β1τIH

N + (1 − r)γIHE,

d
dt A = χH − (d + ϑ)A −

β1τIA

N + rγIHE,

d
dt IHE =

β1τI(H+A)

N + λ2I − dIHE − γIHE,

(1)

where

λ1 =
β1τI

S + E + I + R +H + A + IHE
+ αEEn,

λ2 =
β2ξ(H + A)

S + E + I + R +H + A + IHE

and

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, En(0) = En0 ≥ 0, H(0) = H0 ≥ 0,

A(0) = A0 ≥ 0, IHE(0) = IHE(0) ≥ 0. (2)

In co-infection model (1), the parameter Λ represents the recruitment rate of the susceptible people, while
its natural mortality rate is d. The natural mortality rate of humans due to Hepatitis E only, HIV only and
dually infected, are ψ, ϑ and γ respectively. The exposed Hepatitis E individuals are infected with a rate δ.
The individuals infected only with Hepatitis E are recovered through the parameter π, and every infected
individual from Hepatitis E contributes averagely to the environment by a parameter θ. The HIV infected
individuals transfer rate to AIDS class is given by χ. The Hepatitis E virus decays in the environment
is given by η. The contact rate of Hepatitis E only is given by β1, while the contact rate of HIV is given
by β2. The parameters τ and ξ are the contact rates while β1 and β2 are the transmission probabilities.
The parameter r is the rate of co-infected humans while rγ is the proportion to AIDS class while the rate
γ defines the death rate of dually infected individuals. The parameter αE represents the probability of
infection through environment.

2.1. Model basic properties

2.2. Solution positivity

The model (1) that shows the population of human, so, it is clear that the variables as well as the
parameters are non-negative and it can be shown that for non-negative values, the systems leads to non-
negative. Considering the feasible region for the Hepatitis E and HIV/AIDS co-infection model in the
following:

⊗

=
{

(S,E, I,R,H,A, IHE) ∈ R7
+ : N ≤ Λd , En ∈ R+ : En ≤

Λθ
dη

}

.

Further, we show the positive invariance of
⊗

, where the solutions associated to the system (1) ∀ t > 0
remains in

⊗

. Summing the total population of the model (1) leads to the following:

N′(t) = Λ − dN − ψI − ϑ(H + A) ≤ Λ − dN.
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It follows by using a standard comparison method:

N(t) ≤ N(0)exp(−dt)+
Λ

d
(1 − exp(−dt)).

Particularly, N(t) ≤ Λd when N(0) ≤ Λd . So, the given region is positively invariant. Thus, we will discuss the

co-infection model (1) in
⊗

which is epidemiologically and mathematically well posed. Next, we present
the mathematical analysis of each model in details.

3. Only Hepatitis E model

Here, we only investigate the Hepatitis E model and present its mathematical results. The only Hepatitis
E model can be obtained by setting H = A = IHE = 0 in model (1), which leads to the following:
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

dS
dt = Λ −

β1τIS

N − αEEnS − dS,

dE
dt =

β1τIS

N + αEEnS − (d + δ)E,

dI
dt = δE − (d + π + ψ)I,

dR
dt = πI − dR,

dEn

dt = θI − ηEn,

(3)

where N = S + E + I + R.

3.1. Stability results

This subsection determines the basic results associated to the only Hepatitis E model (3). We denote the
disease free equilibrium of the Hepatitis E only model (3) shown by PE

0 and can be obtained by

PE
0 =

(Λ

d
, 0, 0, 0, 0

)

.

First, we obtain an expression for the basic reproduction number of the only Hepatitis E model (3). For
only Hepatitis E model (3), the basic reproduction number shown by RE

0 and is obtained by the following

method in [37]. In the computations of RE
0

involved the necessary matrices

F =
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0 τβ1
ΛαE

d
0 0 0
0 0 0
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


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





, V =
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δ + d 0 0
−δ d + π + ψ 0
0 −θ η

















.

For the only Hepatitis E model (3), we finally obtain the basic reproduction number RE
0

as,

RE
0 =

δ
(

β1ηdτ + θΛαE
)

ηd(δ + d)(d + π + ψ)
.

The following theorem is presented for the local stability of the only Hepatitis E model (3).

Theorem 3.1. If RE
0
< 1, then, the only Hepatitis E model (3) is locally asymptotically stable (LAS).

Proof. The only Hepatitis E model (3) at PE
0

is

J(PE
0 ) =


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


















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

−d 0 −τβ1 0 −
ΛαE

d

0 −(δ + d) τβ1 0 ΛαE

d
0 δ −(d + π + ψ) 0 0
0 0 π −d 0
0 0 θ 0 −η




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Obviously in J(PE
0
), the two eigenvalues are −d, −d are negative. The rest of the values with negative real

parts can be obtained by solving the following equation,

λ3 + Φ1λ
2 + Φ2λ + Φ3 = 0,

where

Φ1 = δ + η + 2d + π + ψ,

Φ2 = −β1δτ + (d + ψ + π)(d + δ + η) + η(d + δ),

Φ3 = η(δ + d)(d + π + ψ)(1 − RE
0 ).

Clearly,Φ1 andΦ2 are positive andΦ3 is positive only whenRE
0
< 1. Also, it is easy to verify thatΦ1Φ2 > Φ3,

which is the Routh-Hurtwiz conditions. Thus, it is concluded that all the eigenvalues of the only Hepatitis
E model (3) at PE

0
have negative real parts. So, the only Hepatitis E model (3) at PE

0
is locally asymptotically

stable if RE
0
< 1.

3.2. Endemic Equilibria

In this subsection, we find the endemic equilibria of the only Hepatitis E model (3) shown by PE
1
=

(S∗,E∗, I∗,R∗,E∗n) and is given by:

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S∗ = Λ

d+λ
,

E∗ = λΛ

(d+δ)(d+λ)
,

I∗ = δλΛ
(d+δ)(d+λ)(d+ψ+π)

,

R∗ = πI∗

d ,

E∗n =
θI∗

η ,

where

λ =
β1τI∗

E∗ + I∗ + R∗ + S∗
+ αEE∗n,

satisfies the equation below,

P(λ) = c0λ
2
+ c1λ + c2, (4)

where

c0 = η(d + δ)(d + ψ + π)
(

(d + π)δ + d(d + ψ + π)
)

,

c1 = dη(d + δ)(d + ψ + π)
(

− β1δτ + ψ(2d + δ) + 2(d + π)(d + δ)
)

− αEδθΛ
(

(d + π)(d + δ) + dψ
)

,

c2 = d2η(d + δ)2(d + ψ + π)2(1 − RE
0 ).

