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Abstract. In this paper, we are interested in the continuity of the spectrum and some of its parts in the
setting of Hilbert spaces. We study the continuity of the spectrum in the class of operators {T}+K(H), where
K(H) denote the ideal of compact operators. Also, we give conditions in order to transfer the continuity of
spectrum from T to T + K, where K ∈ K(H). Then, we characterize those operators for which the continuity
of spectrum is stable under compact perturbations.

1. Introduction

Let H be a Hilbert space and let B(H) denote the algebra of all bounded linear operators defined on H.
For T ∈ B(H) denote with σ(T), σa(T) and σs(T) the spectrum, the approximate point spectrum, and the surjective
spectrum of T. Let N(T) and R(T) be denote the null space and the range of the mapping T ∈ B(H). We set
α(T) = dim N(T) and β(T) = dim H/R(T), if theses spaces are finite dimensional, otherwise let α(T) = ∞ and
β(T) = ∞. If the range R(T) of T ∈ B(H) is closed and α(T) < ∞ then T is said to be an upper semi-Fredholm
operator (T ∈ Φ+(H)). Similarly, if β(T) < ∞ then T is said to be a lower semi-Fredholm operator (T ∈ Φ−(H)).
If T ∈ Φ−(H) ∪ Φ+(H) then T is called a semi-Fredholm operator (T ∈ Φ±(H)) and for T ∈ Φ−(H) ∩ Φ+(H) we
say that T is a Fredholm operator (T ∈ Φ(H)). For T ∈ Φ±(H), the index of T is defined by

ind(T) = α(T) − β(T).

We set Φ−+(H) = {T ∈ B(H) | T ∈ Φ+(H) and ind(T) ≤ 0}, Φ+
−

(H) = {T ∈ B(H) | T ∈ Φ−(H) and ind(T) ≥ 0}
and Φ0(H) = {T ∈ Φ(H) | ind(T) = 0}. The Weyl spectrum, the Weyl approximate point spectrum, and the Weyl
surjectivity spectrum of T ∈ B(H) are given by

σw(T) = {λ ∈ C | T − λ < Φ0(H)}, σaw(T) = {λ ∈ C | T − λ < Φ−+(H)} and σsw = {λ ∈ C | T − λ < Φ+
−(H)}.

Put ρw(T) = C \ σw(T) and ρaw(T) = C \ σaw(T). The ascent and the descent of an operator T ∈ B(H) are
defined by asc(T) = inf{n ∈ N | N(Tn) = N(Tn+1)} and dsc(T) = inf{n ∈ N | R(Tn) = R(Tn+1)}; the infimum
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over the empty set is taken to be∞. The Browder spectrum, the Browder approximative point spectrum and the
Browder surjectivity spectrum of T ∈ B(H) are given by

σb(T) = {λ ∈ C | T − λ < Φ0(H) or asc(T − λ) = ∞},

σab(T) = {λ ∈ C | T − λ < Φ−+(H) or asc(T − λ) = ∞},

σsb(T) = {λ ∈ C | T − λ < Φ+
−(H) or dsc(T − λ) = ∞}.

It is well known that

σw(T) = ∩
K∈K(H)

σ(T + K), σb(T) = ∩

K ∈ K(H),
TK = KT

σ(T + K); (1)

σaw(T) = ∩
K∈K(H)

σa(T + K), σab(T) = ∩

K ∈ K(H),
TK = KT

σa(T + K). (2)

For T ∈ B(H), let σp(T) = {λ ∈ C | λ is an eigenvalue of T }, π0(T) = {λ ∈ C | λ is an isolated eigenvalue
of T of finite algebraic multiplicity} and for k ∈ Z ∪ {−∞,∞}, let ρk

s f (T) be denote the set of λ ∈ C for which
T − λ ∈ Φ±(H) and ind(T − λ) = k. Put

ρs f (T) = ∪
−∞≤k≤∞

ρk
s f (T), ρ−s f (T) = ∪

−∞≤k≤−1
ρk

s f (T), ρ+
s f (T) = ∪

1≤k≤∞
ρk

s f (T), ρ±s f (T) = ρ−s f (T) ∪ ρ+
s f (T).

