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On the Tail Asymptotics of Supremum of Stationary y-Processes With
Random Trend

Goran Popivoda?, SiniSa Stamatovié?

*University of Montenegro, Faculty of Science and Mathematics, Podgorica, Montenegro

Abstract. Let x,(t), t > 0, be a chi-process with n degrees of freedom. We derive the asymptotic exact
result for

P| sup (x»(t) + n(t)) > u|, asu — oo,
te[0,T]

where 7(t) is a certain random process independent of x,(t) and T > 0 is a constant.

1. Introduction and main results

The tail asymptotic behaviour of the supremum of chi-processes (generated by stationary, non-stationary
or self-similar Gaussian process) has been a subject of numerous papers: [1, 2,5, 11, 12]. Recently, the papers

[6, 9, 10] are dealing with the asymptotic behaviour of chi-processes with a trend. We will consider a chi-
process with a random trend.

Let &(t), t € [0, T] (T > 0 is constant), be a centered stationary Gaussian process and let the covariance
function r(t) of process ¢ satisfies

rt) =1 —|H* +o(|t|*), ast — 0, 1)
for some a € (0,2], and

r(t) <1, forallt > 0.

Let &i(t),i=1,...,n, be independent copies of process £. The process

() = (81 +... + 5ﬁ(t))% , te[0,T],

is called a (stationary) chi-process with n degrees of freedom. Let 1(t) be another random process, independent
of &£(t). The sum process X(t) := x,(t) + n(t) will be called a chi-process with random trend.
Let us first formulate the result of [6].
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Theorem 1.1 (Theorem 2.3 of [6]). Suppose that the covariance function r(t) of the centered stationary
Gaussian process {£(t),t > 0} satisties assumptions (1) and (2). Assume further that g(-) be a non-negative
bounded measurable function that attains its minimum 0 over [0, T] at the unique point 0, and further there
exist some positive constants c, § such that

g(t) = ctf(1+0(1)), t— 0.

Then

P max (xa(t) — g(1)) > u) 1+ 0(1))MZ,,3 u(%‘/ls)+ Y, (u), u— co.

te[0,T
where,
c‘l/ﬁl"(l/ﬁ +1)H,, ifa<?2p,
M;,ﬁ =qP 27 ifa =28,
1, ifa > 28,

2(n 2)/2 ~ xZ
and Y, (x) := (n/2) x"2 exp{—E}.

Here, with I'(-) we denoted the Gamma function, H, denotes the Pickands constant

— lim L _ e
H, := Sh—{]c?o SIE(exp {gg;(}(ﬁBa/z(t) t )}) € (0, 0),

and P,  , is defined by

— 1 _qa a2
Pf)z,a/Z = slgx;gE(exp{trEr[Igé(\/EBa/g(t) e )})G(O,oo),

where {B,2(t), t € R} is a standard fractional Brownian motion with Hurst index a/2 € (0, 1].
If there exist some positive constants c, § such that

g(t) = g(to) + clt — tlP (L + 0(1), t— t,

where ty = argmineo19(t) € (0, T) is unique, then in the previous asymptotic relation u will be replaced by

u + g(to), I'(-) will be replaced by 2I'(-) and Pgm 2 will be replaced by

15“ o= =limE (exp{ max (‘/_Ba/z(t) —H* —c- |t|a/2)})

S—o0

Our main results are the next two theorems.
Firstly, let us consider

nt) == A—Ct,

where A and C are random variables independent of &(+), C > 0 almost surely, and > 0 is a constant. With
the notation ¢(G) := sup{x : P(G < x) < 1} for any real valued random variable G, we further assume that
o(A), 6(C) are finite.

Theorem 1.2. Let &(f) and 1(t), t € [0, T], be above introduced random processes and let the tail F;(x) =
1 — F,(x) satisty
Fa(o = 1/u) = ™ L(u)

for some 7 > 0 and L is a slowly varying function.
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Suppose that the functions m;(x) := E (C_% [A = x) andmy(x) := & (Pi a2 [A = x) exist and are continuous
atx = o(A).
Then

2_
a

P (ggﬁ (at) + 1)) > u) = (1+0(1) WasT(x + 1™ £0) Y, (0 - 0(1)),
as u — oo, where
ml(a()\))l“(% +1)H,, ifa<2p,

Wap = S ma(a(A)), ifa = 2B,
1, ifa > 28,

and (x); = max{0, x}.

Example. There are numerous examples of Gaussian processes which satisfy the assumptions of Theorem
1.2. We will give one simple example.
Let &(1), t € [0, T] be the Ornstein-Uhlenbeck process with a covariance function r(t) = e M, and n(t) =

A — Ct, where A is uniformly distributed on (0,1), and C| A = x is uniformly distributed on (’E‘,x). Then,

a=1<28=2, H =1

o) =1, F, (1 - %) -,

and
m(1):=E(CA =1) =2In(2).