The coefficient c0 in (4) is positive clearly while c2 can be positive if RE
0
< 1 and if RE

0
> 1, then it becomes

negative. The positive solution of equation (4) completely depends on the sign of c1. We can have a unique
endemic equilibrium if the condition holds, c2 < 0 ⇐⇒ RE

0 > 1. If c1 < 0 and c2 = 0 or their discriminant
is zero, then we have a unique endemic equilibrium. We can have two equilibria if c2 > 0, c1 < 0 and their
discriminant is positive. Besides, these cases no equilibria exists for the model.
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3.3. Global Stability of only Hepatitis E model

Here, we explore the global dynamics of the only Hepatitis E model (3) at the disease free case. For this,
we give the following result.

Theorem 3.2. The only Hepatitis E model (3) for RE
0
< 1 is globally asymptotically stable.

Proof. Let us defining the Lyapunov function below,

L(t) = Υ1E + Υ2I + Υ3En, (5)

where Υi, for i = 1, 2, 3 and to be determined later. The time derivative of equation (5) along the only
Hepatitis E model (3), is given by

L′(t) = Υ1[
β1τIS

N
+ αEEnS − (d + δ)E] + Υ2[δE − (d + π + ψ)I] + Υ3[θI − ηEn]

≤ Υ1[β1τI + αEEn − (d + δ)E] + Υ2[δE − (d + π + ψ)]I + Υ3[θI − ηEn]

= [Υ1β1τ − Υ2(d + π + ψ) + Υ3θ]I + [Υ2δ − (d + δ)Υ1]E + [Υ1αE − Υ3η]En

≤ (d + δ)(d + π + ǫ)(RE
0 − 1).

The last step is obtained by assigning the value toΥ1 = δ,Υ2 = (δ+d) andΥ3 =
δαE

η . Thus, L′[t] ≤ 0 ifRE
0
< 1.

So, we conclude that the only Hepatitis E model (3) is globally asymptotically stable at PE
0

iff RE
0
< 1.

4. Only HIV model

Here, we consider the only HIV model and explore its mathematical results. Putting S = E = I = R =
En = 0 in model (1), we can obtain the only HIV model (6), and is given by,
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d
dt S = Λ − dS − λ2S,

d
dt H = λ2S − (χ + d + ϑ)H,

d
dt A = χH − (d + ϑ)A,

(6)

where λ2 =
β2ξ(H+A)

S+H+A .

4.1. Stability analysis of HIV only model

This subsection determines the fundamental mathematical results associated to the only HIV model (6).
For the only HIV model (6), we denote its disease free equilibrium by EH0 and it can be obtained as follows:

EH0 = (S0, 0, 0) =
(Λ

d
, 0, 0

)

.

To show the stability results of the only HIV model (6), first, we have to obtain the basic reproduction
number, denoted by, R0H for the only HIV model (6). To do this, we follow the technique presented in [37]
and obtain R0H, for only HIV model (6), with the following information:

F =

(

ξβ2 ξβ2

0 0

)

, V =

(

d + χ + ϑ 0
−χ d + ϑ

)

.

We obtain for the only HIV model (6), the basic reproduction number R0H is as follows:

R0H =
β2ξ

d + ϑ
.

To establish the local stability of the only HIV model (6), we present the following theorem:
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Theorem 4.1. The given model (6) is LAS if R0H < 1 and it is unstable when R0H > 1.

Proof. At EH0, we have

J0H =


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







−d −ξβ2 −ξβ2

0 −(d + χ + ϑ) + ξβ2 ξβ2

0 χ −(d + ϑ)

















. (7)

The characteristics equation associated to J0H is

(λ + d)(λ2 + ℓ1λ + ℓ2λ) = 0,

where

ℓ1 = (d + χ + ϑ) + (d + ϑ)(1 − R0H),

ℓ2 = (d + ϑ)(d + χ + ϑ)(1 − R0H).

Clearly, −d < 0 and the remaining can easily be verified from the quadratic equation, when R0H < 1. So, the
only HIV model (6) at the equilibrium EH0, when R0H < 1, is locally asymptotically stable.

4.2. HIV/AIDS model and their endemic equilibria

The endemic equilibrium of the only HIV model (6), given by E∗
H
= (S∗,H∗,A∗), and can be obtained by
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S∗ = Λ
β2ξ−ϑ

,

H∗ =
Λ(d+ϑ)(R0H−1)
(β2ξ−ϑ)(d+ϑ+ξ) ,

A∗ =
χΛ(R0H−1)

(β2ξ−ϑ)(d+ϑ+ξ) .

For R0H > 1, then the endemic equilibrium of the only HIV model (6) exists.

5. Analysis of the full model

Here, in this section, we present the analysis of the co-infection model (1). The disease free equilibrium
of the co-infection model, denoted by E2, and can be obtained as follows:

E2 =
(Λ

d
, 0, 0, 0, 0, 0, 0, 0

)

.

To investigate the stability analysis of the full model (1), we need to obtain the basic reproduction number,
denoted by R0. In order to do this, we use the method presented in [37] on the system (1), and follow their
rule to obtain the basic reproduction number R0. We have
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δ + d 0 0 0 0 0
−δ d + π + ψ 0 0 0 0
0 −θ η 0 0 0
0 0 0 χ + d + ϑ 0 (r − 1)γ
0 0 0 −χ d + ϑ −rγ
0 0 0 0 0 γ + d


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Thus,

R0 = max
(

RE
0 ,R

H
0

)

=
( δ

(

αEθΛ + β1ηdτ
)

ηd(δ + d)(d + π + ψ)
,
β2ξ

d + ϑ

)

.

Next, we establish the local stability results of the disease free equilibrium E2 of the full model (1). We have:
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Theorem 5.1. The disease free equilibrium E2 of the full model (1) is locally asymptotically stable if R0 < 1.