The semi-Fredholm spectrum of T ∈ B(H) is given by σs f (T) = C \ρs f (T) i.e σs f (T) = {λ ∈ C : T−λ < Φ±(H)}.
The next concepts are part of classical point set topology. Let {En} be a sequence of arbitrary subsets of

C and define the limits inferior and superior of {En} as follows:

lim inf En = {λ ∈ C | for every ε > 0, there exists N ∈N such that B(λ, ε) ∩ En , ∅ for all n ≥ N}.

lim sup En = {λ ∈ C | for every ε > 0, there exists J ⊆N infinite such that B(λ, ε) ∩ En , ∅ for all n ∈ J}.

Remark 1.1. Let {En} be a sequence of non-empty subsets of C. The following properties are hold:

(a) lim inf En and lim sup En are closed subsets of C.
(b) λ ∈ lim sup En if and only if there exists an increasing sequence of natural numbers n1 < n2 < n3 < · · · and

points λnk ∈ Enk , for all k ∈N, such that limλnk = λ.
(c) λ ∈ lim inf En if and only if there exists a sequence {λn} such that λn ∈ En for all n ∈N, and limλn = λ.

Proposition 1.2. [20, Remark 2 (d)] Let K,E,En be non-empty compact subsets ofC such that En ⊆ K, for all n ∈N.
Then En → E in the Hausdorff metric if and only if lim sup En ⊆ E and E ⊆ lim inf En.

2. Spectral continuity

We say that a sequence (Tn) in B(H) converge in norm to T ∈ B(H), and is denoted by Tn → T, if
limn→∞ ‖Tn − T‖ = 0. A function τ, defined on B(H) whose values are non-empty compact subsets of C, is
said to be continuous at T, if τ(Tn)→ τ(T) for all Tn → T. Also, τ is said to be upper (lower) semi-continuous
at T, when if Tn → T then lim sup τ(Tn) ⊆ τ(T) (τ(T) ⊆ lim inf τ(Tn)).

Proposition 2.1. Let τ ∈ {σ, σa, σs, σw, σaw, σsw, σb, σab, σsb}. Then τ is continuous at T ∈ B(H) if and only if τ is
upper and lower semi-continuous at T.

Proof. It results by Proposition 1.2, because

τ(Tn) ⊆ σ(Tn) ⊆ B(0, ‖Tn‖) ⊆ B[0,M]

for all n ∈N and some M > 0.



S. Sánchez-Perales et al. / Filomat 34:14 (2020), 4837–4845 4839

The upper semi-continuity of the spectrum and its parts is proved using the condition that the class of
all invertible (Fredholm, Weyl, Browser, etc.) operators are open in algebra B(H) (for more details see [15,
Proposition 9, p. 55]:

Theorem 2.2. Let τ ∈ {σ, σa, σs, σw, σaw, σsw, σb, σab, σsb}. Then for every T ∈ B(H), τ is upper semi-continuous at
T.

One of the first discussions about the continuity of the spectrum is found in the work of Newburgh
([16]) and Apostol et al. ([4]). More complete results in the case of a Hilbert space H are given in the series
of papers by Conway and Morrel (see [7], [8] and [9]). Those results are moved by Burlando ([6]) for the
case of Banach space operators. Some of these results can be summarized in the following:

Remark 2.3. Let T ∈ B(H) and (Tn) be a sequence in B(H) such that Tn → T. The following inclusions are well
known:

1. isoσ(T) ⊆ lim inf σ(Tn)
2. π0(T) ⊆ lim infπ0(Tn) ⊆ lim inf σa(Tn) ⊆ lim inf σ(Tn)
3. ρ+

s f (T) ⊆ lim inf σa(Tn)

4. ρ−s f (T) ⊆ lim inf σs(Tn)

5. ρ±s f (T) ⊆ lim inf σw(Tn) ⊆ lim inf σ(Tn).

Another way to observe the spectral continuity is giving relations between the continuity of different
parts of the spectrum. For example, we have that the continuity of approximate point spectrum implies the
continuity of spectrum (see next theorem or [8]). The opposite implication is not true in general, for this we
need more.

Theorem 2.4. Let T ∈ B(H) be such that dsc(T − λ) < ∞, for any λ ∈ ρaw(T). Then, σ is continuous at T if and
only if σa is continuous at T.

