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Abstract. The main result of this article is a characterization of the permutations θ :N→N that map a set
with zero asymptotic density into a set with zero asymptotic density; a permutation has this property if and
only if the lower asymptotic density of Cp tends to 1 as p→∞ where p is an arbitrary natural number and
Cp =

{
l : θ−1 (l) ≤ lp

}
. We then show that a permutation has this property if and only if it maps statistically

convergent sequences into statistically convergent sequences.

This main result of this note is a characterization of the permutations of the natural numbers that map
sets with asymptotic density zero to sets with asymptotic density zero. Recall that, for A ⊆ N, the upper
and lower asymptotic density of A, denoted δ (A) and δ (A) respectively, are defined by

δ (A) = lim sup
n→∞

1
n
|{k ≤ n : k ∈ A}| (1)

and

δ (A) = lim inf
n→∞

1
n
|{k ≤ n : k ∈ A} | (2)

In the case that δ (A) = δ (A) = γ, we say that A has density γ and write δ (A) = γ. In this note we
characterize the permutations θ : N → N that have the property that δ (A) = 0 implies that δ (θA) = 0
where θA = {θ (k) : k ∈ A} . We also show that this property also characterizes the permutations that map
statistically convergent sequences to statistically convergent sequences.

It will be helpful to have the definition of statistical convergence available to us. Statistical convergence
was introduced by Fast [3] and Steinhaus [11], and became an active area of research after the publication
of Šalát [9] and Fridy’s [4] oft-cited articles. A real-valued sequence x =

(
x j

)
is statistically convergent to L

provided that δ ({k : |xk − L| ≥ ε}) = 0 for all ε > 0. In this case we write st − lim x = L. It is straightforward
to verify, and well-known, for a bounded sequence x = (xk) , that

lim x = L⇒ st − lim x = L⇒ lim
n→∞

1
n

n∑
k=1

xk = L (3)
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and that none of the preceding implications can be reversed. Recall that a sequence x = (xk) is said
to be Cesàro summable to L provided that lim

n→∞
1
n
∑n

k=1 xk = L. The scope of statistical convergence has

been generalized extensively since Fridy and Šalát’s articles first appeared, where the asymptotic density
is typically replaced by finitely additive measures generated by regular summability matrices or, more
generally, by ideals of subsets ofN (cf. Kostryko et. al. [6], Connor [2], Kolk [5] and other related articles).
Due to the computational nature of the proof of Theorem 1, this article is confined to the asymptotic density.

One class of permutations that preserve asymptotically null sets is the well-studied Lévy group. The
Lévy group G [7] is the group of all permutations θ ofN satisfying

lim
n→∞

|{k ≤ n : θ (k) > n}|
n

= 0. (4)

Any member θ ∈G has the property that if A ⊆N with density δ(A) = γ, then δ (θA) = γ (cf. [8], [7]). Note
should be taken, though, that the Lévy group is a proper subgroup of the group of permutations that map
Cesàro summable sequences to Cesàro summable sequences via the mapping θxk = xθ−1(k) (Proposition 4.1
of [8]) and it is also noteworthy that there are permutations with the property that δ (A) = 0 implies that
δ (θA) = 0, but for which there is a set B with non-zero density δ (B) such that δ (B) , δ (θB) (Remark on
pg. 667 of [1]). One can also characterize members of the Lévy group via statistical convergence [10], in
particular a permutation θ :N→N belongs to G if and only if

st − lim
n→∞

θ (n)
n

= 1. (5)

Before starting, we establish some notation. For C ⊆ N, we use |C| to denote the cardinality of C and
let χC denote the characteristic function of C. For n ∈ N and C ⊆ N, we let δn (C) = (1/n) |{k ≤ n : k ∈ C}|. It
is also convenient to note that if the statistically convergent sequence x =

(
x j

)
is defined by x j = χC

(
j
)

for
some C ⊆N, and hence C has density 0 or 1, then st − lim x = δ (C). Also note that for a permutation θ and
a sequence x = χC such that θx is statistically convergent, we have

θx j = χC

(
θ−1 (

j
))

= 1⇔ θ−1 (
j
)
∈ C⇔ j ∈ θC (6)

and hence st − limθx = δ (θC) .
We now turn to the main result:

Lemma 1. Let A and B be subsets ofN such that δ (A) > z and δ (B) > 1 − z/2. Then δ (A
⋂

B) > z/2.