Proof. The following Jacobian matrix is obtained at the disease free equilibrium E2:

J =
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






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


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−d 0 −τβ1 0 −
ΛαE

d −ξβ2 −ξβ2 0

0 −(δ + d) τβ1 0 ΛαE

d 0 0 0
0 δ −(d + π + ψ) 0 0 0 0 0
0 0 π −d 0 0 0 0
0 0 θ 0 −η 0 0 0
0 0 0 0 0 −(χ + d + ϑ) + ξβ2 ξβ2 (1 − r)γ
0 0 0 0 0 χ −(d + ϑ) rγ
0 0 0 0 0 0 0 −(γ + d)


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


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








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



































.

Obviously, the two eigenvalues of the Jacobian matrix J are negative, i.e., −d < 0, −d < 0 and −(γ + d) < 0.
The rest of the eigenvalues can be obtained through the following equation:

λ5 + ̟1λ
4 + ̟2λ

3 + ̟3λ
2 + ̟4λ + ̟5 = 0, (8)

where

̟1 = χ + δ + η + 3d + π + ψ + ϑ + (d + ϑ)
(

1 − RH
0

)

,

̟2 = η(χ + δ + 3d + π + ψ + ϑ) − β1δτ + (δ + d)(χ + 2d + π + ψ + ϑ)

+(χ + d + ϑ)(d+ π + ψ) + (d + ϑ)(χ+ δ + η + 3d + π + ψ + ϑ)(1 − RH
0 ),

̟3 = −β1δτ
(

−β2ξ + χ + 2(d + ϑ)
)

+ (δ + d)(χ + d + ϑ)(η + d + π + ψ)

+η(χ + d + ϑ)(d + π + ψ) + η(δ + d)(d+ π + ψ)(1 − RE
0 )+

(d + ϑ)((δ+ d)(χ + η + 2d + π + ψ + ϑ) + (d + π + ψ)(χ + η + d + ϑ) + η(χ + d + ϑ))×

(1 − RH
0 ),

̟4 = (d + ϑ)(χ + d + ϑ)
(

−β1δτ + η(δ + d) + (δ + d)(d+ π + ψ) + η(d + π + ψ)
)

(1 − RH
0 )

+η(δ + d)(χκ+ 2(d + ϑ))(d+ π + ψ)(1 − RE
0 )(1 − RH

0 )

̟5 = η(δ + d)(d + ϑ)(χ + d + ϑ)(d+ π + ψ)(1 − RE
0 )(1 − RH

0 ).

Clearly, the coefficient ̟i > 0 for i = 1, 2..., 5 can be shown easily that when R0 < 1. Further, the Routh-
Hurtwiz criteria ̟i > 0 for i = 1, 2..., 5 and the condition given below must be met

































̟1 1 0 0 0
̟3 ̟2 ̟1 1 0
̟5 ̟4 ̟3 ̟2 ̟1

0 0 ̟5 ̟4 ̟3

0 0 0 0 ̟5

































> 0. (9)

The condition (9) together, with R0 < 1, ensures, the fulfillment of the Routh-Hurtwiz criteria. So, it can
be concluded that the co-infection model described by (1), is locally asymptotically stable if R0 < 1 and the
condition (9) satisfies.
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5.1. Bifurcation analysis of the full model

Here, we present the bifurcation phenomenon of the co-infection model (1) by using the centre manifold
theory. In order to investigate the bifurcation analysis of the co-infection model, we consider RE

0
= 1 and

RH
0
= 1 if and only if

β1 = β
∗
1 =

δ(ηd(d + π + ψ) − θΛαE) + ηd2(d + π + ψ)

δηdτ

and

β2 = β
∗
2 =

d + ϑ

ξ
.

Further, we rename the variables of the full model by, S = y1, E = y2, I = y3, R = y4, En = y5, H = y6,
A = y7 and IHE = y8 and N = y1 + y2 + y3 + y4 + y6 + y7 + y8. Furthermore, employing the vector notation
−→y = (y1, y2, y3, y4, y5, y6, y7, y8), then, the co-infection model (1) can be described as in the form dy/dt = F−→x ,
with F = (11, 12, 13, 14, 15, 16, 17, 18)T is as follows:







































































































d
dt y1 = Λ − dy1 − (λ1 + λ2)y1,

d
dt y2 = λ1y1 − (d + δ)y2,

d
dt x3 = δy2 − (π + d + ψ)y3 − λ2 y3,

d
dt y4 = πy3 − dy4,

d
dt y5 = θy3 − ηy5,

d
dt y6 = λ2y1 − (χ + d + ϑ)y6 −

β1τy3 y6

N + (1 − r)γy8,

d
dt x7 = χy6 − (d + ϑ)y7 −

β1τy3 y7

N + rγy8,

d
dt y8 =

β1τy3(y6+y7)

N + λ2 y3 − dy8 − γy8,

(10)

where

λ1 =
β1τy3

N
+ αEy5

and

λ2 =
β2ξ(y6 + y7)

N
.

The evaluation of the Jacobian matrix at E2 of the system (10), given by JHE, leads to

JHE =





























































−d 0 −M1 0 −
ΛαE

d −d − ϑ −d − ϑ 0

0 −(δ + d) M1 0 ΛαE

d 0 0 0
0 δ −(d + π + ψ) 0 0 0 0 0
0 0 π −d 0 0 0 0
0 0 θ 0 −η 0 0 0
0 0 0 0 0 −χ d + ϑ (1 − r)γ
0 0 0 0 0 χ −(d + ϑ) rγ
0 0 0 0 0 0 0 −γ − d





























































.

where M1 =
η(d+π+ψ)d2+δ(ηd(d+π+ψ)−θΛαE)

δηd . It is obvious that one of the eigenvalues of the Jacobian matrix JHE

is zero, while the rest of have the negative real parts. So, the centre manifold theory is appropriate and
can be used to investigate the bifurcation analysis of the co-infection model (1). To proceed further, we
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have to compute left and right eigenvectors of JHE, respectively shown by
−→
l = [l1, l2, l3, l4, l5, l6, l7, l8]T and

−→m = [m1,m2,m3,m4,m5,m6,m7,m8]. The following result is then obtained

l1 = −
l7(d + ϑ)(χ + d + ϑ)

χd
−

l3
(

δd + δπ + δψ + d2 + dπ + dψ
)

δd
,

l2 =
l3(d + π + ψ)

δ
, l4 =

πl3
d
, l5 =

θl3
η
, l6 =

l7(d + ϑ)

χ
,

l3 = l3 > 0, l7 = l7 > 0, l8 = 0.

and

m1 = 0, m2 = m2 > 0, m6 = m6 > 0, m3 =
m2(δ + d)

δ
, m4 = 0, m5 =

ΛαEm2

ηd
,

m7 = m6, m8 =
γm6

γ + d
.