Proof. Suppose that σa is continuous at T. Then, for all λ ∈ σa(T), we have

λ ∈ σa(T) ⊆ lim inf σa(Tn) ⊂ lim inf σ(Tn).

By [18, Proposition 2.3], we have σ(T) \ σa(T) ⊆ lim inf σ(Tn). Therefore, σ is continuous at T.
Now, suppose that σ is continuous at T. By Remark 2.3 (2) and (3), ρ+

s f (T) ∪ π0(T) ⊆ lim inf σa(Tn). Let

λ ∈ σa(T) \ (ρ+
s f (T) ∪ π0(T)). Suppose that ρ−s f (T) , ∅, take µ ∈ ρ−s f (T) then µ ∈ ρaw(T) and so dsc(T − µ) < ∞,

thus by [1, Theorems 3.8 and 3.19], it follows that ind(T − µ) > 0. By contradiction we have that ρ−s f (T) = ∅.

Therefore, λ ∈ σ(T) \ (ρ±s f (T) ∪ π0(T)). Let ε > 0 be such that B(λ, ε) ∩ (ρ±s f (T) ∪ π0(T)) = ∅. Then, from
[7, Theorem 3.1], B(λ, ε) contains a component of σs f (T). Thus, by [8, Lemma 3.1], λ ∈ lim inf σs f (T)(⊆
lim inf σa(Tn)). Consequently, σa is continuous at T.

An operator T ∈ B(H) is said to have the single-valued extension property at λ0 ∈ C (SVEP at λ0), if for
every open disc U of λ0, the only analytic function f : U→ H which satisfies the equation (T − λ0) f (µ) = 0,
for all µ ∈ U, is the function f ≡ 0. An operator T ∈ B(H) is said to have SVEP if T has SVEP at every point
in the complex plane.

The descent and the ascent of an operator is connected with SVEP property. For example, for λ ∈ ρaw(T),
T − λ has SVEP if and only if asc(T − λ) < ∞. On the other hand, any of those properties determines the
sign of the index of a semi-Fredholm operator, the SVEP or the finite ascent property for T ∈ Φ±(H) implies
ind(T) ≤ 0 and the SVEP for T∗ or the finite descent property for T ∈ Φ±(H) implies that ind(T) ≥ 0 (see [1]).
In this way we have next:
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Corollary 2.5. Let T ∈ B(H) be such that T∗ has SVEP at λ, for any λ ∈ ρaw(T). Then, σ is continuous at T if and
only if σa is continuous at T.

The conditions given in the previous paragraph to Corollary 2.5 are also connected to one of the
Browder-type theorems. We say that

T ∈ B(H) satisfies the Browder’s theorem if σw(T) = σb(T);
T ∈ B(H) satisfies the a-Browder’s theorem if σaw(T) = σab(T);
T ∈ B(H) satisfies the s-Browder’s theorem if σsw(T) = σsb(T),

(for more details see [12]). The a-Browder and s-Browder theorems are not equivalent to each other, but
each implies the Browder’s theorem ([12, Corollary 8.3.4]). On the other hand, the Browder’s theorem is
strongly connected with the continuity of the spectrum, Weyl spectrum and Browder spectrum. It is known
that the continuity of σ or σb at T implies the Browder’s theorem for T, and the continuity of σab or σa implies
the a-Browder’s theorem (see, [11, Theorem 2.1 and Corollary 3.4] and [18, Theorems 2.2 and 2.4]). From
Example 2.9 we have that the Browder’s theorem does not imply the continuity of spectrum. In [11] was
put out that if σw is continuous at T and it satisfies Browder’s theorem then σ is continuous at T, however
the converse of this implication is in general not true, see [18, Remark 4.2].

Theorem 2.6. If σ is continuous at T ∈ B(H) and π0(T) ∩ σs f (T) = ∅, then σw is continuous at T.

