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Abstract.
In the present paper, we give the notion of k-type hyperbolic slant helices in H3, where k ∈ {0, 1, 2, 3}.

We give the necessary and sufficient conditions for hyperbolic curves to be k-type slant helices in terms of
their hyperbolic curvature functions.

1. Introduction

The notion of a slant helix was due to Izumiya and Takeuchi ([6]). A curve γwith non-zero curvature is
called a slant helix in Euclidean 3-space R3 if the principal normal line of γ makes a constant angle with a
fixed vector in R3. Also some characterizations of such curves were presented in [1, 7, 8, 14]. Slant helices
are the successor curves of the general helices. In particular, they are geodesics of the helix surfaces.

Further, k-type slant helices emerged and attracted attention of researchers. Ergüt et al ([5]) studied
k-slant helices in Minkowski 3-space,R3

1. Also curves of such a type were studied in Minkowski space-time
by some researchers such as [2, 10]. Lastly, in [12, 13], the authors studied k-slant helices for null curves in
lightlike cone in Minkowski space-time and k-type spacelike slant helices lying on ligthlike surfaces.

On the other hand, in [9], the author considered hyperbolic curves in 3-dimensional hyperbolic space,
and construct the hyperbolic frame of the hyperbolic space curves. Also, the author studied the associated
curve of a hyperbolic curve inH3. Hyperbolic curves inH3 according to their Frenet frame, are characterized
in [4].

In this paper, we introduce the notion of k-type hyperbolic slant helices inH3, where k ∈ {0, 1, 2, 3}. We
give the necessary and sufficient conditions for hyperbolic curves to be k-type slant helices in terms of their
hyperbolic curvature functions. Finally, we give the related examples.

2. Priliminaries

The Minkowski space-time E4
1 is the Euclidean 4-space E4 equipped with indefinite flat metric given by

〈 , 〉 = −dx2
1 + dx2

2 + dx2
3 + dx2

4,
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where (x1, x2, x3, x4) is a rectangular coordinate system ofE4
1. Recall that a vector v ∈ E4

1\{0} can be spacelike
if 〈v, v〉 > 0, timelike if 〈v, v〉 < 0 and null (lightlike) if 〈v, v〉 = 0. In particular, the vector v = 0 is said to be a
spacelike. The norm of a vector v is given by ||v|| =

√
| 〈v, v〉 |. Two vectors v and w are said to be orthogonal,

if 〈v,w〉 = 0. An arbitrary curve α(s) in E4
1, can locally be spacelike, timelike or null (lightlike), if all its

velocity vectors α′(s) are respectively spacelike, timelike or null [11].
A null curve α is parameterized by pseudo-arc s if 〈α′′(s), α′′(s)〉 = 1 [3]. On the other hand, a non-null

curve α is parametrized by the arc-length parameter s if 〈α′(s), α′(s)〉 = ±1.
Let m be a fixed point and r > 0 be a constant. The pseudo-Riemannian hyperbolic space is defined by

H3 (m, r) = {u ∈ E4
1 : 〈u −m,u −m〉 = −r2

}.

When m = 0 and r = 1, we denoteH3 (0, 1) byH3.
For the regular curve x (s) ⊂H3

⊂ E4
1 with hyperbolic Frenet frame {x (s) , α (s) , β (s) , y (s)} and hyperbolic

curvature functions κ (s), τ (s) , the Frenet formulas of hyperbolic space curve x (s) inH3 can be written as
x′ (s) = α (s) ,
α′ (s) = x (s) + κ (s) y (s) ,
β′ (s) = τ (s) y (s) ,
y′ (s) = −κ (s)α (s) − τ (s) β (s) ,

(1)

where for all s,

〈x (s) , x (s)〉 = −1, 〈α (s) , α (s)〉 =
〈
β (s) , β (s)

〉
=

〈
y (s) , y (s)

〉
= 1,

〈x (s) , α (s)〉 =
〈
x (s) , β (s)

〉
=

〈
x (s) , y (s)

〉
= 0,〈

α (s) , β (s)
〉

=
〈
α (s) , y (s)

〉
=

〈
β (s) , y (s)

〉
= 0.

If 〈x′′ (s) , x′′ (s)〉 = −1, together with 〈x (s) , x (s)〉 = 〈x (s) , x′′ (s)〉 = −1 we know that x′′ (s) = x (s). So we
assume that 〈x′′ (s) , x′′ (s)〉 > −1 and call the curve regular ([9]).

3. k-type hyperbolic slant helices in 3-dimensional hyperbolic spaceH3

In this section, we study k-type hyperbolic slant helices in hyperbolic spaceH3. Let us set that

V0 = x, V1 = α, V2 = β, V3 = y.