It follows
P (trer[l(%(] (xa(®) + (b)) > u) =(1+01)2In2) YV, (u—1), u— oo.

Now, let us consider a smooth process 1(t) which satisfies the next four conditions.

nl. 0 <o :=0(nt)) < .
n2. For some ¢, 0 > 0 there exists 1" (t) for all t with (¢, (t)) € K(6, €) :== [0, T + 0] X [0 — ¢, 0], and that

sup "Ml <¢,
(En(£))eK(by¢)
for some constant c. Moreover, assume that for all ¢t with (¢, 7(t)) € K(5, €) ”(t) is equicontinuous in
the following sense

w(h) =  sup sup o(ln”(t+s)—n"()) =0, ash — 0.
(tn(£)eK(5,e)  s€[0,h]:(t+s,n(t+5))eK(6,€)
n3. For some ¢,0 > 0 the vector X; = (n(t), ' (t),n”(t)) has a density fx,(x,y,z), x € [0 — ¢,0], which is
bounded for any t € [0, T + 0].

n4. For some ¢,0,k > 0 almost surely n(t) < —« for any (,x) € K(6, €) such that n’(t) = 0 and 1" (t) < 0.
Moreover, assume that the function

—K
m(t, x) = f |Z|1/2f1]’(t),1]”(t)|1)(t):x(0/ Z)dZ

C

T
is continuous in x = ¢ uniformly on t, with fo m(t, o)dt > 0.
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Theorem 1.3. Let &(t), t € [0,T], T > 0, be a stationary Gaussian process with the expectation of zero and
with a covariance function r(t) that satisfies (1) and (2) and let (t) be a process being independent of the
process &(t) that satisfies conditions 11 — n4.
Let for any fixed t € [0, T] the tail F,(x) = 1 — F,(x) of the distribution function of the random variable
1(t) is regularly varying ato, i.e., Fyy (0 —1/u) = u™" L(u) for some T > 0 and L; is a slowly varying function.
Then

T
P | sup (xa(t) + (1) > u | = (1 +0(1)) Vit T(t + 1) Hy s =27 Y,y (1t — 0) f Li(u) m(t, 0)dt,
te[0,T] 0

asu — oo,

2. Proofs

2.1. Main lemma

In the proofs of Theorem 1.2 and Theorem 1.3 we will use the next lemma.
Lemma 2.1. Let X be a positive random variable with the distribution function F which has an upper
endpoint 0 < co. Suppose that tail F(x) = 1 — F(x) satisfy F(o — 1/u) = u~"L(u) for some positive T and a

slowly varying function L. Leth be a non-negative measurable function such that E(h(X)) < co and suppose
that h is continuous and strictly positive at 0. Then, for any s € [0, o) we have

f WYY (1t — £y dE(E) ~ T(t + 1) h(0) L) ™ Yol — 0), 1 — oo.

S

Proof.
The following asymptotic relation is proved in [16] (Lemma 1)

fg h()W(u —t)dF(t) ~T(t+ 1D h(o) L) u " W(u —-o0), u— oo,

where W(u) := exp{—u?/2} and in the proof we are using the asymptotic result of Theorem 3.1 of [7].
T
By using the equality
2(n-2)/2 \/2_7-( o
Yo(x) = TTmR) X" W(x),
and the first part it follows
0 2(n-2)/2 \/2_71 0
W)Y, — ) dF(t) = ————=— | h(t)(u—t)""" W(u - t)dF(t
[ hentuu=nare = 22 w0t v dr)
2(n1=2)/2 \/2_71

T(n/2) T'(t+ 1) h(o) (u — a)n—l 0w L) P — o)

~T(t+ D h(o)u™ L) V,y(u —0), u— oo.
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2.2. Proof of Theorem 1.2
By using the total probability rule we have

9

P (trer[loaﬁ ()(n(t) +A-C: tﬁ) > u)

:]E(]P(max()(n(t)—c-tﬁ)>u—/\

o(A)  ro(C)
f f (trer[% Xult) - c-tﬁ)>u—A'A :b,C:a)fA,C(b,a)dbda
o(A)-¢  ra(0)
f f (trr[161x Xn(t) — atﬁ) >u— b) fAb) - fya=p(a) dbda+
(4)
f f (max Xn(t) — atﬁ) > U — b) fa(b) - fya=p(a) dbda,
o(M)-¢ te[0,T

for some small € > 0. Here, f1(b,a) denotes density function of random vector (A, C), fra=5(a) is a density
function of C|A = b, and f,(b) is a density function of random variable A.
The first integral in the previous equality we can estimate in the following way:

a(C)
o< f f (fer[lc?i)"(] () _”tﬁ) > U= b)f;\(b) fan=p(@)dbda <
o(A)-¢ ©
< f f P (max Xn(t) >u—(0— g)) fa®) - fap=p(a) dbda
—00 0 te[0,T]