Proof. Let λ ∈ σw(T). If λ < σs f (T) then λ ∈ ρ±s f (T) and so by Remark 2.3 (5), λ ∈ lim inf σw(Tn). Now, suppose

that λ ∈ σs f (T) \ ρ±s f (T). From hypothesis, there exists r > 0 such that B(λ, r)∩π0(T) = ∅. Let 0 < ε < r, by [7,
Theorem 3.1], there exists C a component of σs f (T) ∪ π0(T) such that C ⊆ B(λ, ε). Then C is a component of
σs f (T) such that C ⊆ B(λ, ε). Consequently, by [8, Lemma 3.1], λ ∈ lim inf σs f (Tn) ⊆ lim inf σw(Tn).

From duality of a-Browder and s-Browder theorems of T and T∗, we have the following theorem.

Theorem 2.7. Let T ∈ B(H). Then σsb is continuous at T if and only if T satisfies the s-Browder theorem and σsw is
continuous at T.

Let C be the set of opertors T ∈ B(H) for which

T =

[
λ 0
0 B

]
on N(T − λ) ⊕N(T − λ)⊥ (3)

for all λ ∈ σp(T) \ {0}. For instant, (3) holds for operators T which are of classA(k) and of class (n, k)-quasi-
∗-paranormal ([21]):

T ∈ B(H) is said to be classA(k) if |T|2 ≤ |Tk+1
|

2
k+1 ;

T ∈ B(H) is said to be class (n, k)-quasi-∗-paranormal if ‖T∗(Tkx)‖ ≤ ‖Tn+1(Tkx)‖
1

n+1 ‖Tkx‖
n

n+1 .
For T ∈ B(H) we consider the set

∆(T) = {λ ∈ C : R(T − λ) is not closed}.

Theorem 2.8. If ∆ is lower semi-continuous at T ∈ C then σ is continuous at T.

Proof. Let λ ∈ σ(T) \ {0}. If λ ∈ ∆(T) then λ ∈ lim inf ∆(Tn) ⊆ lim inf σ(Tn). Now, suppose that λ < ∆(T), this
implies that R(T − λ) is closed.
Case I. α(T − λ) = 0. In this situation, λ ∈ ρ−s f (T), so by Remark 2.3 (4), λ ∈ lim inf σsu(Tn) ⊆ lim inf σ(Tn).
Case II. α(T − λ) , 0. By Remark 2.3 (1), we may assume without loss of generality that λ ∈ accσ(T). Since

T ∈ C, it follows that T =

[
λ 0
0 B

]
on N(T−λ)⊕N(T−λ)⊥. Observe that R(B−λ) = R(T−λ) and α(B−λ) = 0.

Therefore B − λ is a semi-Fredholm operator and by [10, Theorem 4.2.1], there exists ε > 0 such that if
|γ − λ| < ε then B − γ ∈ Φ+(H) and α(B − γ) = 0. This implies that R(T − γ) = (λ − γ)N(T − λ) ⊕ R(B − γ) is
closed and α(T−γ) = α((λ−γ)I)+α(B−γ) = 0 for all γ ∈ B(λ, ε) with γ , λ. Since λ is an accumulation point
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of σ(T), there exists a sequence (γk) in σ(T) such that γk → λ, and for each k ∈ N, γk , λ, T − γk ∈ Φ+(H)
and α(T − γk) = 0. If there exists k0 ∈ N such that γk0 < lim inf σ(Tn), then there exists a subsequence
(Tnl ) of (Tn) such that Tnl − γk0 is invertible for all l ∈ N. By continuity of the index, it follows that
ind(Tnl − γk0 )→ ind(T − γk0 ), thus ind(T − γk0 ) = 0, but α(T − γk0 ) = 0. Therefore T − γk0 is invertible, which
is a contradiction. Consequently, γk ∈ lim inf σ(Tn) for all k ∈ N. Thus, since lim inf σ(Tn) is a closed set, it
follows that λ ∈ lim inf σ(Tn).

The fact that T ∈ C does not necessarily imply that σ is continuous at T, see Example 2.9. The same
example shows that the Browder’s theorem does not imply the continuity of the spectrum.