Proof: The hypothesis yields that there are infinitely many n such that δn (A) > z and δn (B) > 1 − z/2.
For these n we have that

1 ≥ δn (A ∪ B) = δn (A) + δn (B) − δn (A ∩ B) > 1 + z/2 − δn (A ∩ B) (7)

and, as this occurs for infinitely many n, we have that δ (A ∩ B) > z/2. �

Theorem 1. Let θ :N→N be a permutation. Then the following are equivalent:

(i) If A ⊂N and δ (A) = 0, then δ (θA) = 0 where θA = {θ (k) : k ∈ A} .

(ii) δ
({

l : θ−1 (l) > lp
})
→ 0 as p→∞, where p is a natural number.

Proof: First we establish that (ii) implies (i). Suppose there is a set A ⊂ N such that δ (θA) = z > 0. We
will show that if θ satisfies (ii), then δ(A) > 0. Hence δ (A) = 0 implies δ (θA) = 0.
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Define Cp =
{
l : θ−1 (l) ≤ lp

}
, p ∈N, and let S =

{
k ≤ n : k ∈ θA ∩ Cp

}
. Now s ∈ S implies thatθ−1 (s) ∈ A

and that θ−1 (s) ≤ sp. Now s ≤ n yields θ−1 (s) ≤ np. Hence s ∈ S implies that θ−1 (s) ∈
{
j ≤ np : j ∈ A

}
and we

note that

δn (S) =
1
n

∣∣∣∣{k ≤ n : k ∈ θA ∩ Cp

}∣∣∣∣ ≤ p
(

1
np

∣∣∣{ j ≤ np : j ∈ A
}∣∣∣) . (8)

Now select p ∈N such that δ
(
Cp

)
≥ 1 − z/2 and thus, by the lemma, δ

(
θA ∩ Cp

)
> z/2. It follows that

0 <
z
2
< δ(θA ∩ Cp) ≤ pδ (A) . (9)

Hence (ii) yields δ (θA) > z implies δ(A) ≥ z/
(
2p

)
> 0 .

Next we establish that (i) implies (ii). Set Ep =
{
l : θ−1 (l) > lp

}
and note that Ep ⊇ Ep+1 for all p, and

hence δ
(
Ep

)
is a nonincreasing sequence bounded below by 0. Suppose, for the sake of contradiction,

δ
(
Ep

)
→ η > 0 as p → ∞. We will construct a set F such that δ (F) = 0 and δ (θF) > 0, which will establish

the contrapositive of (i) implies (ii), and hence complete the proof of the theorem.
The set F will be constructed inductively. First, select n1 such that δn1 (E1) > ηand set I1 =

{
θ−1 (l) : l ∈ E1, l ≤ n1

}
.

Now select β (1) such that β (1) ≥ max
{
j : j ∈ I1

}
and n1/β(1) < 1/2. Now select n2 > β (1) such that

δn2

(
E2\{1, 2, . . . , β (1)}

)
=

1
n2

∣∣∣{β (1) < l ≤ n2 : θ−1 (l) > 2l}
∣∣∣ > η (10)

and set I2 =
{
θ−1 (l) : β (1) < l ≤ n2, l ∈ E2

}
. Select β (2) such that β (2) ≥ max{ j : j ∈ I2} and n2/β(2) < 1/3.

We pause to make a couple of observations. First, I1 and I2 are disjoint. This follows from observing
that

{
j : j ∈ E1, j ≤ n1

}
and E2 ∩

{
β(1), . . . ,n2

}
are disjoint and that θ−1 is one-to-one. Now let β (1) < n ≤ β(2)

and note that

δn (I1) ≤
|I1|

n
≤

n1

n
≤

n1

β (1)
<

1
2
. (11)

Next we compute an estimate for δn (I2) . Suppose that j ∈ I2 and j = θ−1 (l). Since l ∈ E2, we have that

2β(1) ≤ 2l ≤ j = θ−1 (l) ≤ n. (12)

This yields that β (1) ≤ l ≤ n/2 and, since θ is a one-to-one correspondence,
∣∣∣{ j ≤ n : n ∈ I2

