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Abstract. In this article, we investigate polynomial helices in the n-dimensional semi-Euclidean space
with index two for n > 4. We obtain some families of spacelike and timelike polynomial helices. These
helices have spacelike or timelike or null axes. After that, we give some examples of the spacelike and the
timelike polynomial helices in the n-dimensional semi-Euclidean space with index two for n = 4,5 and 6.

1. Introduction

Helices have been one of the most fruitful subject for the differential geometry since it has many
applications in the other branches of science. For instance, in biology, in simulation of kinematic motion,
in the design of highways, in engineering and so on [1, 2].

The notion of helix is stated in 3-dimensional Euclidean space by M. A. Lancret in 1802. Helix is a curve
whose tangent vector field make a constant angle with a fixed direction called the axis of the helix. In 1845,
B. de Saint Venant gave the necessary and sufficient condition of a curve to be a general helix. Namely, a
curve is a general helix if and only if the ratio of the curvature to the torsion is constant [13]. In Literature,
there are several characterizations for helices in the Euclidean 3-space [5, 12].

In [11], Ozdamar and Hacisalihoglu defined harmonic curvature functions in the n-dimensional Eu-
clidean space and used them to extend the concept of the helix from 3-dimensional Euclidean space to
n-dimensional Euclidean space for n > 3. Since then, the characterization of helices has been studied in
many ambiant spaces. For example, in n-dimensional Euclidean space [2, 3], in 3-dimensional Lorentzian
space forms, which are de Sitter and anti de Sitter space [8], in Galilean space [4, 9], in Lie group [17], in
n-dimensional Minkowski space [1, 15, 16].

Semi-Euclidean geometry has been an active research area in general relativity and mathematics, after
Einstein’s formulation of general relativitiy as a theory of space, time and gravitation in the semi-Euclidean
space [14]. As far as we know, there is little information available in literature about helices in the semi-
Euclidean space with index two. The main goal of this article is to obtain families of non-null polynomial

helices depend on its casual character in the semi-Euclidean space with index two. In addition, we consider
casual character of the axis of the helix.
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The remainder of this article is organized as follows. First, we give basic information about a non-
degenerate curve of local differential geometry in the n-dimensional semi-Euclidean space with index two.
After, we give some families of the spacelike and the timelike polynomial helices in the n-dimensional
semi-Euclidean space with index two. This part was adopted from Minkowski spacetime in [1]. Finally,
give some examples in the n-dimensional semi-Euclidean space with index two for n = 4,5 and 6.

2. Preliminary

In this section, we give the basic theory of non-degenerate curves of local differential geometry in the
n-dimensional semi Euclidean space with index two. For more details and background about this space,
see [10].

Let {e1, ey, ..., e,} be the standard orthonormal basis of real vector space R” and the vector space R” endowed
with the scalar product,

g, y) = —x1y1 — x2y2 + Z XiVYi,

i=3

for all x = (x1,x2,...,%:), ¥ = (Y1, Y2,---,Yn) € R". The couple {R",g(,)} is called n-dimensional semi-
Euclidean space with index two, which is denoted by [E]. Recall that a vector v € R" is called spacelike
if g (v,v) > 0, timelike if g (v,v) < 0 and null (lightlike) if g (v,v) = 0. In addition, if the vector v = 0, then

v is still called spacelike. The norm of a vector v € R" is defined by [[v|| = /|g (U,U)|. A curve in [EJ is a
smooth mapping a : I — [E}, where [ is an open interval in R. A curve a : [ — E is called regular provided
«’'(t) # 0 for all t. The regular curve a : I — [E} is said to be spacelike or timelike if its velocity vector a’ (t)
is a spacelike or a timelike vector at any t € I.

Let{V1, V2, ..., V,y}benon-null Frenet frame along a non-null arbitrary curve ain [E}. Since {V1, V2, ..., Vy;}

is an orthonormal frame, then g (Vi, V]-) = 0jj¢; whereby ¢; € {-1,1} for (i,j=1,2,...,n). Now, we can give
Frenet-Serret formulas according to the causal character of the curve a. It means thatif e =1 and ¢; = -1,
then a (t) is the spacelike and timelike curve in [EZ, respectively. Then, the Frenet equations are as follows,

V{ 0 VEKq 0 tee 0 0 V1
V) —VETKy 0 VE3KD 0 0 V,
Vé 0 —VEQKn 0 0 0 V3
Vi 0 0 0 ‘e 0 —VER_1Kn-1 Va1
v 0 0 0 cee —VERKn_1 0 Va

where V| = m, v = ||’ (t)]| and «; the ith curvatures of the curve a for 1 <i < n —1 [6]. In this work, we
assume all curvatures «; of the curve o are nowhere vanish. Such curves are called non-degenerate curve.

