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Abstract. The aim of this paper is devoted to present some new results on six types of special mappings
between L-convex spaces. For this purpose, we first make a summary about some novel elementary
properties of L-CP mappings and L-CC mappings. Secondly, we propose the definitions of almost L-
CC mappings, L-isomorphic mappings and L-embedding mappings and investigate their fundamental
characterizations. Finally, we establish the connections between L-quotient mappings and L-quotient
spaces. As a summary, we give a diagram to show the relationships among all the above-mentioned
mappings.

1. Introduction

Since Zadeh [35] founded fuzzy set theory in 1965, it has been widely used in many mathematical
structures in the past fifty-five years. Many fuzzy structures have been studied, such as fuzzy topological
structures [22], fuzzy convergence structures [5], fuzzy neighborhood structures [34] and so on. As another
important kind of fuzzy structures, the notion of fuzzy convex structures (or, fuzzy convexities ) which was
introduced by Rosa [15] is a natural generalization of the concept of abstract convex structures [21]. In Rosa’s
paper, the object of discussion was a classical structure composed of fuzzy convex sets and the research
content was based on the real unit interval [0, 1]. Because of the limitation of [0, 1] as fuzzy environment in
theoretical research, in 2009, Maruyama [10] extended Rosa’s notion of fuzzy convex structures to general
lattice-value setting and investigated some properties of lattice-valued fuzzy convex sets in Euclidean
spaces. Nowadays, both of fuzzy convex spaces in sense of Rosa and Maruyama are collectively called
L-convex spaces (where is L a complete lattice). When L = [0, 1], it degenerates to Rosa’s fuzzy convex
spaces.

Recently, L-convex spaces become a popular research direction. For example, Chen et.al. [1] generalized
the concepts of arity, CUP, JHC and weakly JHC in classical convex spaces to the fuzzy case. Jin and Li [3]
discussed the connections between classical convex spaces and stratified L-convex spaces from a categorical
viewpoint. Li et.al. [6] presented some result on several special mappings in sense of degree based on a
frame. Pang and Xiu [11] established the axiom of bases and subbases and gave their applications. Shen
and Shi [17] provided some novel characterizations of L-convex structures based on way-below relations.
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Zhou and Shi [37] introduced some low-level separation axioms of L-convex spaces and researched their
properties. More extensive studies on L-convex spaces can be found in [16, 23, 32, 33, 36].

From a different perspective, in 2014, Shi and Xiu [19] introduced a novel method to the fuzzification
of convex structures and provided the concept of fuzzifying convex structures and fuzzifying convex hull
operators, and proved that there is a one-to-one correspondence between them. At present, a nonempty set
equipped with a fuzzifying convex structure is called an M-fuzzifying convex space (here M is a completely
distributive lattice). Relevant results of M-fuzzifying convex spaces can be seen in [7, 9, 13, 18, 25–27, 30, 31].
Further more, a more generalized convex space was introduced in [20], which is called (L,M)-fuzzy convex
spaces. In particular, the two kinds of convex spaces mentioned above are all special cases of (L,M)-fuzzy
convex spaces under certain conditions. In [4, 8, 12, 14, 20, 24, 28, 29], the authors have given the relevant
research contents of (L,M)-fuzzy convex spaces and obtained many good results.

As we all know, CP and CC mappings are two basic and important concepts of classical convexity
theory. These two kinds of mappings play a key role in constructing and studying the properties of convex
structures. For instance, the concepts of subspaces, product spaces and quotient spaces of convex spaces
are defined based on them. In the monograph of convex spaces [21], the author made an in-depth study
of CP mappings, CC mappings and other important concepts derived from them. As a generalization
of classical convex structures, the study of L-convex structures is a great significance to the enrichment
and development of fuzzy mathematics. It is meaningful to consider the properties of CP mappings,
CC mappings and some special mappings related to them in the L-fuzzy case. Although the authors
[6, 11, 17] have done some research work on special mappings in L-convex spaces, they have not discussed
the differences and connections among them in detail. Therefore, it is necessary to discuss these special
mappings systematically for the future study in L-convex spaces. Motivated by this, we make an inductive
study on six kinds of mappings (L-CP mappings, L-CC mappings, almost L-CC mappings, L-isomorphic
mappings, L-embedding mappings, L-quotient mappings) and investigate their relationships.

The structure of the paper is mainly expanded from the following parts. In Section 2, we recall some
elementary knowledge that are required in the subsequence sections. In Section 3, we make a summary
about some fresh results on L-CP mappings and L-CC mappings. In Section 4, we first introduce the
definition of almost L-CC mappings, then study its related properties. In addition, we propose the concepts
of L-isomorphic mappings and L-embedding mappings and give some of their characterizations. In Section
5, we study some properties of L-quotient mappings and L-quotient spaces. In the final, we use a diagram
to show the relationships among the above-mentioned mappings.

2. Preliminaries

In this section, we recollect some elementary concepts and properties on fuzzy sets, lattices and L-convex
structures. For concepts not defined in this paper, the reader can refer to [2, 11, 21, 22].

Assume L is a complete lattice. The two elements ⊥ and > are smallest and largest elements of L,
respectively. For K ⊆ L, we use

∨
K and

∧
K to denote the supremum and infimum of K, respectively. We

say that K is directed subset of L if it is nonempty and each finite subset of K has an upper bound in K. In
order to facilitate the writing, we usually use k =

∨
↑ K to express that the supremum of directed set K is k.

Definition 2.1 ([2]). Let L be a poset. For a, b ∈ L, a is way below b in L (in symbols, a � b) if for each directed
subset K ⊆ L such that

∨
↑ K exists, b ≤

∨
↑ K always implies the existence of some k ∈ K with a ≤ k.