In the following definition, we introduce the k-type slant helices lying in pseudohyperbolic spaceH3.

Definition 3.1. A hyperbolic space curve x (s) parametrized by arc-length s with hyperbolic Frenet frame {V0,V1,V2,V3}

in pseudohyperbolic spaceH3 is called a k-type hyperbolic slant helix for k ∈ {0, 1, 2, 3} if there exists a non-zero fixed
vector U ∈ E4

1 such that the following holds

〈Vk,U〉 = constant.

Firstly, we consider 0-type hyperbolic slant helices inH3.

Theorem 3.2. Let x (s) be a hyperbolic space curve inH3 parametrized by arc-length s with non-zero curvatures κ,
τ. Then x (s) is a 0-type hyperbolic slant helix if and only if(1

τ

)′ ( 1
κ

)′
+

1
τ

( 1
κ

)′′
+
τ
κ

= 0. (2)
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Proof. Assume that x (s) is a 0-type hyperbolic slant helix inH3 parametrized by arc-length s with non-zero
curvatures κ, τ. Then there exists a non-zero fixed vector U ∈ E4

1 such that

〈x,U〉 = c, c ∈ R. (3)

Taking derivative of the equation (3) with respect to s and using Frenet equations (1), we get

〈α,U〉 = 0,
〈
y,U

〉
= −

c
κ
. (4)

By using (4) , we can write U with respect to the frame {x, α, β, y} as follows

U = −cx + λβ −
c
κ

y, (5)

where λ is some differentiable function of s and c ∈ R\ {0}. Taking derivative of the equation (5) with respect
to s and using Frenet equations (1) , we have(

λ′ + c
τ
κ

)
β +

(
λτ − c

( 1
κ

)′)
y = 0

which implies that(1
τ

)′ ( 1
κ

)′
+

1
τ

( 1
κ

)′′
+
τ
κ

= 0.

Conversely, assume that (2) holds. Choosing the vector U as

U = −c
[
x −

1
τ

( 1
κ

)′
β +

1
κ

y
]
, (6)

we get U′ = 0 and 〈x,U〉 = c (constant). Thus x (s) is a 0-type hyperbolic slant helix.

Example 3.3. The hyperbolic curvature functions

κ =

√

s4 + 6s2 + 10
s2 + 2

and τ =
2s2

s4 + 6s2 + 10

satisfy (2). The hyperbolic curve x (s) with the hyperbolic curvature functions κ and τ can be written as

x (s) =
(√

s2 + 2, s cos A, 1, s sin A
)

with

α (s) =

(
s

√

s2 + 2
, cos A −

s sin A
√

s2 + 2
, 0, sin A +

s cos A
√

s2 + 2

)
,

y (s) =

 −s4
− 4s2

− 2
√

s2 + 2
√

s4 + 6s2 + 10
,
−s
√

s2 + 2
(
3 + s2

)
cos A −

(
4 + s2

)
sin A

√

s2 + 2
√

s4 + 6s2 + 10
,

−s2
− 2

√

s4 + 6s2 + 10
,

(
4 + s2

)
cos A − s

√

s2 + 2
(
3 + s2

)
sin A

√

s2 + 2
√

s4 + 6s2 + 10

 ,
β (s) =

 2
√

s2 + 2
√

s4 + 6s2 + 10
,

s
√

s2 + 2 cos A −
(
s2 + 2

)
sin A

√

s2 + 2
√

s4 + 6s2 + 10
,

4 + s2

√

s4 + 6s2 + 10
,

s
√

s2 + 2 sin A +
(
s2 + 2

)
cos A

√

s2 + 2
√

s4 + 6s2 + 10

 ,



A. Uçum, K. İlarslan / Filomat 34:14 (2020), 4873–4880 4876

where A =arcsinh s
√

2
. So we get

U = −c
[
x −

1
τ

( 1
κ

)′
β +

1
κ

y
]

= (0, 0, c, 0)

and 〈x,U〉 = c (constant). Thus x (s) is a 0-type hyperbolic slant helix.

Example 3.4. The following hyperbolic curvature functions satisfy (2).
(i) κ = 1/ cos s, τ = 1 (ii) κ = 1/ cos (ln s) , τ = 1/s

Corollary 3.5. The axis of a 0-type hyperbolic slant helix is given by

U = −c
[
x −

1
τ

( 1
κ

)′
β +

1
κ

y
]

(7)

where c ∈ R\ {0} .