3. Spacelike Polynomial Helices in IE}

In this section, after giving the definition of a helix in [EJ, we give families of polynomial spacelike
helices in [E]. For doing this, we have two cases where 7 is even or odd. In the case of n is even, there are
three subcases; n = 4,n = 6 and n > 8. If n is odd there are also two subcases; n =5and n > 7.

Definition 3.1. A regular curve B : I C R — IE3 parameterized by arc length is called a helix if and only if there

exist a constant vector U € lEi’ with L(T(s), U) is a constant where T(s) is tangent vector of the curve p and L(,) is
the Lorentzian metric. Any line parallel this direction U is called the axis of the curve  [7].

Similar to the definition above, we define helix in ]EZ as follows,
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Definition 3.2. A curve f: 1 C R — [E} is called a helix if and only if there exist a nonzero constant vector U € IEJ
with g (V1, U) is a nonzero constant where V1 is the tangent vector field of the curve p. Any line parallel this direction
U is called the axis of the curve p.

3.1. Spacelike polynomial helices in IE} when n is even

In this subsection, we give families of spacelike polynomial helices with spacelike, timelike or null axis
for n is even.

Theorem 3.3. Letn =4and f: (1,d) C R — E}, d > 1, be a curve defined by

(1 23 a4 5 “53)
1) = (22, 228, aqt, =65 + 283,
p® (2 ziBhEh TR

If

a% =2biby, a5 =2bibs, az=by, ays=bs, as=b,
with1 < j <3, bj € R, by + by > by then B is a spacelike polynomial helix with the spacelike axis U = (0,0,1,-1).
Proof. From the straightforward calculations, we have

2
7

g(B 1), B (1) = (bat* +bot* = bn)

Vl (t) = (altl ﬂ2t2/ bl/ b3t4 + bztz) ’

bat* + bot? — by
g(vi@),U)=-1.

Therefore, 8 is a spacelike polynomial helix. [
Example 3.4. If we choose by = 1,b, = by = 2 in Theorem 3.3, then we have the spacelike polynomial helix

283 215 2f3
_ |2 = = =

with the spacelike axis
u= (0/ 0/ 1/ _]-)
and the tangent vector

1

Vi) = Saor 1

(2t, 22,1,24 + 2t2) .

Also,
g(Vi(®),U) = -1.
Theorem 3.5. Let n=6and f:(1,d) CR — ES, d>1,bea curve defined by

a1, 2 3 a4 4 45 5 s 7 “75)
1) = (=12, 28 ast, — 44 245 047 4 TT45)
B (2 378y 5y 5

If

a7 =2b1by, a3 =2b1b3— b3, a3 =by, aj=2bybs—2b1by, a3 =2boby, ac=Dbsy, a;=bs,
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4
with1 < j<4, bje R, Zz bj > by; 2b1bz > b2; bybs > byby, then B is a spacelike polynomial helix with the axis
]:

u-= (0, b—z, 1,0,0, —1)
az

and the tangent vector

1
—b1 + bztz + b3t4 + b4t6

Vi) = (Lllt, ﬂztz, ag,a4t3,a5t4, a6t6 + Ll7t4) .

Proof. We omit the proof since it is analogous to the proof of the Theorem 3.3. [
Theorem 3.6. Assume n > 8 is an even number,

2 _ 2 _ 2 _ 2 _ — —
ﬂ1—2b1b2, ﬂ2—2b1b3—b2>0, 613—b1, an_l—Zb%b%, an—b%z, Lln+1—bg,

k
n—4
aékH = bé—l — 2b1bojyq + 22 bjb2k—j+2 > OfOV 2<k<
=2
and
l n-2
o = =2biby +2 ) biby > 0for2 <1< —=
=2
%
such that1<j < ”TJ'Z, bj € R¥, b%‘; = b% =---=b,,=0and Zzb]- > by. Then, the curve 8 : I — IEJ defined by
j=
ai o 42 3 a4 4 a5 5 n-1 1 An 1 | Gnl n—l)
t)=\=t°, =t ast, —t*,=t>,..., ——t, ——t" + ——t
FO (2 3 Bt n-1 ‘n+l n—1
is a spacelike polynomial helix with axis U where
%
b b
u= —2€2+€3—Z " Com-1 — n,
az = A2m-1
I=(1,d)cRandd > 1.
Proof. By making calculations, we have
1
Vi(t)= ——= (ﬂlf, amt?, a3, a1, ast?, ... a1t aut" + ﬂn+1t"_2)
B ()
1
= (alt, axt?, by, ast3, astt, . .. ap 12, bun t" + b%t”‘z).
ﬁ/ (t)” 2

