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Abstract. We obtain a fixed point theorem for complete fuzzy metric spaces, in the sense of Kramosil
and Michalek, that extends the classical Kannan fixed point theorem. We also show that, in fact, our
theorem allows to characterize the fuzzy metric completeness, extending in this way the well-known Reich-
Subrahmanyam theorem that a metric space is complete if and only if every Kannan contraction on it has a
fixed point.

1. Introduction and preliminaries

The first characterization of metric completeness by means of fixed point theorems was obtained by
Hu in [7]. He proved that a metric space is complete if and only if every Banach contraction on any of its
closed subsets has a fixed point. The antecedent of Hu’s theorem is in an article of Connell [4, Second part
of Example 4], where an example of a non complete metric space for which every Banach contraction has
fixed point was given. Later, Reich [13] and Subrahmanyam [16], independently proved that the renowned
Kannan fixed point theorem [8] characterizes complete metric spaces, while Kirk established in [9] that the
celebrated Caristi fixed point theorem [2] also characterizes the metric completeness. Further solutions to
the problem of obtaining necessary and sufficient conditions to a metric space be complete in terms of fixed
point results may be found in [14, 17, 18].

Kirk’s theorem has been partially generalized to fuzzy metric spaces, in the sense of Kramosil and
Michalek, in [1, 3], while Hu’s theorem was recently extended in [15] to this setting. In this paper, and
continuing with this aproach, we propose a notion of Kannan contraction for fuzzy metric spaces that allows
us, by one hand, to extend Kannan’s fixed point theorem to the fuzzy metric framework and, on the other
hand, to characterize fuzzy metric completeness by means of a suitable version of the Reich-Subrahmanyam
characterization of metric completeness. In fact, Reich-Subrahmanyam’s theorem will be get back from our
fuzzy approach.

In order to help the reader, we next recall several notions and properties which will be useful in the rest
of the paper.

The sets of positive integer numbers will be denoted byN. Our basic reference for general topology is
[6] and for (continuous) t-norms it is [10].
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A binary operation ∗ : [0, 1] × [0, 1]→ [0, 1] is said to be a continuous t-norm if ∗ satisfies the following
conditions: (i) ∗ is associative and commutative; (ii) ∗ is continuous; (iii) u ∗ 1 = u for every u ∈ [0, 1]; (iv)
u ∗ w ≤ v ∗ w if u ≤ v, where u, v,w ∈ [0, 1].

Three distinguished examples of continuous t-norms are the minimum ∧, the product ∗P and the
Łukasiewicz t-norm ∗L, which are defined, respectively, by u ∧ v = min{u, v}, u ∗P v = uv, and u ∗L v =
max{u + v − 1, 0}.

It is well known that ∗L ≤ ∗P ≤ ∧. In fact, ∗ ≤ ∧ for any continuous t-norm ∗.

The following well-established concepts and facts may be found, for instance, in [1, Section 1].

Definition 1 (Kramosil and Michalek [11]). A fuzzy metric on a set X is a pair (M, ∗) such that ∗ is a
continuous t-norm and M is a function from X × X × [0,∞) to [0, 1] such that for all x, y, z ∈ X :

(i) M(x, y, 0) = 0;
(ii) x = y if and only if M(x, y, t) = 1 for all t > 0;
(iii) M(x, y, t) = M(y, x, t);
(iv) M(x, z, t + s) ≥M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0;
(v) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous.

If (M, ∗) is a fuzzy metric on a set X, the triple (X,M, ∗) is said to be a fuzzy metric space.

Remark 1. It is well known, and easy to see, that for each x, y ∈ X,M(x, y, ·) is a non-decreasing function on
[0,∞).

Remark 2. It easily follows from Remark 1 that, given x, y ∈ X, if M(x, y, t) > 1 − t for all t > 0, then x = y.

Every fuzzy metric (M, ∗) on a set X induces a metrizable topology τM on X which has as a base the
family of open sets {BM(x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0}, where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} for all
ε ∈ (0, 1), t > 0.

A sequence (xn)n∈N in a fuzzy metric space (X,M, ∗) is called a Cauchy sequence if for any ε ∈ (0, 1) and
t > 0 there exists an n0 ∈N such that M(xn, xm, t) > 1 − ε for all n,m ≥ n0.

A fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy sequence (xn)n∈N converges with
respect to the topology τM, i.e., if there exists y ∈ X such that for each t > 0, limn M(y, xn, t) = 1.

We conclude this section by recalling a basic but important example of a fuzzy metric space which will
be very useful, mainly, in the final part of our study.