Throughout this paper, L denotes a continuous lattice, unless otherwise stated. For a nonempty set X, 2X

denotes the power set of X and LX denotes the family of all L-sets on X. Obviously, LX is also a continuous
lattice under the pointwise order. For each A ∈ 2X, its characteristic function χA ∈ LX is defined as follows:

χA(x) =

{
>, x ∈ A;
⊥, x < A.
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The two L-sets χ∅ and χX are smallest and largest elements of LX, respectively. We say that an L-set B is
finite if its support set SuppB = {x ∈ X : B(x) , ⊥} is finite. We use LX

f in denote the family of all finite L-sets
on X.

An element a ∈ L is called a co-prime element in L provided that a 6 b ∨ c implies a 6 b or a 6 c for all
b, c ∈ L. We denote the family of all non-zero co-prime elements of L (resp., LX) by J(L) (resp., by J(LX)).
Obviously, xλ ∈ J(LX) iff x ∈ X and λ ∈ J(L).

Let f : X −→ Y be a mapping. We define f→ : 2X
−→ 2Y, f← : 2Y

−→ 2X, f→L : LX
−→ LY and

f←L : LY
−→ LX as follows:

∀U ∈ 2X, f→(U) = { f (x) : x ∈ U}.
∀V ∈ 2Y, f←(V) = {x ∈ X : f (x) ∈ V}.
∀B ∈ LX, y ∈ Y, f→L (B)(y) =

∨
{A(x) : f (x) = y}.

∀C ∈ LY, x ∈ X, f←L (C)(x) = C( f (x)).
Obviously, we can obtain B ≤ f←L ( f→L (B)) and f→L ( f←L (C)) ≤ C.
For any A ⊆ LY, we denote f−1

L (A) = { f←L (B) : B ∈ A}.
In [11, 17], the authors extended the notion of convex structures to the L-fuzzy setting as follows.

Definition 2.2 ([11, 17]). A subset C of LX is called an L-convex structure (or, L-convexity) on X if it fulfills the
following conditions:

(LC1) χ∅, χX ∈ C.

(LC2) {Bi}i∈I ⊆ C implies
∧

i∈I Bi ∈ C, where I , ∅.

(LC3) If {Bi}i∈I ⊆ C is directed, then
∨
↑

i∈I Bi ∈ C.

We call the pair (X,C) an L-convex space if C is an L-convex structure on X. In this case, the elements in C are
called L-convex sets on X.

Remark 2.3. For two L-convex structure C and D on X, we say that C is coarser than D or D is finer than C if
C ⊆ D.

Proposition 2.4 ([20]). Let (X,C) be an L-convex space and ∅ , Y ∈ 2X. Then C|Y = {B|Y : B ∈ C} is an L-convex
structure on Y. In this case, we say that (Y,C|Y) is a subspace of (X,C).

Definition 2.5. The pair (Y,C|Y) is called an convex subspace of the L-convex space (X,C) provided that χY is an
L-convex set on X.

Theorem 2.6 ([17]). Let (X,C) be an L-convex space. Let coC : LX
−→ LX be a mapping defined by

coC(B) =
∧
{C ∈ C : B ≤ C}

for all B ∈ LX. Then coC has the following properties:

(CL1) coC(χ∅) = χ∅.

(CL2) B ≤ coC(B).

(CL3) coC(coC(B)) = coC(B).

(CL4) coC(B) =
∨
{coC(F) : F� B}.

Conversely, let co : LX
−→ LX be a mapping satisfying (CL1)-(CL4). Define a subset of LX as follows:

Cco = {B ∈ LX : co(B) = B}.

Then (X,Cco) is an L-convex space and coCco = co.
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Remark 2.7. The operator coC defined in Theorem 2.6 is called the L-convex hull operator of the L-convex structure
C. By (CL4), we know that coC is order preserving, that is, for each B,C ∈ LX, B ≤ C implies coC(B) ≤ coC(C).

Definition 2.8 ([11]). Let C be an L-convex structure on X and B,S ⊆ C. Then

(1) B is called a base of (X,C) (or, C) provided that for any C ∈ C, there is a directed family BC ⊆ B such that
C =
∨
↑
BC.

(2) S is called a subbase of (X,C) (or, C) provided that BS is a base of (X,C), where BS = {
∧

i∈I Bi : {Bi}i∈I ⊆ S}.

Definition 2.9 ([11, 17, 37]). Let f : (X,C) −→ (Y,D) be a mapping between two L-convex spaces. Then

(1) f is called L-convexity preserving (briefly, L-CP) provided that D ∈ D implies f←L (D) ∈ C.

(2) f is called L-convex-to-convex (briefly, L-CC) provided that C ∈ C implies f→L (C) ∈ D.

3. Some new results on L-CP mappings and L-CC mappings

In this section, we first present some novel properties of L-CP mappings and L-CC mappings, then give
their characterizations from different aspects.

Proposition 3.1. Let (X,C), (Y,D) and (Z,G) be three L-convex spaces. Let ∅ , A ∈ 2X. Then we have the following
statements:

(1) The mapping i|A : (A,C|A) −→ (X,C) is L-CP.

(2) If the mapping f : (X,C) −→ (Y,D) and 1 : (Y,D) −→ (Z,H) are L-CP, then 1 ◦ f is also L-CP.

(3) If the mapping f : (X,C) −→ (Y,D) is L-CP, then f |A : (A,C|A) −→ (Y,D) is L-CP.

(4) The mapping f : (X,C) −→ (Y,D) is L-CP iff f | f→(X) : (X,C) −→ ( f→(X),D| f→(X)) is L-CP.

(5) If the mapping f : (X,C) −→ (Y,D) is L-CP, then f |A : (A,C|A) −→ ( f→(A),D| f→(A)) is L-CP.