Morever, we have

n+2 2

g ®),p () =|-b1+ Z b]-t2(l'—1)
=2

So, g (B’ (t), B (1)) > 0. In that case f8 is a spacelike polynomial curve with
!](Vl (t)/ u) =-1.
Eventually, § is a spacelike polynomial helix. [



4865

H. Altinbas et al. / Filomat 34:14 (2020), 48614872

As a result of Theorem 3.6, we have the following corollary.

Corollary 3.7. It is easily seen that,
22— I 2
z__2 ~— > 0, then the axis U is a spacelike vector,

If ll2 + aZ
2 m=3 "2m-1

w

o

n=.

22— & 1 e
+ < 0, then the axis U is a timelike vector

2
A1

and
=0, then the axis U is a null vector.

2112 _ b2 7 bz
2 2 m
=24}, 2

2 m=3 T2m-1
Similarly, from the Theorem 3.5, one easily see that the axis U is a spacelike, a timelike and a null vector

if 2a3 — b3 > 0,243 — b < 0 and 243 = b3, respectively.
Now, we give an example of a spacelike polynomial helix with the null axis for n = 6
Example 3.8. If we choose by = 1,b, = 2,b3 = 3,by = 1 in Theorem 3.5, then we have the spacelike polynomial helix

\/_ V5o, 280 3P
St —tt, —, = + —
5’7 5

2
ﬁ(t)_(t 2v2

with the null axis

U= (o, v2,1,0,0, —1)

and the tangent vector

1
- (2t, V22,1, V10 £3, 244 16 + 3t4).

Vil = -

Also,
g(Vi(®),U) = -
Now, we give an example of a spacelike polynomial helix with the timelike axis for n = 6

Example 3.9. If we choose by = 2,b, = V3,b3 = 2,by = 1 in Theorem 3.5, then we have the spacelike polynomial

helix
bt = V3£, [2V8-1, V12,5 17 28
vz 3 8 5 775

with the timelike axis

= (o, V3,1,0, 0,—1)

and the tangent vector
1

Vi(t) =
16 + 214 + V32 —

(\"/ﬁt,t{l, 4\/3—2t3,\4/ﬁt4,t6+2t4).

Also,
g(Vi(®),U) =-
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3.2. Spacelike polynomial helices in IE} when n is odd

In this subsection, we give families of spacelike polynomial helices with spacelike, timelike or null axis
when 1 is odd.

Theorem 3.10. Letn =5and f:(1,d) C R - E3, d > 1, be a curve defined by
(P 23 a4 4 5)
ﬁ(t)—(zt,3t st 4t 5t .
If
{Il% = 2b1b2, a% = 2b1b3 - b%, az = bl, ﬂi = 2b2b3, as = b3,

with1 < j <3, bj € R*, by + by > by and bg < 2b1bs then B is a spacelike polynomial helix with the axis
u= (0 b2 10, 1)

and the tangent vector

1
—b1 + bzi’z + b3t4

Vi(t) =

(alt, Clztz, as, tl4l’3, 05t4) .

Proof. We omit the proof since it is analogous to the proof of the Theorem 3.3. [
Theorem 3.11. Assume n > 7 is an odd number,

LI% = 2b1b2, a% = 2blbg - b% >0, az= bl, u271 =2b. bn+1, a, = bn+1,

e a
3
a§k+1 = bl%+1 —2b 2
i=2
and
l n—-3
ay = —2b1by; + ZZ b]'bzl_]'+1 > OfOT 2<I< >
=2
n+l
such that1<j < %, bj € R¥, b% = b% =---=b,1=0and izbj > by. Then, the curve 8 : I — IEJ defined by
]:

“12“23 4“55“66 “n1n1an)
f) = D3 gt Bt 46 t t
ﬁ()( st t sty "n—1 n

is a spacelike polynomial helix with the axis

n=1
2

by
U—562+E3—Z

m=3

1
€2m-1 — €n,
A2m—-1

where I = (1,d) C R, d > 1 and the tangent vector

—_

V1 (t) = . (Cllf, aztz, a3,a4t3, {Il5t4, e ,an_lt”_z, a,,t”‘l) .
z .
b1+ ) b]‘tz(]_l)
j=2
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Proof. We omit the proof since it is analogous to the proof of the Theorem 3.6. [
As a result of Theorem 3.11, we have the following corollary.