Corollary 3.6. Let x (s) be a hyperbolic space curve inH3 parametrized by arc-length s with non-zero curvatures κ,
τ. Then x (s) is a 0-type hyperbolic slant helix if and only if

1
τ2

(( 1
κ

)′)2

+
1
κ2 = constant. (8)

Proof. Assume that x (s) is a 0-type hyperbolic slant helix inH3 parametrized by arc-length s with non-zero
curvatures κ, τ. From (7) , we have

1
τ2

(( 1
κ

)′)2

+
1
κ2 = constant.

Conversely, assume that the relation (8) holds. Then taking derivative of the equation (8) with respect
to s , we get(1

τ

)′ ( 1
κ

)′
+

1
τ

( 1
κ

)′′
+
τ
κ

= 0

which means that x (s) is a 0-type hyperbolic slant helix.

Secondly, we consider 1-type hyperbolic slant helices inH3.

Theorem 3.7. Let x (s) be a hyperbolic space curve inH3 parametrized by arc-length s with non-zero curvatures κ,
τ. Then x (s) is a 1-type hyperbolic slant helix if and only if

c1

(
1
τ

)′ ( 1
κ − κ

)
−

(
1
τ

)′ ( 1
κ

)′
(−c1s + c2) + c1

1
τ

(
2
(

1
κ

)′
− κ′

)
−

1
τ

(
1
κ

)′′
(−c1s + c2) − τ

κ (−c1s + c2) = 0, (9)

where c1, c2 ∈ R and (c1, c2) , (0, 0) .

Proof. Assume that x (s) is a 1-type hyperbolic slant helix inH3 parametrized by arc-length s with non-zero
curvatures κ, τ. Then there exists a non-zero fixed vector U ∈ E4

1 such that

〈α,U〉 = c1, c1 ∈ R. (10)

Then we can write U with respect to the frame {x, α, β, y} as follows

U = λ1x + c1α + λ3β + λ4y (11)
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where λ1, λ3 and λ4 are some differentiable functions of s. Differentiating the equation (11) with respect to
s and using Frenet equations (1), we get

0 =
(
λ′1 + c1

)
x + (λ1 − κλ4)α +

(
λ′3 − τλ4

)
β +

(
c1κ + λ3τ + λ′4

)
y

which implies that
λ′1 + c1 = 0,
λ1 − κλ4 = 0,
λ′3 − τλ4 = 0,
c1κ + λ3τ + λ′4 = 0.

(12)

Solving (12), we get

c1

(
1
τ

)′ ( 1
κ − κ

)
−

(
1
τ

)′ ( 1
κ

)′
(−c1s + c2) + c1

1
τ

(
2
(

1
κ

)′
− κ′

)
−

1
τ

(
1
κ

)′′
(−c1s + c2) − τ

κ (−c1s + c2) = 0,

where c1, c2 ∈ R and (c1, c2) , (0, 0) .
Conversely, assume that the relation (9) holds. Then choosing the vector U as follows

U = (−c1s + c2) x + c1α +
1
τ

[
c1

( 1
κ
− κ

)
−

( 1
κ

)′
(−c1s + c2)

]
β +

1
κ

(−c1s + c2) y,

we get U′ = 0 and 〈α,U〉 = c1 (constant). Thus x (s) is a 1-type hyperbolic slant helix.

Example 3.8. The following hyperbolic curvature functions satisfy (9).
(i) c1 = 0, c2 = 1, κ = 1/ sin s, τ = 1.

Corollary 3.9. The axis of a 1-type hyperbolic slant helix is given by

U = (−c1s + c2) x + c1α +
1
τ

[
c1

( 1
κ
− κ

)
−

( 1
κ

)′
(−c1s + c2)

]
β +

1
κ

(−c1s + c2) y,

where c1, c2 ∈ R and (c1, c2) , (0, 0) .

Assume that c1 = 0 in (9) , Then we have c2 , 0 and(1
τ

)′ ( 1
κ

)′
+

1
τ

( 1
κ

)′′
+
τ
κ

= 0.

Then x (s) is a 0-type hyperbolic slant helix. Thus we give the following corollary.

Corollary 3.10. Let x (s) be a hyperbolic space curve in H3 parametrized by arc-length s with non-zero curvatures
κ, τ. Then x (s) is a 0-type hyperbolic slant helix if and only if x (s) is a 1-type hyperbolic slant helix whose axis U
satisfies 〈α,U〉 = 0.

Thirdly, we consider 2-type hyperbolic slant helices inH3.