The value of a after some rigorous computation leads to

a = −
2
(

ηK1dm6l7 + χK2m2l3(γ + d)
)

χ2δηΛd(γ + d)
,

where

K1 = 2β2δdξl7(γ + d)(χ+ d + ϑ)2 + χl3
(

β1δdτ(γ(−χ + d + ϑ) + 2(.d + ϑ)) + β2(χ + d + ϑ)
)

+χξl3
(

γ(δ(d + 2π) + 2d(d + π + ψ)) + 2(.δ(d + π) + d(d + π + ψ))
)

,

K2 = χl3l7
(

β2ηd2ξ(χ(δ + d) + (2δ + d)(d + ϑ)) + β1χδηd2τ + δθΛρ(d + ϑ)(χ+ d + ϑ)
)

+χl3
(

β1ηdτ(δ(d + π) + d(d + π + ψ)) + θΛρ(δ + d)(d + π + ψ)
)

.

Then, the computation of b leads to:

b = τm2l3 > 0.

The sign of a can best determine the possibility of backward bifurcation in the co-infection model as b is
clearly positive.

Theorem 5.2. The co-infection model will undergo backward bifurcation if the condition a is positive.

6. Application of optimal control

Models of infectious disease with control analysis are used widely for the possible elimination of
disease control and prevention. A variety of articles are published in the literature with control for different
infectious diseases such as [38–41]. The optimal control problem is formulated with different controls. We
consider five controls for the possible elimination of Hepatitis E and HIV-AIDS from the community. The
controls are:

• u1 : It denotes the possible prevention of individuals infected by Hepatitis E virus.

• u2 : It shows the efforts made for the prevention of HIV infections.
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• u3: Treatment of prevention efforts or the available treatment for the individuals infected with Hep-
atitis E.

• u4 : Treatment or prevention efforts for HIV infected individuals.

• u5 : Drug efficacy for the treatment of HIV-AIDS and Hepatitis E individuals.

Considering the above assumptions, the optima control problem can be shown through the following
system of nonlinear differential equations:



















































































































d
dt S = Λ − dS −

(

β1τI

N + αnEn

)

(1 − u1)S − (1 − u2)
(

β2ξ(H+A)

N

)

S,

d
dt E = (1 − u1)

(

β1τI

N + αnEn

)

S − (d + δ)E,

d
dt I = δE − (πu3 + d + ψ)I − (1 − u2)

(

β2ξ(H+A)

N

)

I,

d
dt R = πu3I − dR,

d
dt En = θI − ηEn,

d
dt H = (1 − u2)

(

β2ξ(H+A)

N

)

S − (u4χ + d + ϑ)H − (1 − u1)
β1τIH

N + (1 − u5r)γIHE,

d
dt A = u4χH − (d + ϑ)A − (1 − u1)

β1τIA

N + u5rγIHE,

d
dt IHE = (1 − u1)

β1τI(H+A)

N + (1 − u2)
(

β2ξ(H+A)

N

)

I − dIHE − u5γIHE.

(11)

For the optimal control problem (11), we define the following objective functional:

J(u1, u2, u3, u4, u5) =

∫ T f

0

[B1E + B2I + B3H + B4A + B5IHE + B6u2
1

+B7u2
2 + B8u2

3 + B9u2
4 + B10u2

5]dT. (12)

In control problem (11), the Hepatitis E individuals, HIV infection and the co-infection individuals together
with associated and the possible treatment and preventions controls, ui for i = 1, 2, ..., 5, are minimized.
In objective functional (12), the final time is shown by T f , while the coefficients, Bi for i = 1, ..., 10 denote
the weight and the balancing constants for the state and control variables in the objective functionals. We
define the control set in the following for our optimal control problem with the defined controls u∗

i
, for

i = 1, ..., 5, such that

Σ = {(u1, u2, u3, u4, u5)/ui(t) is Lebes1ue measurable on [0, 1], where

0 ≤ ui(t) ≤ 1, i = 1, 2...5}. (13)

Further, we define the Lagrangian L and the HamiltonianH for the optimal control problem (11), given by

L(E, I,H,A, IHE, u1, u2, u3, u4, u5) = B1E + B2I + B3H + B4A + B5IHE + B6u2
1 + B7u2

2

+B8u2
3 + B9u2

4 + B10u2
5.

and

H = B1E + B2I + B3H + B4A + B5IHE + B6u2
1 + B7u2

2 + B8u2
3 + B9u2

4 + B10u2
5+

λS[Λ − dsS −
(β1τI

N
+ αnEn

)

(1 − u1)S − (1 − u2)
(β2ξ(H + A)

N

)

S]+
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λE[(1 − u1)
(β1τI

N
+ αnEn

)

S − (d + δ)E]+

λI[δE − (πu3 + d + ψ)I − (1 − u2)
(β2ξ(H + A)

N

)

I]+

λR[πu3I − dR] + λEn
[θI − ηEn] + λH[(1 − u2)

(β2ξ(H + A)

N

)

S − (u4χ + d + ϑ)H

−(1 − u1)
β1τIH

N
+ (1 − u5r)γIHE]+

λA[u4χH − (d + ϑ)A − (1 − u1)
β1τIA

N
+ u5rγIHE]+

λIHE
[(1 − u1)

β1τI(H + A)

N
+ (1 − u2)

(β2ξ(H + A)

N

)

I − dIHE − u5γIHE], (14)

where λS, λE, λI, λR, λEn
, λH, λA and λIHE

represent the adjoint variables. The optimal control problem
existing is shown by:

Theorem 6.1. An optimal control u∗ = (u∗
1
, u∗

2
, u∗

3
, u∗

5
, u∗

5
) exists, with

J(u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5) = min J(u1, u2, u3, u4, u5),

associated to the control system (11) and with initial condition (2).

Proof. For the proof, we follow the results given in [38–41]. The state variables together with control are non-
negative. For problem minimizing, the objective functional (12) with the necessary convexity in u1(t), u2(t),
u3(t), u4(t) and u5(t) is satisfied. Further, by definition, the set of control variables u1, u2, u3, u4, u5 ∈ Σ is closed
and convex. With bounded optimal solution, it guarantees the optimal control existence. Furthermore, in
the objective functional, the integrand given by B1E+B2I+B3H+B4A+B5IHE+B6u2

1
+B7u2

2
+B8u2

3
+B9u2

4
+B10u2

5
is convex on Σ.