Corollary 3.12. It is easily seen that,

n-=1
2 _ 112 e 2
2a5 — b; b

If——+ >—— >0, then the axis U is a spacelike vector,
ay — a5
m=3 "2m-1
n=1
: 22— & 1 Cre
If —5—+ — <0, then the axis U is a timelike vector
a5 — a5
m=3 "2m-1

and

1—1

22-02 & B2
If =2 5 2 4 Z ——— =0, then the axis U is a null vector.
) =3 T2m-1

Similarly, from the Theorem 3.10, one easily see the axis U is a spacelike, a timelike and a null vector if
— b3 > 0,243 — b5 < 0 and 24 = b3, respectively.
Now, we give an example of a spacelike polynomial helix with the spacelike axis for n = 5.

Example 3.13. If we choose by = 1,b1 = by = 2 in Theorem 3.10, then we have the spacelike polynomial helix

V7 245
2 3
ﬁ(t)—(t 2, 5)

with the spacelike axis

1
u=1[0,—,1,0,-1
( V7 )

and the tangent vector

1
— (2, V7 2,2,23,2¢4).
2t4+t2—2( V7 )

Vi(h) =
Also,
g(Vi(p),U) = -
Now, we give an example of a spacelike polynomial helix with the timelike axis for n = 5.

Example 3.14. If we choose by = 1,b, = V3, by = 2 in Theorem 3.10, then we have the spacelike polynomial helix

po-(1350.02)

with the timelike axis

U= (o, «/3,1,0,—1).

and the tangent vector

1 s s
Vi(t) = ———— (V121,2,1, V48 £2,21%).
24 + V32— 1 ( )

Also,
g(Va),U) =-



H. Altinbas et al. / Filomat 34:14 (2020), 48614872 4868
Now, we give an example of a spacelike polynomial helix with the null axis for n = 5.

Example 3.15. If we choose by = 1,b, = 2,b3 = 3 in Theorem 3.10, then we have the spacelike polynomial helix

V25, V3,38
_[42 3 4
ﬁ(t)_(t/3t/t/2t/5)

with the null axis
u=(0,v2,1,0,-1).

and the tangent vector

Vi (b L - (2, V212,1,2V3 £, 3t).

T3y
Also,

g(vi(),U) =-1.

4. Timelike Polynomial Helices in IE}
In this section we give families of timelike polynomial helices with spacelike, timelike or null axis.

Theorem 4.1. Let n =4 and B : 1— {0} ¢ R — E; be a curve defined by

B(t) = (%ﬁ +ast, 1—3#, %41%3, —azt).

If
2
ay=by, ay=-, B=2by, ay=b
by
with by, by € R*, then B is a timelike polynomial helix with the spacelike axis
u=(1,0,1,1).

Proof. From the straightforward calculations, we have

2

g8 (1,8 (1) = ~(b1#* + bot*),

1

byt* + by t?
g(Vi(t),U) =1.

Therefore, 8 is a timelike polynomial helix. [J

Vi(t)= (b2t4 +ay,a3t°, b1, —ﬂz) ,

Example 4.2. If we choose by = 2,b, = 1 in Theorem 4.1, then we have the timelike polynomial helix

H 2P
H=|=+4t =, =—, -4t
Bt (5+ 5 )

with the spacelike axis

u=(-1,0,1,1)
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and the tangent vector

Vi) = (* +4,20,22,-4).

[rYa
Also,
g(Vi(t),U) =1.

Theorem 4.3. Let n =5 and B : 1— {0} C R — IE] be a curve defined by

(g, ® 5 5.4 % 3
ﬁ(t)—(7t 5t +ast, 5t 4t,—3t, a3t).
If
2bfb3—2b1b§

2
1 2 2
a =by, ay=by a3=-—, a;,=2bb;, az= >0,
b by

with1 < j <3, bj € R" then B is a timelike polynomial helix with the spacelike axis

u=(-10,0,1,1)
and the tangent vector

1
b1t2 + b2f4 + b3i’6

Vi(t) =

(a1t6 + a2t4 +as, a4t4, a5t3,a6t2, —a3) .