Proof. (1) By Proposition 2.4, we know that (A,C|A) is a subspace of (X,C). For any C ∈ C, C|A ∈ C|A and

(i|A)←L (C)(x) = C(i|A(x)) = C(x) = (C|A)(x)

for all x ∈ A. It means that (i|A)←L (C) = C|A ∈ C|A. This implies that i|A : (A,C|A) −→ (X,C) is L-CP.
(2) The verification is straightforward.
(3) Note that f |A = f ◦ (i|A), so by (1) and (2), we can obtain that f |A : (A,C|A) −→ (Y,D) is L-CP.
(4) Necessity. For any B ∈ D| f→(X), there exists D ∈ D such that B = D| f→(X). Thus, we can obtain that

( f | f→(X))←L (B)(x) = ( f | f→(X))←L (D| f→(X))(x)
= (D| f→(X))( f | f→(X)(x))
= (D| f→(X))( f (x))
= D( f (x))
= f←L (D)(x)

for all x ∈ X. This means ( f | f→(X))←L (B) = f←L (D). Since f : (X,C) −→ (Y,D) is L-CP, we know that

( f | f→(X))←L (B) = f←L (D) ∈ C.

It implies that f | f→(X) : (X,C) −→ ( f→(X),D| f→(X)) is L-CP.
Sufficiency. Since f = i| f→(X) ◦ f | f→(X) and i| f→(X) : ( f→(X),D| f→(X)) −→ (Y,D) is L-CP, it is easy to obtain the

sufficiency by (2).
(5) By (3) and (4), it is obvious.
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Proposition 3.2. Let (X,C) be an L-convex space and ∅ , A ∈ 2X. Then

(1) C|A is the coarsest L-convex structure on A such that i|A : (A,C|A) −→ (X,C) is L-CP.

(2) For each L-convex space (Z,H) and the mapping f : (Z,H) −→ (A,C|A), f is L-CP iff i|A ◦ f : (Z,H) −→ (X,C)
is L-CP.

Proof. (1) By Proposition 3.1(1), we know that i|A : (A,C|A) −→ (X,C) is L-CP. Suppose D is an L-convex
structure on A such that i|A : (A,D) −→ (X,C) is L-CP. For each C ∈ C|A, there exists B ∈ C such that C = B|A.
Note that i|A : (A,D) −→ (X,C) is L-CP and (i|A)←L (B) = B|A, so we have C = (i|A)←L (B) ∈ D. Hence C|A ⊆ D.

(2)Necessity. It is trivial.
Sufficiency. For each B ∈ C|A, there exists C ∈ C such that B = C|A. Since i|A ◦ f : (Z,H) −→ (X,C) is L-CP,

we obtain that

(i|A ◦ f )←L (C) = f←L ((i|A)←L (C)) = f←L (B) ∈ H.

This means that f : (Z,H) −→ (A,C|A) is L-CP.

Next, we give a new characterization of L-CP mappings by means of the notion of remotehoods.

Definition 3.3 ([33]). Let (X,C) be an L-convex space, xλ ∈ J(LX) and B ∈ LX. The L-set B is called a remotehood of
xλ provided that there exists C ∈ C such that xλ � C ≥ B. The family of all remotehoods of xλ is denoted by Rxλ .

Definition 3.4. A mapping f : (X,C) −→ (Y,D) between two L-convex spaces is called L-CP at xλ provided that
B ∈ R f→L (xλ) implies f←L (B) ∈ Rxλ for all xλ ∈ J(LX) and B ∈ LX.

Proposition 3.5. If f : (X,C) −→ (Y,D) is a mapping between two L-convex spaces, then f is L-CP iff f is L-CP at
xλ for all xλ ∈ J(LX).

Proof. Necessity. For any xλ ∈ J(LX), if B ∈ R f→L (xλ), then there exists C ∈ D such that f→L (xλ) � C ≥ B. It
implies that xλ � f←L (C) ≥ f←L (B). Since f is L-CP, we have f←L (C) ∈ C. Hence f←L (B) ∈ Rxλ . This implies that
f is L-CP at xλ.

Sufficiency. Suppose f is not L-CP. Then there exists C ∈ D and f←L (C) < C. This means coC( f←L (C)) �
f←L (C). It implies that there exists xλ ∈ J(LX) such that xλ ≤ coC( f←L (C)) and xλ � f←L (C). Hence f→L (xλ) � C ≥
C. By Definitions 3.3 and 3.4, we obtain C ∈ R f→L (xλ) and f←L (C) ∈ Rxλ . It implies that there exists D ∈ C such
that xλ � D ≥ f←L (C). Hence D = coC(D) ≥ coC( f←L (C)) and xλ � coC( f←L (C)). This is a contradiction with
xλ ≤ coC( f←L (C)) and thus f←L (C) < Rxλ . This means that f is not L-CP at xλ. Therefore, f is L-CP.

The following theorem present some characterizations of L-CP mappings.

Theorem 3.6. For a mapping f : (X,C) −→ (Y,D) between two L-convex spaces, the following statements are
equivalent:

(1) f is L-CP.

(2) f←L (B) ∈ C for all B ∈ BD, where BD is a base of (Y,D).

(3) f←L (B) ∈ C for all B ∈ SD, where B ∈ SD is a subbase of (Y,D).

(4) f→L (coC(F)) ≤ coD( f→L (F)) for all F ∈ LX
f in.

(5) f→L (coC(C)) ≤ coD( f→L (C)) for all C ∈ LX.

(6) coC( f←L (E)) ≤ f←L (coD(E)) for all E ∈ LY
f in.

(7) coC( f←L (B)) ≤ f←L (coD(B)) for all B ∈ LY.
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(8) f is L-CP at xλ for all xλ ∈ J(LX).

Proof. The proofs of (1)⇔ (2)⇔ (3) were given in [11] and (1)⇔ (4)⇔ (5) were presented in [17]. We need
to show (1)⇔ (5)⇔ (6)⇔ (7)⇔ (8). By Proposition 3.5, we know that (1)⇔ (8). Next we prove (5)⇔ (7)
and (6)⇔ (7).