Theorem 6.2. The given optimal controls u∗
i
for i = 1, ..., 5 and solutions of S,E, I,R,En,H,A and IHE of the associated

model (11-12) that minimize J(ui), for i = 1, ..., 5 over Σ. Then, λi, for i = S,E, I,R,En,H,A, IHE satisfy

−dλi

dt
=
∂H

∂i
, (15)

where i = S,E, I,R,En,H,A, IHE and the transversality conditions,

λS(t f ) = λE(t f ) = λI(t f ) = λR(t f ) = λEn
(t f ) = λH(t f ) = λA(t f ) = λIHE

(t f ) = 0 (16)

and

u∗1 = min















1,max















0,
λ1S[λE − λS] +

β1τIA

N [λIHE
− λA] +

β1τIH

N [λIHE
− λH]

2B6





























, (17)

u∗2 = min

{

1,max

(

0,
λ2S[λH − λS] + λ2I[λIHE

− λI]

2B7

)}

, (18)

u∗3 = min
{

1,max
(

0,
πI[λI − λR]

2B8

)}

, (19)

u∗4 = min
{

1,max
(

0,
χH[λH − λA]

2B9

)}

, (20)
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and

u∗5 = min

{

1,max

(

0,
rγIHE[λH − λA] + γIHEλIHE

2B10

)}

. (21)

Proof. It follows from [42] that leads to the conditions of an optimal control existence, results of the convexity
of the integrand of J with respect to u1, u2, u3, u4 and u5, the boundedness of the state variables, the fulfillment
of the Lipschitz property of the state variables. We obtain, the adjoint equations by using the Hamiltonian
and the optimal control problem in connection with optimal control characterization, and is presented by,

dλS

dt
= (1 − u1)

[

β1τI
(N − S

N2

)

+ αEEn

]

(λS − λE) + (1 − u2)β2ξ(H + A)
(N − S

N2

)

×

(λS − λH) + (1 − u2)β2ξ
(H + A)

N2
(λIHE

− λI) +
(1 − u1)β1τIH

N2
(λIHE

− λH)

+
(1 − u1)β1τIA

N2
(λIHE

− λA) + dsλS,

dλE

dt
=

(1 − u1)Sβ1τI

N2
(λE − λS) + (1 − u2)β2ξS

(H + A)

N2
(λH − λS)

+(1 − u1)
β1τIH

N2
(λIHE

− λH) + (1 − u1)
β1τIA

N2
(λIHE

− λA)

+(1 − u2)β2ξI
(H + A)

N2
(λIHE

− λI) + dλE + δ(λE − λI) − B1,

dλI

dt
= (1 − u1)β1Sτ

(N − I)

N2
(λS − λE) + (1 − u2)

β2ξS(H + A)

N2
(λH − λS)

+(1 − u2)β2ξ(H + A)
(N − I)

N2
(λI − λIHE

) + (1 − u1)β1τH
(N − I)

N2
(λH − λIHE

)

(1 − u1)β1τA
(N − I)

N2
(λA − λIHE

) + λI(πu3 + d + ψ) − πu3λR − θλEn
− B2,

dλR

dt
= (1 − u1)

β1τIS

N2
(λE − λS) + (1 − u2)β2ξS

(H + A)

N2
(λH − λS)

+(1 − u1)
β1τIH

N2
(λIHE

− λH) + (1 − u1)
β1τIA

N2
(λIHE

− λA)

+(1 − u2)β2ξI
(H + A)

N2
(λIHE

− λI) + dλR,

dλEn

dt
= (λS − λE)(1 − u1)αES + ηλEn

,

dλH

dt
= (1 − u1)

β1τIS

N2
(λE − λS) + (1 − u2)β2ξS

(N − (H + A))

N2
(λS − λH)

+(1 − u2)
β2ξI(N − (H + A))

N2
(λI − λIHE

) + (1 − u1)
β1τI(N −H)

N2
(λH − λIHE

)

+(1 − u1)
β1τIA

N2
(λIHE

− λA) + λH(u4χ + d + ϑ) − λAu4χ − B3,

dλA

dt
= (1 − u1)

β1τIS

N2
(λE − λS) + (1 − u2)β2ξ

(N − (H + A))

N2
(λS − λH)

+(1 − u2)β2ξI
(N − (H + A))

N2
(λI − λIHE

) + (1 − u1)
β1τI(N − A)

N2
(λA − λIHE

)

+(1 − u1)
β1τIH

N2
(λIHE

− λH) + λA(d + ϑ) − B4,
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dλIHE

dt
=

(1 − u1)β1τIS

N2
(λE − λS) + (1 − u2)β2ξS

(H + A)

N2
(λH − λS)

+(1 − u2)β2ξI
(H + A)

N2
(λIHE

− λH) +
(1 − u1)β1τIH

N2
(λIHE

− λH)

+
(1 − u1)β1τIA

N2
(λIHE

− λA) + (+. u5γ)λIHE
− λH(1 − u5r)γ

−λAu5rγ − B5. (22)

To obtain expression for u∗
i

for i = 1, ...5, subject to the conditions given, we can obtain the optimal control
characterization (16-20). So,

∂H

∂u1
=
∂H

∂u2
=
∂H

∂u3
=
∂H

∂u4
=
∂H

∂u5
= 0,

and we have the following results:

u∗
1
= min

{

1,max

(

0,
λ1S[λE−λS]+

β1τIA

N [λIHE
−λA]+

β1τIH

N [λIHE
−λH]

2B6

)}

,

u∗2 = min
{

1,max
(

0,
λ2S[λH−λS]+λ2I[λIHE

−λI]

2B7

)}

,

u∗3 = min
{

1,max
(

0, πI[λI−λR]
2B8

)}

,

u∗
4
= min

{

1,max
(

0, χH[λH−λA]
2B9

)}

,

u∗
5
= min

{

1,max
(

0,
rγIHE[λH−λA]+γIHEλIHE

2B10

)}

.