Theorem 3.11. Let x (s) be a hyperbolic space curve inH3 parametrized by arc-length s with non-zero curvatures κ,
τ. Then x (s) is a 2-type hyperbolic slant helix if and only if(

τ
κ

)′′
−
τ
κ

= 0, (13)

or equivalently

τ
κ

= c1es + c2e−s.
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Proof. Assume that x (s) is a 2-type hyperbolic slant helix inH3 parametrized by arc-length s with non-zero
curvatures κ, τ. Then there exists a non-zero fixed vector U ∈ E4

1 such that〈
β,U

〉
= c, c ∈ R. (14)

Assume that c = 0. Then U = 0 which is a contradiction. So c , 0.
Taking derivative of the equation (14) with respect to s and using Frenet equations (1), we get

〈α,U〉 = −
τ
κ

c,
〈
y,U

〉
= 0. (15)

By using (15) , we can write U with respect to the frame {x, α, β, y} as follows

U = λx −
τ
κ

cα + cβ (16)

where λ is some differentiable function of s. Differentiating the equation (16) with respect to s and using
Frenet equations (1), we get

0 =
(
λ′ −

τ
κ

c
)

x +
(
λ − c

(
τ
κ

)′)
α

which implies that(
τ
κ

)′′
−
τ
κ

= 0,

or equivalently

τ
κ

= c1es + c2e−s.

Conversely, assume that the relation (13) holds. Then choosing the vector U as follows

U = c
(
τ
κ

)′
x −

τ
κ

cα + cβ,

where c ∈ R\ {0} , we get U′ = 0 and
〈
β,U

〉
= c (constant). Thus x (s) is a 2-type hyperbolic slant helix.

Example 3.12. The following hyperbolic curvature functions satisfy (13).
(i) κ = 1, τ = es (ii) κ = es, τ = 1

Corollary 3.13. The axis of a 2-type hyperbolic slant helix is given by

U = c
(
c1es
− c2e−s) x −

(
c1es + c2e−s)α + cβ,

where c ∈ R\ {0}.

Lastly, we consider 3-type hyperbolic slant helices inH3.

Theorem 3.14. Let x (s) be a hyperbolic space curve inH3 parametrized by arc-length s with non-zero curvatures κ,
τ. Then x (s) is a 3-type hyperbolic slant helix if and only if∫ (

τ
κ

∫
τds

)
ds −

(
τ
κ

)′ ∫
τds =

κ2 + τ2

κ
. (17)
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Proof. Assume that x (s) is a 3-type hyperbolic slant helix inH3 parametrized by arc-length s with non-zero
curvatures κ, τ. Then there exists a non-zero fixed vector U ∈ E4

1 such that〈
y,U

〉
= c, c ∈ R\ {0} . (18)

Then we can write U with respect to the frame {x, α, β, y} as follows

U = λ1x + λ2α + λ3β + cy (19)

where λ1, λ2 and λ3 are some differentiable functions of s. Differentiating the equation (19) with respect to
s and using Frenet equations (1), we get

0 =
(
λ′1 + λ2

)
x +

(
λ1 + λ′2 − cκ

)
α +

(
λ′3 − cκ

)
β + (λ2κ + λ3τ) y,

which implies that
λ′1 + λ2 = 0,
λ1 + λ′2 − cκ = 0,
λ′3 − cκ = 0,
λ2κ + λ3τ = 0.

(20)

Solving (20), we get∫ (
τ
κ

∫
τds

)
ds −

(
τ
κ

)′ ∫
τds =

κ2 + τ2

κ
.

Conversely, assume that the relation (13) holds. Then choosing the vector U as follows

U =

(∫ (
τ
κ

∫
τds

)
ds

)
x −

(
τ
κ

∫
τds

)
α +

∫
τdsβ + y,

we get U′ = 0 and
〈
y,U

〉
= 1 (constant). Thus x (s) is a 3-type hyperbolic slant helix.

Example 3.15. The following hyperbolic curvature functions satisfy (17).
(i) κ = s, τ = 1 (ii) κ = −s, τ = 1

Corollary 3.16. The axis of a 3-type hyperbolic slant helix is given by

U = c
(∫ (

τ
κ

∫
τds

)
ds

)
x − c

(
τ
κ

∫
τds

)
α + c

∫
τdsβ + cy,

where c ∈ R\ {0}.

Assume that c = 0 in (20) , then we have{
λ′1 + λ2 = 0, λ1 + λ′2 = 0,
λ′3 = 0, λ2κ + λ3τ = 0.

which implies that

τ
κ

= c1es + c2e−s.

Then x (s) is a 2-type hyperbolic slant helix. Thus we give the following corollary.

Corollary 3.17. Let x (s) be a hyperbolic space curve in H3 parametrized by arc-length s with non-zero curvatures
κ, τ. Then x (s) is a 2-type hyperbolic slant helix if and only if x (s) is a 3-type hyperbolic slant helix whose axis U
satisfies

〈
y,U

〉
= 0.
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