(5)⇒ (7) For any B ∈ LY, f←L (B) ∈ LX. By (5), we obtain

f→L (coC( f←L (B))) ≤ coD( f→L ( f←L (B))) ≤ coD(B).

It implies that f←L ( f→L (coC( f←L (B)))) ≤ f←L (coD(B)).
Therefore, coC( f←L (B) ≤ f←L (coD(B)).

(7)⇒ (5) For any C ∈ LX, f→L (C) ∈ LY. By (7), we obtain

coC(C) ≤ coC( f←L ( f→L (C))) ≤ f←L (coD( f→L (C))).

It implies that f→L (coC(C)) ≤ coD( f→L (C)).
(6)⇒ (7) For any B ∈ LY, by (CL4), we have

f←L (coD(B)) = f←L (
∨
↑
{coC(E) : E� B})

=
∨
↑
{ f←L (coC(E)) : E� B}

≥
∨
↑
{coC( f←L (E)) : E� B}

= coC(
∨
↑
{ f←L (E) : E� B})

= coC( f←L (
∨
↑
{E : E� B})

= coC( f←L (B)).

(7)⇒ (6) It is straightforward.

We study some properties of L-CC mappings in following propositions.

Proposition 3.7. Let f : (X,C) −→ (Y,D) be an L-CC mapping between two L-convex spaces. If ∅ , Z ∈ 2Y, then
the mapping f |Z : (X,C) −→ (Z,D|Z) is L-CC.

Proof. Let C ∈ C. Since
( f |Z)→L (C)(y) =

∨
{C(x) : x ∈ X, ( f |Z)(x) = y}

=
∨
{C(x) : x ∈ X, f (x) = y}

= f→L (C)(y)
= ( f→L (C)|Z)(y)

for all y ∈ Z, we obtain that ( f |Z)→L (C) = f→L (C)|Z. Note that f is L-CC, so we have f→L (C) ∈ D. Hence
( f |Z)→L (C) = f→L (C)|Z ∈ D|Z. This means that f |Z : (X,C) −→ (Z,D|Z) is L-CC.

Proposition 3.8. Let f : (X,C) −→ (Y,D) be an L-CC mapping between two L-convex spaces. If (A,C|A) is a convex
subspace of (X,C), then the mapping f |A : (A,C|A) −→ ( f→(A),D| f→(A)) is L-CC.

Proof. For any B ∈ C|A, there exists C ∈ C such that B = C|A. For x ∈ X, we define an L-set C∗ on X as follows:

C∗(x) =

{
C(x), x ∈ A;
⊥, x < A.

Then C∗ = C∧χA. Note that (A,C|A) is a convex subspace of (X,C), so we obtain χA ∈ C. Thus, C∗ ∈ C. Since
f : (X,C) −→ (Y,D) is L-CC, we know that f→L (C∗) ∈ D and f→L (C∗)| f→(A) ∈ D| f→(A). By

( f |A)→L (B)(y) =
∨
{B(x) : x ∈ A, ( f |A)(x) = y}

=
∨
{(C|A)(x) : x ∈ A, f (x) = y}

=
∨
{C(x) : x ∈ A, f (x) = y}
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and
f→L (C∗)| f→(A)(y) = f→L (C∗)(y)

=
∨
{C∗(x) : x ∈ X, f (x) = y}

=
∨
{C∗(x) : x ∈ A, f (x) = y}

=
∨
{C(x) : x ∈ A, f (x) = y}

for all y ∈ f→(A), it follows that ( f |A)→L (B) = f→L (C∗)| f→(A) ∈ D| f→(A). Therefore, f |A : (A,C|A) −→
( f→(A),D| f→(A)) is L-CC.

Remark 3.9. Clearly, if L = {⊥,>}, then the above proposition can be regarded as a generalization of the classical
result as follows:

Let f : (X,C) −→ (Y,D) be a CC mapping between two convex spaces. If A ∈ C, then the mapping f |A :
(A,C|A) −→ ( f→(A),D| f→(A)) is CC.

The following proposition is trivial and the proof of it omitted here.

Proposition 3.10. Let f : (X,C) −→ (Y,D) and 1 : (Y,D) −→ (Z,H) be two mappings between L-convex spaces.

(1) If f and 1 are L-CC, then 1 ◦ f is L-CC.

(2) If 1 ◦ f is L-CC, f is surjective and L-CP, then 1 is L-CC.

(3) If 1 ◦ f is L-CC, 1 is injective and L-CP, then f is L-CC.

Theorem 3.11. For a mapping f : (X,C) −→ (Y,D) between two L-convex spaces, the following statements are
equivalent:

(1) f is L-CC;

(2) f→L (B) ∈ D for all B ∈ BC, where BC is a base of (X,C);

(3) for any F ∈ LX
f in, f→L (coC(F)) ≥ coD( f→L (F));

(4) for any C ∈ LX, f→L (coC(C)) ≥ coD( f→L (C)).

Proof. The proof of (1)⇔ (2) was given in [11]. We need to proof (1)⇔ (3)⇔ (4).
(1)⇒ (3) For each F ∈ LX

f in, we obtain F ≤ coC(F) ∈ C. Since f is L-CC and f→L (F) ≤ f→L (coC(F)), it follows
that f→L (coC(F)) ∈ D. Hence f→L (coC(F)) ≥ coD( f→L (F)).

(3)⇒ (4) For any C ∈ LX, by (CL4), we obtain

f→L (coC(C)) = f→L (
∨
↑
{coC(F) : F� C})

=
∨
↑
{ f→L (coC(F)) : F� C}

≥
∨
↑
{coC( f→L (F)) : F� C}

= coD(
∨
↑
{ f→L (F) : F� C})

= coD( f→L (
∨
↑
{F : F� C}))

= coD( f→L (C)).