(23)

7. Numerical simulations

This section describes the numerical simulation of the optimal control model together and without
control problem. The optimal control problem varied with ui for i = 1, 2, ..., 5 and make different strategies
for the early elimination of disease. The numerical results are obtained by using the numerical technique
Runge-Kutta order four backward scheme. The optimal control system together with adjoint equations
as well as the optimal control characterization and the system without control are solved numerically and
presented the graphical results with different control strategies. The time level is chosen in unit of 200 days.
The optimal control model and control characterization are obtained. In Table 1, we gave the parameters’
values used in the numerical solution. The other parameters, we consider in the numerical simulation are
given by B1 = 20, B2 = 28, B3 = 10, B4 = 69, B5 = 2 and B6 = 20, B7 = 40, B8 = 11, B9 = 10, B10 = 10. The
parameters considered in numerical simulation of the optimal control problem are given in Table 1. In the
simulations, we represent the control and without control system by dashed line and solid line respectively.
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Parameter Description value Ref

Λ Birth rate 0.05 day−1 [35]
d Natural death rate in each class 0.000039 day−1 [36]
ψ Disease related death rate due to Hepatitis E 0.00095 day−1 Assumed
αE Prob. of infection through environment 0.005 day−1 Assumed
δ Progression of infection from Hepatitis E 0.08 day−1 Assumed
β1 Hepatitis E transmission probability rate 0.05day−1 Assumed
θ Hepatitis E infected contribution to the environment 0.7 day−1 Assumed
τ Hepatitis contact rate 0.123 day−1 Assumed
ξ HIV contact rate 0.025 day−1 [21]
β2 HIV infection transmission probability rate 0.05 day−1 [35]
χ Rate of progression to AIDS stage 0.000548 day−1 [35]
π Recovery rate from Hepatitis E 0.0238-0.1429 day−1 [43]
η Microbes mortality rate 0.033 day−1 Assumed
ϑ HIV/AIDS related death 0.00913 day−1 [21]
r Rate of co-infected humans 0.08 day−1 [21]
γ Modification parameter 0.08 day−1 [21]

Table 1: Parameters and variables used in simulation.

7.1. Strategy 1

In this strategy, we activate the control variables u1 = u4 , 0 and the rest of the three control variables
are set to be zero and optimize the objective functional given in (12). We obtained the graphical results for
this strategy given in Figure 1 with subgraphs (a-f). The number of infected individuals with Hepatitis E
only, with HIV-AIDS only and the co-infected individuals decrease. The Hepatitis E exposed and infected
individuals decrease well in Figure 1(a-b) for the control system. The viral load in the environment given
in Figure 1(c) for the control system decreases after day 100. The HIV infected individuals only (see Figure
1(d)) decrease after day 150. The AIDS infected individuals only (see Figure 1(e)) and the co-infected
individuals (see Figure 1(f)) decrease respectively after days 20 and 30. This strategy is useful for the
infection elimination of Hepatitis E exposed individuals only, infected with Hepatitis E only, AIDS infected
only and co-infected only.

7.2. Strategy 2

In this strategy, we activate the control variables u2 = u4 , 0 and the rest of the three control variables
are set to be zero and optimize the objective functional given in (12). We obtained the graphical results for
this strategy given in Figure 2 with subgraphs (a-f). In Figure 2 subgraphs (a-b), the number of exposed
and infected individuals due to only Hepatitis E decreases the same as in Strategy 1. The viral load in the
environment after day 100 decreases, see Figure 2(c). The individuals infected due to HIV infection only
increase, see Figure 2(d), comparing to the Strategy 1, which is not suitable for the minimization of infection
only HIV individuals but for the case of only AIDS infected individual. There can be seen a decrease after
day 20, see Figure 2(e). Further, in Figure 2(f), the co-infected individuals decrease little.

7.3. Strategy 3

In this strategy, we activate the control variables u1 = u2 , 0 and set the rest of the three control
inactive and optimize the objective functional given in (12). We obtained the graphical results for this
strategy given in Figure 3 with subgraphs (a-f). In Figure 3 subgraphs (a-b), the number of exposed and
infected individuals due to only Hepatitis E decreases. The viral load in the environment after day 100
decreases, see Figure 3(c). Comparing to the Strategy 2, the same effect of only HIV infected individuals
are observed, see Figure 3(d). Further, the only AIDS infected individuals decrease after day 20 and the
co-infected individuals increase. It can be seen from these three strategies, the strategies 2 and 3 are not
much suitable for the minimization of HIV and co-infected individuals but can be useful up to some extent
for the minimization of exposed due to Hepatitis E only, infected due to only Hepatitis E and infected due
to only AIDS.
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7.4. Strategy 4

In this strategy, we activate the control variables u3 = u4 , 0 and set the rest of the three controls inactive
and optimize the objective functional given in (12). We obtained the graphical results for this strategy
given in Figure 4 with subgraphs (a-f). In Figure 4 subgraphs (a-b), the results are almost the same that
is observed for the exposed and infected individuals due to only Hepatitis E in Strategies 1, 2 and 3. The
viral load in the environment after day 100 decreases, see Figure 4(c), the same like Strategies 1, 2 and 3.
The same effect on only HIV infected individuals and the co-infected individuals is observed, that is the
increase in the individuals of the HIV infected only and the co-infected individuals like Strategies 2 and 3,
see Figure 4(d-f). The number of only AIDS infected individuals decreases after day 20, which is considered
effective strategies for this. It can be seen from these three strategies, the Strategies 2, 3 and 4 are not much
suitable for the minimization of HIV and co-infected individuals but can be useful up to some extent for
the minimization of exposed due to only Hepatitis E, infected due to only Hepatitis E and infected due to
only AIDS but not suitable for the other classes of individuals.