Example 1. Let (X, d) be a metric space. Define a function Md
01 : X × X × [0,∞)→ [0, 1] as Md

01(x, y, t) = 1 if
d(x, y) < t, and Md

01(x, y, t) = 0 if d(x, y) ≥ t. Then, (Md
01, ∗) is a fuzzy metric on X for any continuous t-norm ∗,

such that the topologies induced by d and (Md
01, ∗) coincide. Furthermore (X,Md

01, ∗) is complete if and only
if (X, d) is complete.

2. Kannan contractions on fuzzy metric spaces

We start this section by recalling Kannan fixed point theorem and Reich-Subrahmanyam theorem.

Theorem 1 (Kannan [8]). Let (X, d) be a complete metric space and let T : X → X be a mapping such that there
exists a constant c ∈ (0, 1/2) satisfying, for any x, y ∈ X,

d(Tx,Ty) ≤ c[d(x,Tx) + d(y,Ty)]. (cK)

Then T has a unique fixed point.
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A mapping T satisfying condition (cK) is said to be a Kannan contraction on X.

Theorem 2 (Reich [13], Subrahmanyam [16]). A metric space (X, d) is complete if and only if every Kannan
contraction on X has a fixed point.

We propose the following notion of Kannan contraction for fuzzy metric spaces.

Definition 2. Let (X,M, ∗) be a fuzzy metric space. We say that a mapping T : X → X is a (1)-Kannan
contraction on X if there is a constant c ∈ (0, 1) such that for any x, y ∈ X and t > 0,

min{M(x,Tx, t),M(y,Ty, t)} > 1 − t⇒M(Tx,Ty, ct) > 1 − ct. (1K)

Similarly, and by analogy to the classical metric case, we say that a mapping T : X→ X is a (1/2)-Kannan
contraction on X if there is a constant c ∈ (0, 1/2) such that for any x, y ∈ X and t > 0,

min{M(x,Tx, t),M(y,Ty, t)} > 1 − t⇒M(Tx,Ty, ct) > 1 − ct.

Obviously, every (1/2)-Kannan contraction is a (1)-Kannan contraction. However (see Example 2 below)
there exist (1)-Kannan contractions, with constant c = 1/2, that are not (1/2)-Kannan contractions. In our
first result we prove a fixed point theorem valid for (1)-Kannan contractions which contrasts with the
classical metric case where is a crucial requirement that the constant c belongs to (0, 1/2).

Theorem 3. Every (1)-Kannan contraction on a complete fuzzy metric space has a unique fixed point.

Proof. Let (X,M, ∗) be a complete fuzzy metric space and let T : X → X be a (1)-Kannan contraction on
X. Then, there exists a constant c ∈ (0, 1) for which condition (1K) in Definition 2 is satisfied.

Fix t0 > 1. For any x, y ∈ X we have

M(x,Tx, t0) > 1 − t0 and M(y,Ty, t0) > 1 − t0.

So, by condition (1K),

M(Tx,Ty, ct0) > 1 − ct0.

From

M(x,Tx, t0) > 1 − t0 and M(Tx,T2x, t0) > 1 − t0,

we deduce that

M(Tx,T2x, ct0) > 1 − ct0,

and, similarly,

M(Ty,T2y, ct0) > 1 − ct0.

Therefore, by condition (1K),

M(T2x,T2y, c2t0) > 1 − c2t0.

Following this process we obtain, for each n ∈N,

M(Tnx,Tny, cnt0) > 1 − cnt0.

Now fix an x0 ∈ X. Define xn := Tnx0 for all n ∈ N. We show that (xn)n∈N is a Cauchy sequence in
(X,M, ∗).
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Indeed, given t > 0 and ε ∈ (0, 1), there is nε ∈ N such that cnt0 < min{ε, t} for all n ≥ nε. Let m,n ≥ nε.
Suppose m > n. Then m = n + k for some k ∈N, and hence

M(xn, xm, t) = M(Tnx0,TnTkx0, t) ≥M(Tnx0,TnTkx0, cnt0)
> 1 − cnt0 > 1 − ε.

Consequently (xn)n∈N is a Cauchy sequence in (X,M, ∗). So there is z ∈ X such that the sequence (xn)n∈N
converges to z in τM.

Next we shall prove that z is a fixed point of T. (The proof of this claim is not immediate, so several
details must be checked.)

Fix r, s > 0 such that c < s < r < 1.

Our first step is to show, by applying induction, that for each k ∈N,

M(z,Tz, rkt0) ≥ 1 − rkt0. (^)

(We can suppose, without loss of generality that rkt0 ≤ 1 for all k ∈ N : Otherwise, the inequality (^) is
trivially satisfied.)