(4)⇒ (1) For any C ∈ C, we have coD( f→L (C)) ≤ f→L (coC(C)) = f→L (C). It implies that f→L (C) ∈ D. Hence f
is L-CC.
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4. L-isomorphic mappings and L-embedding mappings

In this section, we first propose the concept of almost convex-to-convex mappings and then extend it to
the L-fuzzy case. Moreover, we study related properties of almost L-CC mappings.

Definition 4.1. A mapping f : (X,C) −→ (Y,D) between two convex spaces is called almost convex-to-convex
(briefly, almost CC) provided that for each U ∈ C, there exists V ∈ D such that U = f←(V).

Remark 4.2. Comparing the definitions of CC mappings and almost CC mappings in crisp case, we can see that an
injective CC mapping is an almost CC mapping and a surjective almost CC mapping is a CC mapping. Obviously, a
bijective mapping f is almost CC iff f is CC.

We generalize the definition of almost convex-to-convex mappings to L-fuzzy case.

Definition 4.3. A mapping f : (X,C) −→ (Y,D) between two L-convex spaces is called almost L-convex-to-convex
(briefly, almost L-CC) provided that for each C ∈ C, there exists D ∈ D such that C = f←L (D).

The following proposition is trivial and the proof of it omitted here.

Proposition 4.4. Let f : (X,C)→ (Y,D) and 1 : (Y,D)→ (Z,H) be two mappings between L-convex spaces.

(1) If f is surjective and almost L-CC, then f is L-CC.

(2) If f is injective and L-CC, then f is almost L-CC.

(3) If f and 1 are almost L-CC, then 1 ◦ f is almost L-CC.

(4) If 1 ◦ f is an almost L-CC, f is surjective and L-CP, then 1 is almost L-CC.

(5) If 1 ◦ f is an almost L-CC and 1 is L-CP, then f is almost L-CC.

According to Proposition 4.4, we can easily obtain the following conclusion.

Proposition 4.5. A bijective mapping f : (X,C) −→ (Y,D) between two L-convex spaces is almost L-CC iff f is
L-CC.

In the following, we put forward the notion of L-isomorphic mappings and present several characteriza-
tions of it. Furthermore, we introduce the definition of L-embedding mappings by means of L-isomorphic
mappings and discuss some properties of it.

Definition 4.6. An L-CP mapping f : (X,C) −→ (Y,D) between two L-convex spaces is called L-isomorphic (briefly,
L-isomorphism) provided that there is an L-CP mapping 1 : (Y,D) −→ (X,C) such that 1 ◦ f = idX and f ◦ 1 = idY.

If there is an L-isomorphism between (X,C) and (Y,D), then we say that (X,C) and (Y,D) are L-isomorphic.

Remark 4.7. For each L-convex space (X,C), the identity mapping idX : (X,C) −→ (X,C) is an L-isomorphism. One
can readily verify that if f is an L-isomorphism, then the inverse mapping f−1 is an L-isomorphism as well and that
the composition 1◦ f of two L-isomorphisms f and 1 is again an L-isomorphism. Thus, the relation “(X,C) and (Y,D)
are L-isomorphic” is an equivalence relation.

Theorem 4.8. For a mapping f : (X,C) −→ (Y,D) between two L-convex spaces. Let coC and coD be L-convex hull
operators of (X,C) and (Y,D), respectively. The following statements are equivalent:

(1) f is an L-isomorphism.

(2) f is bijective and f−1 : (Y,D) −→ (X,C) is L-CP.

(3) f is bijective and f is L-CC.
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(4) f is bijective and f is almost L-CC.

(5) f is bijective and coD( f→L (F)) ≤ f→L (coC(F)) for all F ∈ LX
f in.

(6) f is bijective and coD( f→L (C)) ≤ f→L (coC(C)) for all C ∈ LX.

(7) f is bijective and f→L (B) ∈ D for all B ∈ BC, where BC is a base of (X,C).

Definition 4.9. A mapping f : (X,C) −→ (Y,D) between two L-convex spaces is called L-embedding if f | f→(X) :
(X,C) −→ ( f→(X),D| f→(X)) is an L-isomorphism.

If there is an L-embedding mapping between (X,C) and (Y,D), then we say that (X,C) can be embedded in
(Y,D).

Theorem 4.10. A mapping f : (X,C) −→ (Y,D) between two L-convex spaces is L-embedding iff f is injective, L-CP
and almost L-CC.

Proof. Necessity. Since f : (X,C) −→ (Y,D) is L-embedding, we can know that f | f→(X) : (X,C) −→
( f→(X),D| f→(X)) is an L-isomorphism. This shows that f is injective and f | f→(X) is L-CP, L-CC. By Proposition
3.1(4), we can get that f is L-CP. Note that f | f→(X) is L-CC, so we have f→L (C) ∈ D| f→(X) for all C ∈ C. It implies
that there exists D ∈ D such that f→L (C) = D| f→(X). Thus, C = f←L ( f→L (C)) = f←L (D| f→(X)) = f←L (D). Hence f is
almost L-CC.

Sufficiency. Since f : (X,C) −→ (Y,D) is injective, L-CP and almost L-CC, we can obtain that f | f→(X) :
(X,C) −→ ( f→(X),D| f→(X)) is bijective and L-CP. We need to show that f | f→(X) is L-CC. Since f is almost L-CC,
it follows that there exists D ∈ D such that C = f←L (D) for all C ∈ C. For any y ∈ f→(X),

( f | f→(X))→L ( f←L (D))(y) =
∨
{ f←L (D)(x) : x ∈ X, f | f→(X)(x) = y}

=
∨
{D( f (x)) : x ∈ X, f (x) = y}

= D(y)
= D| f→(X)(y).

It implies that ( f | f→(X))→L ( f←L (D)) = D| f→(X). Note that C = f←L (D), so we obtain

( f | f→(X))→L (C) = D| f→(X) ∈ D| f→(X).