7.5. Strategy 5

It can bee seen in the above mentioned strategies with different sets of controls that there is a possible
minimization of the infection in Hepatitis E, HIV and their co-infection. A combination of different set of
controls is used to optimize the objective functional. In each of these strategies discussed above, it may
or may not give the useful results that are required. But here, we activate all the available controls and
optimize the objective functional J. The corresponding results associated to this strategy are depicted in
Figure 5 with subgraphs (a-f). One can observe that this strategy is useful for the minimization of all the
infected and exposed due to only Hepatitis E, infected due to HIV-AIDS only and at the same time the
viral load in the environment. A significant decrease can bee seen in Hepatitis E exposed and infected
individuals only as shown in Figure 5(a-b), and viral load in the environment Figure 5(c), HIV-AIDS and
co-infected individuals Figure 5(d-f). Thus, we conclude that the Strategy 5, could be the best strategy for
the minimization of infected individuals due to Hepatitis E, HIV-AIDS and co-infected individuals.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: The plot shows the combination of the controls u1 = u4 , 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: The plot shows the combination of the controls u2 = u4 , 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The plot shows the combination of the controls u1 = u2 , 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: The plot shows the combination of the controls u3 = u4 , 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: The plot shows the combination of the controls ui , 0 for i = 1, 2, ...5.
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8. Conclusion

We presented a co-infection model on the dynamics of Hepatitis E and HIV/AIDS. The mathematical
results for each model are investigated on the basis of basic reproduction number. The only Hepatitis E
model is found to locally stable as well as globally. Further, we investigated the dynamics of the only
HIV model. The only HIV model is locally asymptotically stable. Then, we showed that the co-infection
model of Hepatitis E and HIV/AIDS model is locally asymptotically stable. We also showed the bifurcation
analysis of the co-infection model. Further, we formulated the optimal control problems with five control
variables. Different combinations of controls are considered for the possible elimination of the disease from
the community. We presented a set of control combinations and optimized the objective functional and the
results for each strategy are presented in detail. We observed that the Strategies 1 to 4 are useful for exposed
due to Hepatitis E, infected due to Hepatitis E, for the viral load in the environment and the AIDS infected
individuals but not suitable for the HIV infected only and the co-infected individuals. It must be noted
that the Strategies 1 to 4 are obtained through the specific set of controls combinations for the possible
eliminations of infection with less cost controls. From the first four strategies, it was observed that for
some compartments of HIV and co-infected individuals we did not obtain the useful results, so, we utilized
the Strategy 5, with activating all the controls. We observed reasonable results for each compartment
and found it more useful than the previous ones. The numerical results suggest that the disease can be
eliminated from the community if proper supply of clean water, reduction in the cases of pregnant women,
early diagnose of HIV/AIDS patients and their treatment and the precautions are considered. The main
routes from which HIV/AIDS spread vaginal fluids, blood, semen, and the breast milk, and it should be
preventable by avoiding these. Also, using condoms and avoiding share of needles with others also
decrease the chances of getting infection. The infected individuals due to HIV/AIDS should be treated by
the HIV medicine that is Antiretroviral Therapy (ART). Therefore, it is recommended that the HIV and
HEV infected patients should be properly treated and make them aware of possible prevention from these
diseases. The educational and media campaign could be more useful for possible elimination of the disease
burden in the community. The health authorities and the public health department should focus on such
issue to get rid of these two dangerous diseases. Thus, the role of health authorities and other agencies can
play the best role in the disease elimination of HEV and HIV. In future, we will work on the HEV and HIV
co-dynamics with media coverage and educational campaign for possible elimination of the HEV and HIV
co-infection.

9. Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University,
Jeddah, under grant no. G: 614-130-1439. The authors, therefore, acknowledge with thanks DSR for
technical and financial support. The authors are thankful to the handling editor and the anonymous
reviewers for their constructive comments and suggestions that improved the presentation of the paper.

References

[1] H. R. Dalton, R. Bendall, S. Ijaz, M. Banks, Hepatitis E: an emerging infection in developed countries, Lancet. Infect. Dis. 8 (2008),
698-709.

[2] S. Ijaz, E. Arnold E, M. Banks M et al., Non-travel-associated Hepatitis E in England and Wales: demographic, clinical, and
molecular epidemiological characteristics, J.Infect. Dis. 192 (2005), 1166-1172.

[3] S. Ijaz, A. J. Vyse, D. Morgan, R. G. Pebody, R. S. Tedder, D. Brown, Indigenous Hepatitis E virus infection in England: more
common than it seems, J. Clin. Virol. 44 (2009), 272-276.

[4] J. M. Mansuy, J. M. Peron, F. Abravanel et al., Hepatitis E in the south west of France in individuals who have never visited an
endemic area, J. Med. Virol. 74 (2004), 419-424.

[5] M. A. Widdowson, W. J. Jaspers, W. H. Poel et al, Cluster of cases of acute Hepatitis associated with Hepatitis E virus infection
acquired in the Netherlands, Clin. Infect. Dis. 36 (2003), 29-33.

[6] N. Kamar, J. Selves J, Mansuy, et al., Hepatitis E virus and chronic Hepatitis in organ-transplant recipients, N. Engl. J. Med. 358 (
2008), 811-817.

[7] A. Tamura, Y. K. Shimizu, T. Tanaka et al., Persistent infection of Hepatitis E virus transmitted by blood transfusion in a patient
with T-cell lymphoma, Hepatol. Res. 37 (2007), 113-120.



E. Alzahrani, M. A. Khan / Filomat 34:14 (2020), 4723–4745 4745

[8] H. R. Dalton, R. P. Bendall, F. E. Keane, R. S. Tedder, S. Ijaz, Persistent carriage of Hepatitis E virus in patients with HIV infection,
N. Engl. J. Med. 361 (2009), 1025-1027.

[9] P. Colson, M. Kaba, J. Moreau, P. Brouqui, Hepatitis E in an HIV-infected patient, J. Clin. Virol. 45 (2009), 269-271.
[10] F. Nancy, Crum-Cianflone et al., Hepatitis E Virus Infection in HIV-infected Persons, Emer. Infec. Dis. 18(3) (2012, 502-506.
[11] G. Scotto, et al., Hepatitis E virus co-infection in HIV-infected patients in Foggia and Naples in southern Italy, Infec. Dis. 47(10),

711-717. DOI: 10.3109/23744235.2015.1049658
[12] H. R. Dalton, et al., Autochthonous Hepatitis E in Developed Countries and HEV/HIV Co-infection, Semin. Liver. Dis. 33 (2013),

50-61.
[13] H. Joulaei, et al., Hepatitis E virus seroprevalence in HIV positive individuals in Shiraz, Southern Iran, Iran. J. Microbiol. 7(2)

(2015), 103108.
[14] Gbenga J. A , Nizar M, Witbooi P.J, Okosun K.O. A model for control of HIV/AIDS with parental care, Int. Jour. of Biomatg. 6

(2013), (2013) 1350006 (15 pages).
[15] UN, UNAIDS, World Health Organization, 2011 AIDS epidemic update avail- able, http://news.yahoo.com/s/afp/20110603/hl

afp/healthaidsanniversary-unaids 20110603181329 (November 2011).
[16] R. M. S. Costa, P. Pavone, Invasive plants and natural habitats: The role of alien species in the urban vegetation, Acta. Hortic.