Proof. We omit the proof since it is analogous to the proof of the Theorem 4.1.

Example 4.4. If we choose by = 2,b, = 1,bs = 2 in Theorem 4.3, then we have the timelike polynomial helix

2t7 £ V3, 28
£) = + 4, —t5 —t4 —4¢
0N AP 28 )

with the spacelike axis
u= (_1r Or Or 1/ 1)
and the tangent vector

1
216 4+ t4 4+ 212

Vi (t) = (260 + £ +4,2V2#,2V3 1,2, —4) .
Also,
g(Vi(t),U) =1

Theorem 4.5. Let n > 6and :1- {0} C R — IEJ be a curve defined by

BO=(5 50" gt I

"n-1
If

Au-a =b1, an3=by, ausa=b3...,00=by3, a1="b,,

ay _ Ap+1 —
o 1 # 2

4869

—_ts, —ﬂn,zt) .
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Ap_n = :—i, aifl =2b1b,_y, u%n_S = 2bfb3b——22blb§ >0

and
a,% =20y 9fk—p+1 — 200n—-a0k—ns2 > 0forn <k <2n -6

with b; is a positive constant for 1 <i < n — 2 then f is a timelike helix with the spacelike axis
U=-e +e,_1+e,

and the tangent vector

1 214 216 4 -1 -2 -3 2
Vi(t) = — (ﬂlf T aptT O e ay st Ay, t" T At a7, Aonat ,—lln—z).

Y. bt?i
j=1
Proof. We omit the proof since it is analogous to the proof of the Theorem 4.1. [

Theorem 4.6. Let n >4 and :1—{0} C R — IE} be a curve defined by

() = (211”—1_3#”‘3 + 2;—i5t2’"5 +oot “”3‘2 £, a,1t, %"tz, a”;l t3,...,%t”‘l).
If

ag=by,1, a=b,o, a3=b,3 ... a,1=Db
and

@ =2bby, a’, =2bibs, ..., a3 _5=2bib,,

with b; is a positive constant for 1 <i < n — 1 then p is a timelike helix with the timelike axis
U= e1 — €
and tangent vector
1
Vi (t) = Y (ﬂl t2n74 + ﬂ2t2n76 + e+ ﬂn_ztz, Ap-1,aut, ﬂn+1t2, ey ﬂzn_3tn72) .
b+ L b;t20-1)
]:

Proof. We omit the proof since it is analogous to the proof of the Theorem 3.6. [

Example 4.7. If we choose n = 4;b1 = 1,b, = 2,b3 = 1 in Theorem 4.6, then we have the timelike polynomial helix
t5

B(t) = (— + z—ts,t,tz, \@3)

5 3 3
with the timelike axis
u=(1,-1,0,0)
and the tangent vector

1

i) = op 1

(t4 +212,1,2t, V2 12).
Also,
g(Vi(t),U) =-1.
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Theorem 4.8. Letn > 4and f:1=(0,1) C R — EJ be a curve defined by

4 o3 2 o5 An-2 3 -1 1 O Q214 o )
D=3y B2 sy Bn2ys Dol e e g2 G2icdp 4)
) (2n—3 2n -5 3 n-1 n—-2 2
If
am =-byo, a=by3, a3=by4, ... a,2=b
and

2

— 2 —
el — an_4, ce ’a2n—4 = 2b1

ai_l =2b,_o, ai =2b,3, a
with b; is a positive constant for 1 <i <n —2and by > b, then B is a timelike helix with the null axis
U=e¢e +e,
and tangent vector
Vi () = L — (@ + a0 4k o + a2 a0, anat 1))
£ (—bn2t2n—6 +Y bjltz(f‘z)]

j=2

Proof. We omit the proof since it is analogous to the proof of the Theorem 3.6. [
Example 4.9. If we choose n = 5;b; = by = 2 and by = 1 in Theorem 4.8, then we have the timelike polynomial helix

27 215 28 #2818
H=|-—=+—=+—+t =, —, 5t
p® ( 7 5 3 273 )

with the null axis
u=(@,0,0,0,1)

and the tangent vector

1
Vi) = ——————— (=215 + 264 + 22 + 1,283,242, 2, 1) .
1 —2t6+2t4+2t2( )
Also,
g(Vl (t)/ u) =-1
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