This shows that f | f→(X) is L-CC. Hence f is L-embedding.

Lemma 4.11. Let C be an L-convex structure on X and ∅ , Y ∈ 2X.

(1) If BC is a base of (X,C), then BC|Y is base of (Y,C|Y).

(2) If SC is a subbase of (X,C), then SC|Y is subbase of (Y,C|Y).

Proof. (1) For any D ∈ C|Y, there exists C ∈ C such that D = C|Y. Since BC is a base of (X,C), there is a
directed family {Bi}i∈I ⊆BC such that C =

∨
↑

i∈I Bi. Thus, we have

D = (
∨
↑

i∈I Bi)|Y =
∨
↑

i∈I(Bi|Y).

One can readily verify that {Bi|Y}i∈I ⊆BC|Y is also directed. This means that BC|Y is base of (Y,C|Y).
(2) Since SC is a subbase of (X,C), BSC defined by

BSC = {
∧

i∈I Bi : {Bi}i∈I ⊆ SC}
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is a base of (X,C). By (1), we know that

BSC |Y = {(
∧

i∈I Bi)|Y : {Bi}i∈I ⊆ SC}

= {
∧

i∈I(Bi|Y) : {Bi}i∈I ⊆ SC}

= {
∧

i∈I Ci : {Ci}i∈I ⊆ SC|Y}

is a base of (Y,C|Y). This implies that SC|Y is subbase of (Y,C|Y).

Theorem 4.12. Let (X,C) and (Y,D) be two L-convex spaces, BD a base of (Y,D). Then the mapping f : (X,C) −→
(Y,D) is L-embedding iff it is injective and f−1

L (BD) is a base of (X,C).

Proof. Necessity. Since f : (X,C) −→ (Y,D) is L-embedding, we can obtain that f is injective, L-CP and
L-almost CC. For each C ∈ C, then there exists D ∈ D such that C = f←L (D). Note that BD is a base of (Y,D),
so we know that there is a directed family {Bi}i∈I ⊆BD such that D =

∨
↑

i∈I Bi. It implies that

C = f←L (
∨
↑

i∈I Bi) =
∨
↑

i∈I f←L (Bi).

One can readily verify that { f←L (Bi)}i∈I is a directed subset of f−1
L (BD). Hence f−1

L (BD) is a base of (X,C).
Sufficiency. We need to show that f | f→(X) : (X,C) −→ ( f→(X),D| f→(X)) is an L-isomorphism. That f | f→(X)

is bijective is obvious. By Lemma 4.11, we can get that BD| f→(X) is a base of ( f→(X),D| f→(X)). For each
B ∈ BD| f→(X), there exists C ∈ BD such that B = C| f→(X). Since

( f | f→(X))←L (C| f→(X))(x) = (C| f→(X))( f | f→(X)(x))
= (C| f→(X))( f (x))
= C( f (x))
= f←L (C)(x)

for all x ∈ X, we obtain ( f | f→(X))←L (B) = f←L (C). Note that f−1
L (BD) is a base of (X,C), so we have

( f | f→(X))←L (B) = f←L (C) ∈ f−1
L (BD) ⊆ C.

Hence ( f | f→(X))←L (B) ∈ C. Therefore, f | f→(X) is L-CP.
Now we show that f | f→(X) is L-CC. For each C ∈ f−1

L (BD), there exists D ∈ BD ⊆ D such that C = f←L (D).
Similar to Theorem 4.10’ proof , we get that ( f | f→(X))→L ( f←L (D)) = D| f→(X). Hence ( f | f→(X))→L (C) ∈ D| f→(X). This
means that f | f→(X) is L-CC. Therefore, f is L-embedding.

Theorem 4.13. Let (X,C) and (Y,D) be two L-convex spaces, SD a subbase of (Y,D). Then the mapping f :
(X,C) −→ (Y,D) is L-embedding iff it is injective and f−1

L (SD) is a subbase of (X,C).

Proof. Necessity. It is obvious that the mapping f : (X,C) −→ (Y,D) is injective. Since SD is a subbase of
(Y,D), BSD defined by BSD = {

∧
i∈I Bi : {Bi}i∈I ⊆ SD} is a base of (Y,D). It follows that

f−1
L (BSD ) = { f←L (

∧
i∈I Bi) : {Bi}i∈I ⊆ SD}

= {
∧

i∈I f←L (Bi) : {Bi}i∈I ⊆ SD}

= {
∧

i∈I Ci : {Ci}i∈I ⊆ f−1
L (SD)}.

Note that BSD is a base of (Y,D) and f is L-embedding, by Theorem 4.12, we know that f−1
L (BSD ) is a base

of (X,C). It implies that f−1
L (SD) is a subbase of (X,C).

Sufficiency. Since f−1
L (SD) is a subbase of (X,C), B f−1

L (SD) defined by B f−1
L (SD) = {

∧
j∈J D j : {D j} j∈J ⊆

f−1
L (SD)} is a base of (X,C). Note that BSD is a base of (Y,D) and B f−1

L (SD) = f−1
L (BSD ), by Theorem 4.12, we

know that f is L-embedding.

As a straightforward result of Theorems 4.10, 4.12 and 4.13, we can easily get the following proposition.
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Proposition 4.14. For a mapping f : (X,C) −→ (Y,D) between two L-convex spaces, the following statements are
equivalent:

(1) f is L-embedding.

(2) f is injective, L-CP and L-almost CC.

(3) f is injective, BD is a base of (Y,D) and f−1
L (BD) is a base of (X,C).

(4) f is injective, SD is a subbase of (Y,D) and f−1
L (SD) is a subbase of (X,C).

Proposition 4.15. Let (X,C) and (Y,D) be two L-convex spaces. We have the following statements:

(1) If f : (X,C) −→ (Y,D) is an L-isomorphism and A ∈ 2X, then f |A : (A,C|A) −→ ( f→(A),D| f→(A)) is an
L-isomorphism.