Example 2.9. Let H = L2([0, 1]) and define the multiplication operator M : H → H by M( f )(x) = x f (x). It is not
difficult to prove that M is a bounded operator such that σp(M) = ∅ and σ(M) = [0, 1]. Observe that M∗ = M, then
M is a normal operator and so M ∈ C. It is clear that M satisfies Browder’s theorem. Therefore σ(M) \ σw(M) = ∅
which implies that σ(M) = σw(M). Consequently, by continuity of the index, ρ±s f (M) = ∅ and σs f (M) = [0, 1]. Let

D = B(0, 1/4), since every component of σs f (M) ∪ π0(M) meets D, it follows from [5, Theorem 3.1], that there exists
a sequence (An) of operators in B(H) such that ‖An −M‖ → 0 and σ(An) ⊆ D for all n ∈N. Thus, σ(An) 6→ σ(M).

3. Compact perturbations and continuity of spectra

In [18] the continuity of spectrum is studied on the class {T} + K(H) where the commutativity of T and
K is essential. In this way we have next:

Proposition 3.1. Let T ∈ B(H) and K,Kn ∈ K(H) be such that Kn → K. If KnT = TKn for all n ∈ N, then
σ(T + Kn)→ σ(T + K). If additionally σp(T + K) ∩ ρ−s f (T) = ∅ then σa(T + Kn)→ σa(T + K).

Proof. Since KnT→ KT, TKn → TK and TKn = KnT for all n ∈N, it follows that TK = KT. Let λ ∈ σ(T +K). If
λ ∈ σb(T) then by (1), λ ∈ σ(T+Kn) for all n ∈N, thusλ ∈ lim inf σ(T+Kn). Ifλ < σb(T) then T−λ ∈ Φ0(H) and
asc(T−λ) < ∞. Consequently, by [1, Theorem 3.43], α(T + K−λ) = β(T + K−λ) < ∞ and asc(T + K−λ) < ∞,
hence by [1, Theorem 3.4], α(T + K − λ) = β(T + K − λ) < ∞ and asc(T + K − λ) = dsc(T + K − λ) < ∞. Thus
λ ∈ π0(T + K), which implies by Remark 2.3 (2), that λ ∈ lim inf σ(T + Kn).

Now, let λ ∈ σa(T + K). If λ ∈ σab(T) then by (2), λ ∈ σa(T + Kn) for all n ∈ N, so λ ∈ lim inf σa(T + Kn). If
λ < σab(T) then λ ∈ ρ−s f (T)∪ρ0

s f (T) and asc(T−λ) < ∞. From hypothesis σp(T + K)∩ρ−s f (T) = ∅, we have that

λ ∈ ρ0
s f (T) and asc(T − λ) < ∞ which implies by above that λ ∈ ρ0

s f (T + K). Thus, λ ∈ π0(T + K) and hence
by Remark 2.3 (2), λ ∈ lim inf σa(T + Kn).

Remark 3.2. Proposition 3.1 is a generalization of [17, Corollary 3.2]. Thus in [17, Proposition 3.4 and Proposition
3.5], the condition “T has finite ascent at every λ ∈ σp(T)” can be lifted.

Next we will study the continuity of the spectrum at T + K without of assuming that TK = KT. In
previous section we discussed the connection between the continuity of spectrum as well as some of its
parts with different versions of the Browder’s theorem. The Browder’s theorem is always a good tool when
dealing with the continuity of the spectrum and different parts of it. Observe, from (1) it is clear that

σw(T + K) = σw(T) ⊆ lim inf σ(T + Kn)

for all sequence (Kn) in K(H) with Kn → K. On the other hand, if T + K satisfies Browder’s theorem, then by
Remark 2.3,

σ(T + K) \ σw(T + K) = π0(T + K) ⊆ lim inf σ(T + Kn).

Consequently, we have the following proposition.

Proposition 3.3. Let T ∈ B(H) and K ∈ K(H) be such that T + K satisfies Browders’ theorem. Then for every
sequence(Kn) in K(H) that in norm converge to K, we have
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1. σ(T + Kn)→ σ(T + K),
2. additionally, if σp(T + K) ∩ ρ−s f (T) = ∅ then σa(T + Kn)→ σa(T + K).

Remark 3.4. By [2, Theorem 3.6] and [14, Theorem 1.4], we have that if ρw(T) is connected then T + K
satisfies Browder’s theorem, for all compact operator K. On the other hand, the connectedness of ρw(T) is
not enough for the continuity of the spectrum at T + K for all K ∈ K(H), see Example 2.9.