For each k ∈Nwe define

Ak,r,s := {ε ∈ (0, 1) : ε + srk−1t0 < rkt0}.

Let k = 1. Then, we have

M(z,Tz, t0) > 1 − t0 and M(xn, xn+1, t0) > 1 − t0.

So, by Remark 1 and condition (1K), we obtain

M(Tz, xn+1, st0) ≥M(Tz, xn+1, ct0) > 1 − ct0 > 1 − st0.

for all n ∈N∪{0}.
Since (xn)n∈N converges to z, for any ε ∈ A1,r,s there is nε ∈N for which M(z, xnε , ε) > 1− ε. Consequently

M(z,Tz, rt0) ≥ M(z, xnε , ε) ∗M(xnε ,Tz, st0) ≥ (1 − ε) ∗ (1 − st0) ≥
(1 − ε) ∗ (1 − rt0).

Taking limit when ε→ 0 we deduce, by continuity of ∗, that

M(z,Tz, rt0) ≥ 1 − rt0.

Suppose now that the inequality (^) holds for k = j, j ∈ N. We are going to show that M(z,Tz, r j+1t0) ≥
1 − r j+1t0.

Indeed, we get

M(z,Tz, r jt0) > 1 − r jt0.

Moreover, since (xn)n∈N is a Cauchy sequence, there is n j ∈N such that

M(xn, xn+1, r jt0) > 1 − r jt0,

for all n ≥ n j. Then, it follows from condition (1K) that

M(Tz, xn+1, cr jt0) > 1 − cr jt0,



S. Romaguera / Filomat 34:14 (2020), 4811–4819 4815

for all n ≥ n j. Since s > c, we deduce from the preceding inequality that

M(Tz, xn+1, sr jt0) > 1 − sr jt0,

for all n ≥ n j.

Now let ε ∈ A j+1,r,s. Then ε+ sr jt0 < r j+1t0, and there exists nε > n j such that M(z, xnε , ε) > 1− ε. Therefore

M(z,Tz, r j+1t0) ≥ M(z, xnε , ε) ∗M(xnε ,Tz, sr jt0)
≥ (1 − ε) ∗ (1 − sr jt0) ≥ (1 − ε) ∗ (1 − r j+1t0).

Taking limit when ε→ 0 we deduce, by continuity of ∗, that

M(z,Tz, r j+1t0) ≥ 1 − r j+1t0.

We have shown that inequality (^) holds.
Now, given t > 0 there is k ∈ N such that rkt0 < t, so M(z,Tz, t) ≥ M(z,Tz, rkt0) > 1 − rkt0 > 1 − t. By

Remark 2 we conclude that z = Tz.
It remains to show that z is the unique fixed point of T. Let u ∈ X such that u = Tu. Then

min{M(z,Tz, t),M(u,Tu, t)} = 1,

for all t > 0. Hence, by condition (1K), M(Tz,Tu, ct) > 1 − ct, for all t > 0, which implies that Tz = Tu, i.e.,
z = u. This concludes the proof.

Corollary 1. Every (1/2)-Kannan contraction on a complete fuzzy metric space has a unique fixed point.

We finish this section with the promised example of a (1)-Kannan contraction, for c = 1/2, that is not
(1/2)-Kannan contraction. In fact, it also provides an instance where we can apply Theorem 3 but not
Corollary 1.

Example 2. Let X = [0, 3/2] and let d be the usual metric on X. Then (X,Md
01,∧) is a complete fuzzy metric

space. Define T : X→ X as Tx = 0 for all x ∈ [0, 1], and Tx = x/3 for all x ∈ (1, 3/2].
We first show that T is not a (1/2)-Kannan contraction.
Choose c ∈ (0, 1/2). Take x = 0, y = 3/2 and t = 1/2c. Then t > 1, so

min{Md
01(x,Tx, t),Md

01(y,Ty, t)} > 1 − t.

However

Md
01(Tx,Ty, ct) = Md

01(0, 1/2, 1/2) = 0 < 1 − ct.