(2) If (X,C) can be embedded in (Y,D), then any subspace of (X,C) can also be embedded in (Y,D).

Proof. (1) Since f : (X,C) −→ (Y,D) is an L-isomorphism, we obtain that f is bijective, L-CP and L-CC.
Obviously, the mapping f |A : (A,C|A) −→ ( f→(A),D| f→(A)) is bijective for all A ∈ 2X. By Proposition

3.1(5), we get that f |A is L-CP. We need to show that f |A is L-CC. For each B ∈ C|A, there exists C ∈ C such
that B = C|A. Note that f is L-CC, so we have f→L (C) ∈ D. Since

( f |A)→L (C|A)(y) =
∨
{(C|A)(x) : x ∈ A, ( f |A)(x) = y}

=
∨
{C(x) : x ∈ A, f (x) = y}

=
∨
{C(x) : x ∈ X, f (x) = y} ( f is bijective)

= f→L (C)(y)
= ( f→L (C)| f→(A))(y)

for all y ∈ f→(A), we have ( f |A)→L (C|A) = f→L (C)| f→(A). It means ( f |A)→L (B) ∈ D| f→(A). This implies that f |A is
L-CC. Hence f |A is an L-isomorphism.

(2) Let (A,C|A) be a subspace of (X,C). Since (X,C) can be embedded in (Y,D), we know that f | f→(X) :
(X,C) −→ ( f→(X),D| f→(X)) is an L-isomorphism. By (1), we obtain that

f |A : (A,C|A) −→ ( f→(A), (D| f→(X))| f→(A))

is an L-isomorphism. Note that f→(A) ⊆ f→(X), so we have (D| f→(X))| f→(A) = D| f→(A). Therefore, (A,C|A) can
be embedded in (Y,D).

5. L-quotient mappings

In this section, we present the definition of L-quotient mappings from the point of view of L-convex sets,
which is a special case of Definition 4.3 in [20]. Further, we discuss some properties of L-quotient mappings
and L-quotient spaces.

Definition 5.1. A mapping f : (X,C) −→ (Y,D) between two L-convex spaces is called an L-quotient mapping
provided that f is surjective and for any B ∈ LY, B is an L-convex set in (Y,D) iff f←L (B) is an L-convex set in (X,C).

Remark 5.2. From Definition 5.1, we can easily obtain the following statements:

(1) The composition of two L-quotient mappings is also an L-quotient mapping.

(2) According to Theorem 4.8, we know that an L-isomorphism is an L-quotient mapping and an injective L-quotient
mapping is an L-isomorphism.

The following proposition show the elementary properties of L-quotient mappings.
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Proposition 5.3. Let f : (X,C) −→ (Y,D) be an L-CP mapping between two L-convex space. We have the following
statements:

(1) If there is an L-CP mapping h : (Y,D) −→ (X,C) such that f ◦ h = idY, then f is an L-quotient mapping.

(2) If f is surjective and L-CC, then f is an L-quotient mapping.

(3) If f is surjective and almost L-CC, then f is an L-quotient mapping.

(4) If 1 : (Y,D) −→ (Z,G) is an L-CP mapping and 1 ◦ f : (X,C) −→ (Z,G) is an L-quotient mapping, then 1 is an
L-quotient mapping.

(5) If there exists ∅ , A ∈ 2X such that f |A : (A,C|A) −→ (Y,D) is an L-quotient mapping, then f is an L-quotient
mapping.

Proof. (1) Suppose B ∈ LY. Let B ∈ D, obviously, f←L (B) ∈ C. Conversely, let f←L (B) ∈ C. Note that f ◦ h = idY,
so we can obtain that f is surjective. By h←L ( f←L (B)) = ( f ◦ h)←L (B) = (idY)←L (B) = B and h : (Y,D) −→ (X,C) is
L-CP, we have B ∈ D. Hence f is an L-quotient mapping.

(2) It is straightforward.
(3) For any B ∈ LY, we only to show that f←L (B) ∈ C implies B ∈ D. Since f is almost L-CC, we can obtain

that there exists D ∈ D such that f←L (B) = f←L (D). Note that f is surjective, so we have

B = f→L ( f←L (B)) = f→L ( f←L (D)) = D.

It implies that B ∈ D. Hence f is an L-quotient mapping.
(4) Clearly, 1 is surjective. For any C ∈ LZ, if the inverse image 1←L (C) ∈ D, then we obtain

f←L (1←L (C)) = (1 ◦ f )←L (C) ∈ C.

Note that 1 ◦ f is an L-quotient mapping, so we have C ∈ G. Hence 1 is an L-quotient mapping.
(5) Note that i|A : (A,C|A) −→ (X,C) is an L-CP mapping and f |A = f ◦ (i|A) is L-quotient mapping, by (4)

we know that f is an L-quotient mapping.

In [20], the authors provided a method to generate a new convex space based on a convex space and a
surjection in (L,M)-fuzzy setting. As its special case, when M = {⊥,>}, we have the following proposition.

Proposition 5.4. Let f : X −→ Y be a surjective mapping and C be an L-convex structure on X. We define
D = {B ∈ LY : f←L (B) ∈ C}. Then (Y,D) is an L-convex space.

As we all know, if R is an equivalence relation over X, then the mapping q : X −→ X/R is surjective.
For an L-convex structure C on X, we obtain that CR = {B ∈ LX/R : q←L (B) ∈ C} is an L-convex structure on
X/R. One can readily verify that CR is the finest L-convex structure on X/R such that q : X −→ X/R is L-CP.
The L-convex structure CR is called the L-quotient convex structure, the set X/R equipped with CR is called
the L-quotient space of (X,C) with respect to R, and q : (X,C) −→ (X/R,CR) is called the natural L-quotient
mapping.