Corollary 3.5. Let T ∈ B(H), if
(1) ρw(T) is connected

or
(2) ρ(T) is connected and Browder’s theorem holds for T,

then σ(T + Kn)→ σ(T + K) for all sequence of compact operators {Kn} that in norm converges to K.

Proof. This is an immediate consequence of [2, Theorem 3.4], Remark 3.4 and Proposition 3.3.

Lemma 3.6. Let T ∈ B(H) be such that it obeys the Browder’s theorem. If C is a component of σs f (T) ∪ π0(T) and
C ∩ ρ±s f (T) = ∅ then C is a component of σ(T).

Proof. Since T obeys Browder’s theorem it follows that

σ(T) = [σs f (T) ∪ π0(T)] ∪ ρ±s f (T). (4)

Observe that [σs f (T) ∪ π0(T)] ∩ ρ±s f (T) = ∅, which implies that σs f (T) ∪π0(T) is a closed set. Let D be a
component of σ(T) such that C ⊆ D. Then by (4),

D = [D ∩ (σs f (T) ∪ π0(T))] ∪ [D ∩ ρ±s f (T)]. (5)

We set E = D ∩ (σs f (T) ∪ π0(T)). Since C ∩ ρ±s f (T) = ∅ it follows that C ⊆ E ⊆ σs f (T) ∪ π0(T) and there exists

ε > 0 such that (C)ε ∩ ρ±s f (T) = ∅. Suppose that E is disconnected. We claim that there exist E1, E2 compact
sets such that

E = E1 ∪ E2, E1 ∩ E2 = ∅, E1 , ∅, E2 , ∅ (6)

and

C ⊆ E1 ⊆ (C)ε. (7)

Let E∗1 y E∗2 be compact sets such that satisfy conditions in (6). Without loss of generality we may assume
that C ⊆ E∗1 * (C)ε. We set P = E∗1 \ (C)ε, and for each x ∈ P, let Cx be a component in E∗1 \ (C)ε of x. Since

E∗1 \ (C)ε ⊆ ∪
x∈P

Cx and E∗1 \ (C)ε is compact, it follows that there exists {xi}
n
i=1 ⊆ P such that E∗1 \ (C)ε ⊆

n
∪
i=1

Cxi .

Let E1 = E∗1 \
n
∪
i=1

Cxi and E2 = E∗2 ∪
( n
∪
i=1

Cxi

)
, then E1, E2 are compact sets such that E = E1 ∪ E2, E1 ∩ E2 = ∅,

E1 , ∅, E2 , ∅ and C ⊆ E1 ⊆ (C)ε. So our claim is true.
Therefore by (5), (6) and (7), D = E1 ∪ [E2 ∪ (D ∩ ρ±s f (T))] and E1 ∩ [E2 ∪ (D ∩ ρ±s f (T))] = ∅. Thus D is

disconnected, which is a contradiction. Hence E is connected and so C = E. Consequently,

D = C ∪ [D ∩ ρ±s f (T)].

Finally, since D is connected, C , ∅ and C, D∩ ρ±s f (T) are closed sets such that C∩ [D∩ ρ±s f (T)] = ∅, we have

that D ∩ ρ±s f (T) = ∅, therefore D = C.
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Theorem 3.7. Let T ∈ B(H) and K ∈ K(H) be such that σ(T) = σ(T + K). Then, σ is continuous at T if and only if
σ is continuous at T + K.

Proof. ⇒] Suppose that σ is continuous at T. Let (Tn) be a sequence in B(H) such that Tn → T + K and let
λ ∈ σ(T + K).
Case I. λ ∈ ρ±s f (T + K). By Remark 2.3 (5), we have that λ ∈ lim inf σ(Tn).