Therefore T is not a (1/2)-Kannan contraction on X.
Now we shall prove that T is a (1)-Kannan contraction for c = 1/2.
To this end, we shall distinguish three cases for any x, y ∈ X.
Case 1. x, y ∈ [0, 1]. Then, for any t > 0,

Md
01(Tx,Ty, ct) = Md

01(0, 0, t/2) = 1 > 1 − ct,

and, hence, condition (1K) is obviously satisfied.
Case 2. x ∈ [0, 1], y ∈ (1, 3/2].
If t > 1 we have y/3 ≤ 1/2 < t/2, so

Md
01(Tx,Ty, ct) = Md

01(0, y/3, t/2) = 1 > 1 − ct,
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and, hence, condition (1K) is obviously satisfied.
If t ≤ 1 and assuming that

min{Md
01(x,Tx, t),Md

01(y,Ty, t)} > 1 − t,

we deduce that Md
01(x, 0, t) = Md

01(y, y/3, t) = 1. Consequently (x < t and) 2y/3 < t, which implies that

Md
01(Tx,Ty, ct) = Md

01(0, y/3, t/2) = 1 > 1 − ct.

Case 3. x, y ∈ (1, 3/2]. We shall assume x > y, without loss of generality.
If t > 1 we have (x − y)/3 < x/3 ≤ 1/2 < t/2, so

Md
01(Tx,Ty, ct) = Md

01(x/3, y/3, t/2) = 1 > 1 − ct,

and, hence, condition (1K) is obviously satisfied.
If t ≤ 1 and assuming that

min{Md
01(x,Tx, t),Md

01(y,Ty, t)} > 1 − t,

we deduce that Md
01(x, x/3, t) = Md

01(y, y/3, t) = 1. Consequently 2x/3 < t (and 2y/3 < t); thus (x − y)/3 <
x/3 < t/2, which implies that

Md
01(Tx,Ty, ct) = Md

01(x/3, y/3, t/2) = 1 > 1 − ct.

We have proved that T is a (1)-Kannan contraction on X.

3. A characterization of fuzzy metric completeness

In this section we prove the main result of the paper (Theorem 5 below). The notion of a semi-metric
and an important result of Radu will be crucial ingredients in obtaining that result.

A semi-metric (compare e.g. [5]) for a topological space (X, τ) is a function d : X ×X→ [0,∞) satisfying
the following conditions for every x, y ∈ X and a subset A of X :

(i) d(x, y) = 0⇔ x = y;
(ii) d(x, y) = d(y, x);
(iii) x ∈ A⇔ d(x,A) = 0. (As usual, A denotes the closure of A in (X, τ).)

As in the metric case, if d is a semi-metric for a topological space (X, τ), a sequence (xn)n∈N in X is called
a Cauchy sequence if for each ε > 0 there exists n0 ∈N such that d(xn, xm) < ε for all n,m ≥ n0.

Theorem 4. (Radu [12] Proposition 2.1.1) Let (X,M, ∗) be a fuzzy metric space. For each x, y ∈ X put

dM(x, y) = sup{t ≥ 0 : M(x, y, t) ≤ 1 − t}.

Then dM is a semi-metric for (X, τM), satisfying dM ≤ 1 and

dM(x, y) < t⇐⇒M(x, y, t) > 1 − t,

for all t > 0.Therefore, a sequence in X is a Cauchy sequence for dM if and only if it is a Cauchy sequence in (X,M, ∗).
Moreover, if ∗L ≤ ∗, then dM is a metric on X whose induced topology coincides with τM.

Theorem 5. For a fuzzy metric space (X,M, ∗) the following are equivalent.
(1) (X,M, ∗) is complete.
(2) Every (1)-Kannan contraction on X has a fixed point.
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(3) Every (1/2)-Kannan contraction on X has a fixed point.

Proof. (1)⇒ (2). Theorem 3.
(2)⇒ (3). Obvious.
(3)⇒ (1). Suppose that (X,M, ∗) is not complete. Then there exists a Cauchy sequence (xn)n∈N in (X,M, ∗)

that does not converge in τM. We assume, without loss of generality, that xn , xm whenever n , m.
Set C := {xn : n ∈N}. Then, both C and all sets of the form C\{y}, y ∈ X, are closed for τM.
Then, by condition (iii) in the definition of a semi-metric, for any y ∈ X\C we have dM(y,C\{y}) > 0 (note

that, in this case, the sets C and C\{y} coincide). Since, by Theorem 4, (xn)n∈N is also a Cauchy sequence for
the semi-metric dM, there is n(y) ∈N such that

dM(x j, xk) <
1
4

dM(y,C\{y}),

for all j, k ≥ n(y).
On the other hand, for any y ∈ C there is n ∈N such that y := xn. Since dM(y,C\{y}) > 0, there is n(y) > n

such that

dM(x j, xk) <
1
4

dM(y,C\{y}),

for all j, k ≥ n(y).
Define a mapping T : X→ X as follows:

Ty = xn(y),

for all y ∈ X. Obviously T has no fixed points (observe, in particular, that xn , xn(y) because we have taken
n(y) > n).