There is a close relationship between L-quotient mappings and L-quotient spaces. If (X/R,CR) is the
L-quotient space of (X,C), then q : (X,C) −→ (X/R,CR) is an L-quotient mapping. Conversely, we have the
following proposition.

Proposition 5.5. A mapping f : (X,C) −→ (Y,D) between two L-convex spaces is an L-quotient mapping iff there
is an equivalence relation R on X such that 1 : (X/R,CR) −→ (Y,D) is an L-isomorphism, where

R = {(x, y) ∈ X × X : f (x) = f (y)}

and 1 : X/R −→ Y is defined by 1([x]R) = f (x) for all x, y ∈ X.
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Proof. Necessity. It is easy to verify that 1 is bijective. Since f is an L-quotient mapping, we obtain that f is L-
CP. Note that f = 1◦ q and q is natural L-quotient mapping, so we have f←L (B) = (1◦ q)←L (B) = q←L (1←L (B)) ∈ C
for all B ∈ D. Hence 1←L (B) ∈ CR. This means that 1 is an L-CP mapping.

Next, we show that 1 is L-CC. Let C ∈ CR. Since q : (X,C) −→ (X/R,CR) is an L-quotient mapping, we
obtain that

f←L (1→L (C)) = (1 ◦ q)←L (1→L (C))
= q←L (1←L (1→L (C)))
= q←L (C)

and f←L (1→L (C)) ∈ C. Note that f is an L-quotient mapping , so we have 1→L (C) ∈ D. It implies that 1 is an
L-CC mapping. Hence 1 : (X/R,CR) −→ (Y,D) is an L-isomorphism.

Sufficiency. Let 1 : (X/R,CR) −→ (Y,D) is an L-isomorphism. Then 1 is an L-quotient mapping. Since
q : (X,C) −→ (X/R,CR) is an L-quotient mapping and f = 1 ◦ q, we know that f : (X,C) −→ (Y,D) is an
L-quotinet mapping.

Proposition 5.6. Let R be an equivalent relation on X and S an equivalent relations on Y. Let f : (X,C) −→ (Y,D)
be an L-CP mapping between two L-convex spaces such that (x, y) ∈ R implies ( f (x), f (y)) ∈ S for all x, y ∈ X. Define
f ∗ : (X/R,CR) −→ (Y/S,DS) by f ∗([x]R) = [ f (x)]S. We have the following statements:

(1) f ∗ is an L-CP mapping and f ∗ ◦ qX = qY ◦ f , where qX : (X,C) −→ (X/R,CR) and qY : (Y,D) −→ (Y/S,DS) are
natural L-quotient mappings.

(2) If both f and qY are L-CC mappings, then f ∗ is also an L-CC mapping.

(3) If f is an L-quotient mapping, then f ∗ is also an L-quotient mapping.

Proof. (1) For any [x]R = [y]R, it implies (x, y) ∈ R. Thus, we have ( f (x), f (y)) ∈ S which implies [ f (x)]S =
[ f (y)]S. This means that f ∗ is well defined.

It is easy to verity that f ∗ ◦ qX = qY ◦ f . Let D ∈ DS. Then (qY)←L (D) ∈ D. Since f is an L-CP mapping, we
obtain that f←L ((qY)←L (D)) ∈ C. Note that

f←L ((qY)←L (D)) = (qY ◦ f )←L (D) = ( f ∗ ◦ qX)←L (D) = (qX)←L (( f ∗)←L (D)),

so we get that (qX)←L (( f ∗)←L (D)) ∈ C. It follows that ( f ∗)←L (D) ∈ CR. This implies that f ∗ is an L-CP mapping.
(2) For any C ∈ CR, (qX)←L (C) ∈ C. Since f and qY are L-CC mappings, it follows that f→L ((qX)←L (C)) ∈ D

and (qY)→L ( f→L ((qX)←L (C))) ∈ DS.
Note that f ∗ ◦ qX = qY ◦ f and

(qY)→L ( f→L ((qX)←L (C))) = (qY ◦ f )→L ((qX)←L (C))
= ( f ∗ ◦ qX)→L ((qX)←L (C))
= (( f ∗)→L ◦ (qX)L)→((qX)←L (C)))
= ( f ∗)→L ((qX)→L ((qX)←L (C)))
= ( f ∗)→L (C),

so we have ( f ∗)→L (C) ∈ DS. This means that f ∗ is an L-CC mapping.
(3) Suppose D ∈ LY/S. Let D ∈ DS. Then we have (qY)←L (D) ∈ D. Note that f is L-CP and f ∗ ◦ qX = qY ◦ f ,

so we have

(qX)←L (( f ∗)←L (D)) = f←L ((qY)←L (D)) ∈ C.

It implies that ( f ∗)←L (D) ∈ CR.
Conversely, if ( f ∗)←L (D) ∈ CR, then we obtain that

f←L ((qY)←L (D)) = (qX)←L (( f ∗)←L (D)) ∈ C.

Since f is an L-quotient mapping, we obtain that (qY)←L (D) ∈ D, implying that D ∈ DS. Hence f ∗ is an
L-quotient mapping.

The relationships among the above-mentioned mappings can be described in the following figure:
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surjective
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L-quotient L-CP

6. Conclusions

It is well know that CP and CC mappings are two basic mappings between convex spaces. They play
key roles in the theory of convex spaces. In this paper, we mainly studied some new properties of six kinds
of special mappings in the L-fuzzy case, including L-CP mappings, L-CC mappings, almost L-CC mapping,
L-isomorphic mappings, L-embedding mappings and L-quotient mappings. In particular, we introduced
the definition of almost L-CC mapping and presented some characterizations of L-embedding mappings.
Finally, we gave a diagram to show the relationships among the above-mentioned mappings. These related
results are novel, and they are helpful for us to further perfect L-convex space theory.
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