Case II. λ ∈ ρ0
s f (T + K). Since σ(T) = σ(T + K), it follows that λ ∈ σ(T) \ σw(T). By continuity of σ at T and

[18, Theorem 2.2], the operator T satisfies Browder’ theorem, therefore λ ∈ π0(T). Thus λ ∈ isoσ(T + K) and
so by Remark 2.3 (1), λ ∈ lim inf σ(Tn).
Case III. λ ∈ σs f (T + K) \ ρ±s f (T + K). In this situation, λ ∈ σs−T(T) \ ρ±s f (T). There exists r > 0 such that

B(λ, r) ∩ ρ±s f (T) = ∅. Let ε > 0, without loss of generality we may consider that ε < r. Due continuity of σ at
T, we have by [7, Theorem 3.1] that B(λ, ε) contains a component C of σs f (T) ∪ π0(T). Then by Lemma 3.6,
C is a component of σ(T) = σ(T + K). Consequently, from [7, Lemma 1.5], there exists n0 ∈ N such that for
every n ≥ n0, B(λ, ε) contains a component of σ(Tn). Therefore, for every n ≥ n0, B(λ, ε) ∩ σ(Tn) , ∅. Thus
λ ∈ lim inf σ(Tn).
⇐] Applying the first part of the proof for the operators S = T + K and −K we obtain the desired.

Corollary 3.8. Let T ∈ B(H) and K ∈ K(H) be such that TK = KT and Kn is a finite rank operator for some n ∈ N.
If σ(T) = acc σ(T) and σ is continuous at T then σ is continuous at T + K.

Proof. From [3, Theorem 3.20], σ(T) = acc σ(T) = acc σ(T + K). Therefore, it is sufficient to observe that in
the proof of Case III of Theorem 3.7, C is a component of σ(T)(= acc σ(T + K)) and so C is a component of
σ(T + K).

Example 3.9. Consider the right shift R : l2(N) → l2(N) defined by R(x1, x2, x3, · · · ) = (0, x1, x2, · · · ) and let
U ∈ B(2(N)) be a finite rank operator. Let T,K be defined on l2(N) ⊕ l2(N) by

T =

[
I 0
0 R

]
and K =

[
U 0
0 0

]
.

Then K is a finite rank operator and TK = KT. Since σ(T) = B[0, 1] = accσ(T) it follows by Corollary 3.8 that σ is
continuous at T + K.

In [8, p. 462] it is observed that σ is continuous at T ∈ B(H) if and only if int (σ(T) \ σw(T)) = ∅ and, for
each λ ∈ σs f (T)\ρ±s f (T) and ε > 0, the ball B(λ, ε) contains a component of σs f (T). But this proposition is false
as shown in [19, Example 4.13]. Now, we use this condition to give a characterization for the continuity of
the spectrum at compact perturbations.

Theorem 3.10. The spectrum σ is continuous at T + K for all K ∈ K(H) if and only if ρw(T) is connected and for
every λ ∈ σs f (T) \ ρ±s f (T) and ε > 0, the ball B(λ, ε) contains a component of σs f (T).

Proof. ⇒] Let λ ∈ σs f (T) \ ρ±s f (T) and ε > 0. There exists r > 0 such that

B(λ, r) ∩ ρ±s f (T) = ∅.

By [13, Proposition 3.4], there exists K ∈ K(H) such that

σp(T + K) = ρ+
s f (T + K).
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Since σs f (T) = σs f (T + K) and ρ±s f (T) = ρ±s f (T + K) it follows that λ ∈ σs f (T + K) \ ρ±s f (T + K). Suppose that
ε < r, from continuity of σ at T + K, we have by [7, Theorem 3.1] that the ball B(λ, ε) contains a component
C of π0(T + K) ∪ σs f (T + K). Observe that

C ∩ π0(T + K) ⊆ C ∩ σp(T + K)
= C ∩ ρ+

s f (T + K)

⊆ B(λ, r) ∩ ρ+
s f (T) = ∅.

Therefore, C is a component of σs f (T + K)(= σs f (T)). On the other hand, by [18, Theorem 2.4], T + S
satisfies Browder’s theorem for all S ∈ K(H), consequently by [14, Theorem 1.4], ρw(T) is connected.
⇐] It follows by [14, Theorem 1.4] and [18, Theorem 4.4].

Corollary 3.11. If σ is continuous at T ∈ B(H), σs f (T) ∩ π0(T) = ∅, and ρw(T) is connected, then σ is continuous
at T + K for all K ∈ K(H).