}∣∣∣ ≤ n/2 − β (1).
Thus

δn (I2) =
1
n

(n
2
− β (1)

)
<

1
2

(13)

and hence δn (I1 ∪ I2) < 1.
Now we continue with the construction of F. Select n3 such that n3 > β (2) and

δn3

(
E3\{1, 2, . . . , β (2)}

)
=

1
n3

∣∣∣∣{β (2) < l ≤ n3 : θ−1 (l) > 3l
}∣∣∣∣ > η. (14)

Set I3 = {θ−1 (l) : β (2) < l ≤ n3, l ∈ E3} and select β (3) such that β (3) ≥ max{ j : j ∈ I3} and n3/β (3) < 1/4.
As before, I1, I2 and I3 are the images of a one-to-one correspondence of a collection of disjoint sets, and

hence disjoint. Thus δn (I1 ∪ I2 ∪ I3) = δn (I1 ∪ I2) + δn (I3).
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Now suppose that β (2) < n ≤ β (3) . Since |I1 ∪ I2| ≤ n2 and β (2) < n, it follows that

δn (I1 ∪ I2) <
n2

β (2)
<

1
3
.

Next we estimate δn (I3). Note that j ∈ I3 implies j = θ−1 (l) where l ∈ E3 and thus n ≥ j = θ−1 (l) ≥ 3l. It
follows that

∣∣∣{ j ≤ n : n ∈ I3
}∣∣∣ ≤ n/3 − β (2) and δn (I3) < 1/3. Hence

δn (I1 ∪ I2 ∪ I3) = δn (I1 ∪ I2) + δn (I3) < 1/3 + 1/3 = 2/3. (15)

We proceed inductively. Suppose that np, Ip, and β
(
p
)

have been selected such that:

1. δnp

(
Ep\{1, 2, . . . , β

(
p − 1

)
}

)
> η ;

2. Ip =
{
θ−1 (l) : β

(
p − 1

)
< l ≤ np, l ∈ Ep

}
;

3. β
(
p
)
≥ max

{
j : j ∈ Ip

}
and np/β

(
p
)
< 1/

(
p + 1

)
;

4. I1, I2, · · · , Ip are disjoint; and

5. δn

(⋃p
j=1 I j

)
< 2/p for β

(
p − 1

)
< n ≤ β

(
p
)

.

Now select np+1 such that

δnp+1

(
Ep+1\

{
1, 2, · · · , β

(
p
)})
> η (16)

and let

Ip+1 =
{
θ−1 (l) : β

(
p
)
< l ≤ np+1, l ∈ Ep+1

}
. (17)

Select β
(
p + 1

)
such that β

(
p + 1

)
≥ max

{
j : j ∈ Ip+1

}
and np+1/β

(
p + 1

)
< 1/

(
p + 2

)
. As in the preceding,

the intervals I1, I2, · · · , Ip+1 are disjoint and, if β
(
p
)
< n ≤ β

(
p + 1

)
, then

δn

 p⋃
j=1

I j

 < np

β
(
p
) < 1

p + 1
. (18)

Next we estimate δn

(
Ip+1

)
. Note that j ∈ Ip+1 implies j = θ−1 (l) where l ∈ Ep+1 and j ≤ n, hence we have that

n ≥ j = θ−1 (l) ≥
(
p + 1

)
l and consequently n/

(
p + 1

)
≥ l. It follows that

∣∣∣∣{ j ≤ n : n ∈ Ip

}∣∣∣∣ ≤ n/
(
p + 1

)
− β

(
p
)

and δn

(
Ip+1

)
< 1/p + 1, hence

δn

p+1⋃
j=1

I j

 < 2
p + 1

. (19)

Now let F = ∪∞j=1I j. Note that if β
(
p
)
< n ≤ β

(
p + 1

)
we have that, as the I j ’s are disjoint sets,

1
n
|{k ≤ n : k ∈ F}| =

1
n

∣∣∣∣∣∣∣∣
k ≤ n : k ∈

p+1⋃
j=1

I j


∣∣∣∣∣∣∣∣ ≤ 2

p + 1
(20)

and thus δ (F) = 0.
Next observe that

δnp+1

(
θF\

{
1, 2, · · · , β

(
p
)})