= O (uiY,(u—o(d) +¢)), 3)

where the last equality follows by Corollary 7.3 in [13].
By applying left inequality (3) and Theorem 2.3 of [6] we obtain

IP(max()(ﬂ() C-tﬁ)>u—)\)>

te[0,T

(A a(C)
r( )H & f 0 b Y= b) - fub) - fan(@)dbda, i a < 2B,
0

o(A)—¢
a(A)
> (1 - ')/(M)) f(/\) L a2 Y (M b) f)\ (b) fq/\ b(a) db d{l ifa = Zﬁ,
a(A) a(C)
f f Tn(u - b) . f,\(b) . fq,\:b(ﬂ) db d(l, ifa> ZIB,
o(A)—e JO

==

N a(A)
r(%ﬂ)mur f m(b)- Y, (u-b)fb)db, ifa <25,

o(A)—¢
a(A)
= (1 - y(u)) x f ma(b) - Y (1 — b) f1(b) db, if a =2,
o(A)—¢
(M)
[ rna-vae, ifas 2,
a(A)—¢

> (1= y(u) — v(u)) Wy I(T + 1)u_”(%_%)+ L) Yu(u—-0(d), u— co.

where the last inequality follows by using Theorem 2.1. Here, y(u), v(1) — 0, as u — oo.
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Similarly, by using Theorem 2.3 of [6], the right inequality in (3) and Theorem 2.1 we have

P (trer[l(?%gl ()(n(t) -C- tﬁ) >u- )\)
<O (Ui Yy(u = o(A) + ¢))
(14 () + V) Was T(r + D™ G, 2@y Y- 0(A)), 1 — .
The assertion of theorem follows. O

2.3. Proof of Theorem 1.3.

Upper bound.

Following the idea of the proof of Theorem 2 from [8] which was used also in papers [14, 15], we will
consider the points t of local maxima of 1 such that n(t) > 0 — €(u) where 0 < e(u) < ¢/2 and e(u) — 0 as
1 — 0o,

S G
1
1
i H H
1 . .
---------------------------------- 4=k o —e(u)
i H H
]
1
1
1
1
1
1
]
1
1
]
1
1
1
1
1
1
1
1
1
]
1
1
1
1
0 t—h t t+h T

Figure 1. The illustration of the trajectory of process 1.

Every two points of local maxima in K(6, (1)) are separated by at least 2k, for some small # > 0. For
such h and for s be a point such that |s — | < h one can obtain

s — t)? ” * s —t)? 1 *
10+ S0 - w0y < e <00+ E5 L0+ ). @
Let 51 be the first local maximum of 7 in [0, T] with 1(s1) > 0 — €(u) and s the last one. We introduce the
random set

L+ = ([0/ T] N U [S - 6(“)/5 + 6(1’[)]] U [0/ Sllz‘h] U [SM]-AM/ TlAM]/
se M(e(u))
where M(e(u)) is a set of local maximum points of the process 7(t) which are above o — e(u) and 6(u) :=

2 8 4 o (1(0) > o — e(u), 7(0) < 0} and Ay = {n(T) > o — e(u), 17(T) > 0}.

If t € [0, T]\L+, then n(t) < 0 — €(u), so we have

P (te[rg}%>\<L+ (Xu(t) +1(8)) > uf n) <P (teg}%{h Xn(t) > 1= (0 - E(M)))
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<P (max Xn(t) >u—(0— e(u)))
te[0,T
= O(uEYn(u —(o— e(u)))), as u — oo,

where the last equality follows from Corollary 7.3 in [13] (or Proposition 2.1 of [6]).
By using the total probability rule and the previous inequality it follows

P (trer[lgﬁ (xn(t) + n(£)) > u) =E (IP (g}% (Xn(£) +n(£)) > 1] 77))

=E (lP (r;ggx (u(t) +1(8) > u n)) +0 (Ui Yl - (o - e(w)))),

so we obtain the bound

P (g}% (Xa(t) +1(t)) > u) < IE[ X (Xu(s) +1(s)) > u| 77)}

P (
te M(e(u))N[0,T]

+ (IP (( E1[‘61&1)_(]1] (xu(s) + n(s)) > u) NA| 17))

+E (IP (( [max (xXu(s) + n(s)) > u) N Apm| 17))

+ 0 (Ui Y - (0 - ew))).
Now, by setting
M= M(e()) N [=6(w), T + 5(w)],
t+2

a

-Inu, with a large positive £ (> % + 1T - %), such that
o

and choosing e(u) = =

u%T,,(u — (0 —e()) ~u Y (u—-0), asu — oo,

we get

P (max () + (1) > u)

te[0,T

< E(Z P ( max (xn(s) + n(s)) > u| n)] + O(u*fY,,(u - a)).

ey s€[t—h,t+h]

Using Theorem 2.3 in [6] we obtain

!