We shall show that, however, T is a (1/2)-Kannan contraction on (X,M, ∗).
Indeed, let y, z ∈ X such that

min{M(y,Ty, t),M(z,Tz, t)} > 1 − t,

for t > 0. Therefore, by Theorem 4,

dM(y,Ty) < t and dM(z,Tz) < t.

If n(y) < n(z), we obtain

dM(Ty,Tz) = dM(xn(y), xn(z)) <
1
4

dM(y,C\{y}) ≤
1
4

dM(y,Ty) <
1
4

t.

Consequently, by Theorem 4,

M(Ty,Tz, t/4) > 1 − t/4.

If n(z) < n(y), we similarly obtain

dM(Ty,Tz) = dM(xn(y), xn(z)) <
1
4

dM(z,C\{z}) ≤
1
4

dM(z,Tz) <
1
4

t,

and thus

M(Ty,Tz, t/4) > 1 − t/4.

We have shown that T is a (1/2)-Kannan contraction. This finishes the proof.
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We will conclude the paper by showing that we can get back Reich-Subrahmanyam’s theorem from our
fuzzy approach in a similar way to the one given in [15] for the case of Hu’s theorem.

If (X, d) is a metric space, we denote by d1/2 the metric defined on X by d1/2(x, y) = min{1/2, d(x, y)} for all
x, y ∈ X. It is clear that the topologies induced by d and d1/2 coincide, and that (X, d) is complete if and only if
(X, d1/2) is complete. Hence (X,Md

01, ∗) is complete if and only if (X,Md1/2

01 , ∗) is complete, for any continuous
t-norm ∗ (compare Example 1).

Proposition 2. Let (X, d) be a metric space. Then, every Kannan contraction on (X, d1/2) is a Kannan contraction on
(X, d).

Proof. Let T be a Kannan contraction on (X, d1/2). Then, there exists c ∈ (0, 1/2) such that d1/2(Tx,Ty) ≤
c[d1/2(x,Tx) + d1/2(y,Ty)], for all x, y ∈ X.

If d1/2(Tx,Ty) = 1/2 for some x, y ∈ X, we deduce that 1/2 ≤ c[1/2 + 1/2] = c, a contradiction. Hence
d1/2(Tx,Ty) = d(Tx,Ty) < 1/2 for all x, y ∈ X, and thus

d(Tx,Ty) = d1/2(Tx,Ty) ≤ c[d1/2(x,Tx) + d1/2(y,Ty)]
≤ c[d(x,Tx) + d(y,Ty)].

Consequently T is a Kannan contraction on (X, d).

Proposition 3. Let (X, d) be a metric space with d ≤ 1. Then, for any continuous t-norm ∗, every (1/2)-Kannan
contraction on (X,Md

01, ∗) is a Kannan contraction on (X, d).

Proof. Let T : X → X be a (1/2)-Kannan contraction on (X,Md
01, ∗), with constant c ∈ (0, 1/2). We want to

show that d(Tx,Ty) ≤ c[d(x,Tx) + d(y,Ty)], for all x, y ∈ X.
Indeed, assume the contrary. Then, there exist x, y ∈ X such that d(Tx,Ty) > c[d(x,Tx) + d(y,Ty)]. Put

L = d(x,Tx) + d(y,Ty). Then L ∈ [0, 2). Choose an ε > 0 for which c(L + ε) < 1 and d(Tx,Ty) > c(L + ε).
Since Md

01(x,Tx,L + ε) = 1 and Md
01(y,Ty,L + ε) = 1, and T is a (1/2)-Kannan contraction we deduce that

Md
01(Tx,Ty, c(L + ε)) > 1 − c(L + ε) > 0. But, on the other hand, from d(Tx,Ty) > c(L + ε), it follows that

Md
01(Tx,Ty, c(L + ε)) = 0. This contradiction concludes the proof.

Proof of Theorem 2: We only show the “if” part. Suppose that every Kannan contraction on (X, d) has
a fixed point. Let T be a (1/2)-Kannan contraction on the fuzzy metric space (X,Md1/2

01 , ∗). Since d1/2 ≤ 1 it
follows from Proposition 3 that T is a Kannan contraction on (X, d1/2), and thus it is a Kannan contraction
on (X, d) by Proposition 2. Hence T has a fixed point. Consequently (X,Md1/2

01 , ∗) is complete by Theorem 5.
Thus (X,Md

01, ∗) is complete and, hence, (X, d) is complete.
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