=
1

np + 1

∣∣∣∣{β (
p
)
< l ≤ np : l ∈ Ep

}∣∣∣∣ > η (21)
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for all p, and hence δ (θF) ≥ η > 0.
Thus δ

(
Ep

)
9 0 implies θ does not take null sets to null sets, and consequently θ takes null sets to null

sets implies (ii), i.e., δ
({

l : θ−1 (l) > lp
})
→ 0 as p→∞ . �

Example 1. The following example shows that a permutation θ may have the property that δ (A) = 0 implies
δ (θA) = 0 and fail to have the property δ (θA) = 0 implies δ (A) = 0. Define θ :N→N by

θ
(
j
)

=

{
j2 + 1 j is even

min
{
l : l , θ (k) , k < j

}
j is odd (22)

First we show that δ (A) = 0 implies that δ (θA) = 0. Suppose that A ⊆ N such that δ (A) = 0. Let
AO = {k ∈ A : k odd } and AE = {k ∈ A : k even }. We will show that both θAO and θAE have asymptotic
density zero and hence θA =θAO ∪ θAE also has asymptotic density zero.

First we show that θAE is a null set. Suppose that j ∈ θAE and hence j = θ (l) where l is even. Now
θ (l) = l2 + 1 and it follows that j = θ (l) ≤ n implies that l ≤

√
n − 1 . Thus∣∣∣{ j ≤ n : j ∈ θAE

}∣∣∣ =
∣∣∣{θ (

j
)
≤ n : j ∈ AE

}∣∣∣ ≤ √n − 1. (23)

As

1
n

∣∣∣{ j ≤ n : j ∈ θAE
}∣∣∣ ≤ √n − 1

n
→ 0 (24)

as n→∞, we have that δ (θAE) = 0.
Next we show that θAO is a null set. Note that if j ∈ θAO then j = θ (l) where l is odd. Note that θ (l) is

equal to the number of odds less than or equal to l plus the number of solutions to m2 + 1 ≤ l where m is
even, or

θ (l) =
l + 1

2
+

1
2

⌊√
l − 1

⌋
. (25)

It follows that θ (l) ≤ n implies that l+1
2 ≤ n and consequently l < 2n. Now

1
n

∣∣∣{ j ≤ n : j ∈ θAO
}∣∣∣ =

1
n
|{θ (k) ≤ n : k ∈ AO}|

≤
1
n
|{k ≤ 2n : k ∈ AO}|

≤ 2
[ 1
2n
|{k ≤ 2n : k ∈ AO}|

]
which tends to 0 as n tends to∞. As δ (θAO) = δ (θAE) = 0, we have that δ (θA) = 0.

Next we show there is a set B such that δ (θB) = 0 but δ (B) , 0. Let B denote the even integers and
observe that θB = {θ (2) , θ (4) , θ (6) , θ (8) , . . .} = {5, 17, 37, 65, . . .}. Hence θ−1 does not map asymptotically
zero sets to asymptotically zero sets. �

The preceding theorem can be used to obtain a characterization of permutations such that θA is a null
set if and only if A is a null set:

Corollary 1. Let θ :N→N be permutation and, for p ∈N, set

Dp =
{
l : max (θ (l) , θ−1 (l)) > lp

}
.

Then the following are equivalent:

(i) For E ⊆N, we have that δ (E) = 0 if and only if δ (θE) = 0.
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(ii) δ
(
Dp

)
→ 0 as p→∞ .

Proof: First we establish (i) implies (ii) by establishing the contrapositive. Suppose that δ
(
Dp

)
9 0.

Observe that{
l : max (θ (l)) , θ−1 (l)) > lp

}
=

{
l : θ (l) > lp

}
∪

{
l : θ−1 (l) > lp

}
(26)

and hence δ
(
Dp

)
≤ δ

(
{l : θ (l) > lp}

)
+ δ

(
{l : θ−1 (l) > lp}

)
. As δ

(
Dp

)
9 0 as p → ∞, at least one of

δ
(
{l : θ (l) > lp}

)
or δ

(
{l : θ−1 (l) > lp}

)
does not tend to zero as p tends to infinity. Hence, by the theorem,

there is an A ⊆N such that δ (A) = 0 and δ(θA) > 0 or such that δ (θA) = 0 and δ(A) > 0.
Next we establish that (ii) implies (i). Observe that

{
l : θ−1 (l) > lp

}
⊆ Dp and, as δ

(
Dp

)
→ 0 as p → ∞,

it follows that δ
({

l : θ−1 (l) > lp
})
→ 0 as p → ∞. Hence, by the theorem, δ(A) = 0 implies that δ (θA) = 0.