P (56[1315x+ h]()(n(s) +1(s)) > u

<1P(Se[tr{lgx (xn(s)+n(t)+( i (r]"(t)+a)(h))) )
AV
<1P(se[rtr_12;<+h] (Xn(s)_( zt) =n"®) (1 wlh )))>u—n(t)’ )

< VRH, (_Tm) (1 _ ﬂ”))) UL ) (1 (W),

where y(u1) (| 0 as u — o0) can be chosen to be deterministic (see [8, 14]).
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Let us consider the point process of local maxima {(t, n(t),n"’(t)), t € M(e(u))} as a point process in
[-6(u), T + 6(u)] X [0 — €(u), 0] X [—c, —x]. Its intensity is

v(t, x,z) = Izl 1z<0} fx,(x,0,2)

(see Chapter 3 in [3] for more details) and for any bounded function F(t, x, z) we have (Campbell’s Formula,
see for instance Theorem 2.2 in [4])

T+06(1)
F(t, n(t), r]”(t))] j: f ( )f F(t,x,z) v(t, x, z)dt dx dz.

E [
M(e(u))N[0,T]

It follows that

P (g}% (xn(t) + (1)) > u)

2_
a

N\._-

1 AT+6(u)
( w(h)) f j‘;{(u)f 213 (1 — %) fx, (x, 0, 2)dtdxdz

+0 (u‘fY,,(u - a))
% T+06(u) a —K
<A +yW) VaHyusz (1 - ih)) f f f |22 Y (1 — x) f, (x, 0, z)dtdxdz

o(u)

<A+ yw) Vi Hyu

+0 (u_[Yn(u - a)) .

By the equality
fx(x,0,2) = fon () fr 70 1nw=x(0, 2)

and Lemma 2.1 we derive the bound

P (fé}&’% (xn(t) + n(£)) > u)

a)(h) - T+06(1t)

" ) : Y,(u—o0) Li(u) - m(t,0)dt

—o(u)

< (1+ () + y1() VET(x + 1) Hy it 4 (1 _
+0(u Yl ~0),

where y1(u) = 0 as u — oo.
Finally, we have

P ({ng;s (en(t) + (1)) > u)
lim sup — 20 - — VnT(t+1)H
u—e yima Y (u - 0) [ Liu) - mit, 0)dt

ash — 0.

Lower Bound.
If (s, n(s)), (t, n(t)) € K(o, e(u)) and t and s are points of local maximum of 1), then |t —s| > 2h. It implies that

there are at most LZ—T;;J points of such local maximum in the [0, T]. By setting M; := M(e(u)) N [0(u), T — 6(u)]
we have

]E(IP (trer[l(?%g] () + (1) > u| 17)) > IE[IP ( U { o h/2t h/2](Xn(S) +1(s)) > u} ‘ ]]

te My



G. Popivoda, S. Stamatovié / Filomat 34:14 (2020), 4747-4756 4755

>E [ Y p (se[t_g}gﬁm]()(n (5) +1(s)) > u| n)J

teMy
B T ( man, )12 max o) n) > i) ®)
i 1
s#t

Using the left inequality (4), and Theorem 2.3 in [6], we get

d (SE[t—%}gﬁh/Z](X"(S) + '7(5)) >u | T])
(s—t)?

]P( max ()(,,(s) +n(t) + T(n"(t) - a)(h))) > u 17)

selt—h/2,t+h/2]

v

Y
> IP( max ]()(n(s) - (s zt) -n"®) (1 + @)) >u— n(t)ln)

s€[t—h/2,t+h/2 K

w(h)
Tk

> VRH, (_n"a) (1 v )) uA WG (6) (1 - v(w)),

where v(u) (— 0 as u — o0) can be chosen non-randomly. Now, by the arguments for the upper bound we
get

]E( Y P (maXseqi-nyen21(Xu(S) +1(5)) > 77))
lim inf M — T — VnIl(t+1)H,,
e Uiy (u — o) [ Li(u) - mt, o)dt

ash — 0.
Using the ”Appendix” of paper [6] we obtain upper bound for the double sum, i.e.

v€[s—h/2,s+h/2] )

< O(u%*%*TYn(u - G)) asu — oo,

r (ve[t—%}%ﬁ-hﬂ](xn(v) +1(0) > 1, cro A (xn(©) + n(v)) > uln

Thus, we get
P (max () + (8)) > u)
te[0,T]
lim inf — = — VnI(t+1)H,.
O WY (u - 0) ) Li(u) - mt, o)dt
ash — 0.

O
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