Example 3.12. Let T : `2
⊕ `2
→ `2

⊕ `2 be defined by

T =

(
I 0
0 S

)
,

where S : `2
→ `2 is an injective quasinilpotent operator. Then σ(T) = σw(T) = σs f (T) = {0, 1}. This implies that

ρw(T) is connected and π0(T) = ∅. Moreover, by Remark 2.3 (1), σ is continuous at T. Therefore, by Corollary 3.11,
σ is continuous at T + K for all K ∈ K(`2

⊕ `2).

Theorem 3.13. Let T ∈ B(H) be such that T∗ has SVEP at every λ ∈ ρaw(T). Then the following statements are
equivalent:

1. The approximate point spectrum σa is continuous at T + K for all K ∈ K(H).
2. ρaw(T) is connected and for every λ ∈ σs f (T)\ (ρ+

s f (T)∪π0(T)) and ε > 0, the ball B(λ, ε) contains a component
of σs f (T).

Proof. Since T∗ has SVEP at every λ ∈ ρaw(T) if follows that ρ−s f (T) = ∅. Suppose that (1) holds, then by

Theorem 3.10, for every λ ∈ σs f (T) \ (ρ+
s f (T) ∪ π0(T)) and ε > 0, the ball B(λ, ε) contains a component of

σs f (T). Moreover, from [18, Theorem 2.4], T + K satisfies a−Browder’s theorem for all k ∈ K(H). Thus by
[14, Theorem 1.5], ρaw(T) is connected.

Now, suppose that (2) holds. Since ρaw(T) is connected it follows by [14, Theorem 1.5] that T + K
satisfies a-Browder’s theorem for all K ∈ K(H). Let (Tn) be a sequence in B(H) such that Tn → T + K
and let λ ∈ σa(T + K). If λ ∈ σ(T + K) \ σs f (T + K) then λ ∈ ρ+

s f (T + K) ∪ π0(T + K). From Remark 2.3 we

have that π0(T + K) ⊆ lim inf σa(Tn) and ρ+
s f (T + K) ⊆ lim inf σa(Tn), therefore λ ∈ lim inf σa(Tn). Now, let

λ ∈ σs f (T + K) \ (ρ+
s f (T + K) ∪ π0(T + K)) this implies that λ ∈ σs f (T) \ (ρ+

s f (T) ∪ π0(T)). From hypothesis we
have that for each ε > 0 the ball B(λ, ε) contains a component of σs f (T)(= σs f (T + K)), therefore by [8, Lemma
3.1], λ ∈ lim inf σs f (Tn)(⊆ lim inf σa(Tn)).

Corollary 3.14. If σ is continuous at T ∈ B(H) and ρs f (T) is connected then σa is continuous at T + K for all
K ∈ K(H).

Proof. Suppose that int σs f (T) , ∅. Take λ ∈ intσs f (T) then there exists r > 0 such that B(λ, r) ⊆ σs f (T). This
implies that λ ∈ σs f (T)\ρ±s f (T) and so by continuity of σ at T, it follows from [7, Theorem 3.1] that there exists
a component C of σs f (T) ∪ π0(T) such that C ⊆ B(λ, r

2 ). The ball B(λ, r) is a connected set in σs f (T) ∪ π0(T)
such that C ⊆ B(λ, r), therefore C = B(λ, r) which is a contradiction. Thus intσs f (T) = ∅. Then by [22,
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Theorem 1.3], T has SVEP and so ρ+
s f (T) = ∅. Observe that ρs f (T) = ρaw(T) ∪ ρ+

s f (T), hence ρs f (T) = ρaw(T)
which implies that ρaw(T) is connected. Now, since σs f (T∗) = σs f (T)∗ and ρs f (T∗) = ρs f (T)∗ it follows that
int σs f (T∗) = ∅ and ρs f (T∗) is connected. Then by [22, Theorem 1.3], T∗ has SVEP which implies that T∗ has
SVEP at every λ ∈ ρaw(T). Finally, if λ ∈ σs f (T) \ (ρ+

s f (T)∪ π0(T)) and ε > 0 then by [7, Theorem 3.1], the ball

B(λ, ε) contains a component C of σs f (T)∪π0(T). For ε small enough we have that B(λ, ε)∩π0(T) = ∅ and so
C is a component of σs f (T). Consequently by Theorem 3.13, σa is continuous at T + K for all K ∈ K(H).
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