Similarly δ
({

l : θ (l) > lp
})
→ 0 as p → ∞. Now by the theorem, δ (A) = 0 implies δ

(
θ−1A

)
= 0. Hence, if

δ (θA) = 0, we have that δ
(
θ−1 (θA)

)
= δ (A) = 0. �

The permutations that take asymptotically null sets to asymptotically null sets are also the same per-
mutations that rearrange statistically convergent sequences into statistically convergent sequences. Recall
that a sequence x =

(
x j

)
is statistically convergent to L if and only if δ({ j :

∣∣∣x j − L
∣∣∣ ≥ ε}) = 0 for all ε > 0. A

permutation θ ofN can be used to rearrange a sequence, denoted θx, by defining θx j = xθ−1( j). The reader
should be aware that, depending upon an author’s preference, θx is sometimes defined by θx j = xθ( j) ; in
this note we are following the convention used by Obata [8]. If one is using the definition θx j = xθ( j), one

should replace θA by θ−1A in the second assertion of Theorem 1.

Theorem 2. Let θ be a permutation fromN onto itself. The following are equivalent:

(i) If x is statistically convergent, then θx is statistically convergent.

(ii) If A ⊆ N and A has asymptotic density zero , then θA has asymptotic density zero, i.e., if δ(A) = 0, then
δ (θA) = 0.

(iii) If x is statistically convergent, then θx is statistically convergent and st − lim x = st − limθx.

Proof: First we establish (i) implies (ii). Let A⊆N such that δ (A) = 0 and let x = χA. Since δ (A) = 0, the
sequence x is statistically null and hence, by hypothesis, θx is statistically convergent. Observe that, since
θx is a sequence of 0 ’s and 1 ’s, we have that st − limθx = 0 or st − limθx = 1.

We suppose that st − limθx = δ (θA) = 1 and arrive at a contradiction. Since δ (θA) = 1, then if we let
B denote the even elements of θA, then B has density 1/2 and hence is not statistically convergent. Now
set C = θ−1 (B) and note, since C ⊆ A, we have that δ (C) = 0. Thus y = χC is statistically convergent but
θy = χθC = χB is not statistically convergent. Hence it must be the case that st − limθx = δ (θA) = 0.

Next we establish (ii) implies (iii). First we will establish that if st−lim x = 0, then st−limθx = 0.Let ε > 0
and set A =

{
j :

∣∣∣x j

∣∣∣ ≥ ε}. By definition, δ (A) = 0 and hence δ (θA) = 0. Now recall that
{
j :

∣∣∣θx j

∣∣∣ ≥ ε} = θA
and consequently θx is statistically convergent to 0.

Now suppose that x is statistically convergent and let e = χN. Then there is an L such that x − Le is
statistically null and hence θ (x − Le) is statistically null. Now observe that

θ (x − Le) j = (x − Le)θ−1( j) = xθ−1( j) − Leθ−1( j) = xθ−1( j) − L (27)

as e j = eθ−1( j) = 1 for all j. As θx − Le is statistically null, st − limθx = L.
Finally, the statement of (iii) immediately yields the assertion of (i). �

Note that Example 1 provides an example of a permutation with the property that if x is statistically
convergent then θx is statistically convergent but for which there is a statistically convergent sequence x
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such that θ−1x is not statistically convergent. Observe that if one sets x = χθB in the last part of Example 3,
thenθ−1x = χB is not statistically convergent even though st−lim x = 0.We also note that the preceding work
can be used to establish the analogous result that, given a permutation θ, one can show that the statistical
convergence of θx implies the statistical convergence of x if and only if δ (F) = 0 implies δ(θ−1F) = 0 as well
as a result similar to Theorem 1.
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