1215 (2018), 57-60.
[17] R.M.S. Costa, P. Pavone, Diachronic biodiversity analysis of a metropolitan area in the Mediterranean region, Acta. Hortic. 1215

(2018), 49-52.
[18] M. Behjaty, Z. Monfared, Modeling and dynamic behavior of a discontinuous tourism-based social-ecological dynamical system,

Filomat, (2019) 33(18), 5991- 6004.
[19] Luo, D., The study of global stability of a diffusive michaelis-menten and tanner predator-prey model, Filomat, 33(17), 5651-5659.
[20] K. O. Okosun ,O.D. Makinde, A co-infection model of malaria and cholera diseases with optimal control, Math. Biosci. 258 (2014),

19-32.
[21] K. O. Okosun, M. A. Khan, E. Bonyah, et al. On the dynamics of HIV-AIDS and cryptosporidiosis, Eur. Phys. J. Plus. 132 (2017)

363. https://doi.org/10.1140/epjp/i2017-11625-3.
[22] H. Joshi, S. Lenhart, K. Albright, K. Gipson, Modelling the effect of information campaigns on the HIV epidemic in Uganda,

Math. Biosci. Eng. 5 (2008), 33
[23] F. Nyabadza, A Mathematical model for combating HIV/AIDS in Southern Africa, J. Biol. Sys. 14 (2006), 357-372.
[24] D. L. Higgins , C. Galavotti, K. R. Reilly, Evidence for the effects of HIV antibody counselling and testing on risk behaviors, J.

Amer. Med. Assoc. 266 (1991), 2419-2429.
[25] S. Mushayabasa, C. P. Bhunu, Modeling Schistosomiasis and HIV/AIDS co- dynamics, Comp. Mathematical Methods. Medic., 2011

(2011), 1-15. doi:10:1155/2011/846174.
[26] S. Mushayabasa, C.P. Bhunu, N. A. Mhlanga, Modeling the Transmission Dynamics of Typhoid in Malaria Endemic Settings,

Applic. Appl. Math.: An Inter. Jour. 9(1) (2014), 121-140.
[27] C. P. Bhunu, S. Mushayabasa, H. Kojouharov and J. M. Tchuenche, Mathematical analysis of an HIV/AIDS model: Impact of

educational programs and abstinence in sub-Saharan Africa, J. Math. Model. Algor. 10(1) (2011) 3155.
[28] J. R. Andrews, N. S. Shah, D. Weissman, et al., Predictors of multidrug- and extensively drug-resistant tuberculosis in a high HIV

prevalence community, PLoS ONE, 5 (12) (2010) e15735.
[29] D. Kirschner, Dynamics of co-infection with M. tuberculosis and HIV-1, Theor. Pop. Biol. 55 (1999), 94-109.
[30] S. Ramkissoon, H. G. Mwambi, A. P. Matthews, Modelling HIV and MTB co-infection including combined treatment strategies,

PLoS. ONE. 7 (11) (2012), e49492.
[31] W. L. Roeger, Z. Feng, Z., C. Castillo-Chavez, Modeling TB and HIV co- infections, Math. Biosci. Eng. 6, (2009) 815-837.
[32] O. Sharomi, C. Podder, A. B. Gumel, Mathematical analysis of the transmis- sion dynamics of HIV/TB co-infection in the presence

of treatment, Math. Biosci. Eng. 5 (2008), 145-174.
[33] S. Shenoi, S. Heysell, A. Moll, G. Friedland, Multidrug-resistant and exten- sively drug-resistant tuberculosis: consequences for

the global HIV community, Curr. Opin.Infect. Dis. 22(1) (2009), 11-17. http://dx.doi.org/10.1097/QCO.0b013e3283210020.
[34] E. O. Alzahrani, and M. A. Khan. Modeling the dynamics of Hepatitis E with optimal control, Chaos, Sol. & Frac. 116 (2018):

287-301.
[35] Z. Mukandavire, A. B. Gumel, W. G. Jean, M. Tchuenche, Mathematical analysis of a model for HIV malaria co-infection, Math.

Bio-sciand Eng. 6, (2009) 333-362.
[36] C. Bowman, A. B. Gumel, P. van den Driessche, J. Wu and H. Zhu, A mathematical model for assessing control strategies against

West Nile virus, Bull. Math. Biol., 67 (2005), 1107-1133.
[37] P. V. D. Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of

disease transmission, Math. Bios., 180 (2002), 2948.
[38] M. A. Khan, S. Islam, G. Zaman, Media coverage campaign in Hepatitis B transmission model, Appl. Math. Comp. 331 (2018),

378-393.
[39] MA Khan, R Khan, Y Khan, S Islam, A mathematical analysis of Pine Wilt disease with variable population size and optimal

control strategies, Chao. Sol. & Frac. 108 (2019), 205-217.
[40] M. A. Khan, S. Islam, J. C. Valverde, S. A. Khan, Control strategies of Hepatitis B with three control variables,Journal of Biological

Systems, 26 (2018), 1-21.
[41] M. A. Khan, Y. Khan, S. Islam, Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment,

’emphPhysica A: Statistical Mechanics and its Applications 493, (2018), 210-227.
[42] W. H. Fleming, R. W. Rishel, Deterministic and stochastic optimal control, Springer Verlag, New York (1975).
[43] B. Sumpter, J. Y. T. Mugisha, L. S. Luboobi, The Dynamics, Causes and Possible Prevention of Hepatitis E Outbreaks, PLoS ONE,

7(7) (2012): e41135. https://doi.org/10.1371/journal.pone.0041135,


	Introduction
	Model Formulation
	Model basic properties
	 Solution positivity

	Only Hepatitis E model
	Stability results
	Endemic Equilibria
	Global Stability of only Hepatitis E model

	Only HIV model
	Stability analysis of HIV only model
	HIV/AIDS model and their endemic equilibria

	Analysis of the full model
	Bifurcation analysis of the full model

	Application of optimal control
	Numerical simulations
	Strategy 1
	Strategy 2
	Strategy 3
	Strategy 4
	Strategy 5

	Conclusion
	Acknowledgements

