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Abstract. In this paper, we use the fixed point theory to obtain the existence and uniqueness of solutions

for nonlinear implicit Riemann-Liouville fractional differential equations with nonlocal conditions. An
example is given to illustrate this work.

1. Introduction

The concept of fractional calculus is a generalization of the ordinary differentiation and integration
to arbitrary non integer order. Fractional differential equations with and without delay arise from a
variety of applications including in various fields of science and engineering such as applied sciences,
practical problems concerning mechanics, the engineering technique fields, economy, control systems,
physics, chemistry, biology, medicine, atomic energy, information theory, harmonic oscillator, nonlinear
oscillations, conservative systems, stability and instability of geodesic on Riemannian manifolds, dynamics
in Hamiltonian systems, etc. In particular, problems concerning qualitative analysis of linear and nonlinear
fractional differential equations with and without delay have received the attention of many authors, see
[1]-[24], [26]-[30] and the references therein.

Recently, in [7], by using the lower and upper solutions method, the authors proved the existence of
iterative solutions for a class of fractional initial value problem with non-monotone term

Dg.x(t) = f(t,x(t), t€(0,T],

Hox (f)],_, =x0 #0, x € R,
where Dy, is the standard Riemann-Liouville fractional derivative, f : (0,T] X R — R is a continuous
functionand 0 < a < 1.

In [9], the authors discussed the existence and Ulam stability analysis of the following fractional differ-
ential equation

{ D.x(t) = f(tx(H),D5x (1), t e (©,T],

Hox (t)L=O =xp, X0 €R,
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where Dy, is the standard Riemann-Liouville fractional derivative, f : (0, T] X R X R — R is a continuous
functionand 0 < a < 1.

Inspired and motivated by the above works, we study the existence and uniqueness of solutions for the
following fractional differential equation with nonlocal conditions

{ D2.x () = f(t,x (), Dx (1), te (O,TI, o

B ()], = %0 — 9(x), X0 € R,

where Dy, is the standard Riemann-Liouville fractional derivative of order 0 <a <1, f : (0,T]X RXR — R
and g : C((0,T],R) — R are continuous nonlinear functions. To show the existence and uniqueness of
solutions, we transform (1) into an integral equation and then use the Banach and Krasnoselskii fixed point
theorems. Finally, we provide an example to illustrate our obtained results.

The rest of this paper is organized as follows. Some definitions from fractional calculus theory are
recalled in Section 2. In Section 3, we prove the existence and uniqueness of solutions for (1). Finally, in
Section 4, we give an example to illustrate the usefulness of our main results.

2. Preliminaries

In this section we present some basic definitions, notations and results of fractional calculus which are
used throughout this paper.

Let T > 0, ] = [0, T]. By C(J,R) we denote the Banach space of all continuous functions from | into R
with the norm

lIxllo = sup{lx ()] : £ € J}.

Let us set AC(J) be the space of absolutely continuous valued functions on |, and set
AC"() = {x:] > R:x,x,x",..,x" " € C(J,R) and " € AC())}

In what follows y > 0, we consider the weighted space of continuous functions
G (R ={x:(0,T] > R:'xe C(JR)},

with the norm

lxllc, = sup |'x ().
te]

Clearly C, (J,R) is a Banach space.
Definition 2.1 ([16]). The fractional integral of order e > 0 of a function x : | — R is given by

t
Igax(t):ﬁ fo (t—s)x(s)ds,

provided the right side is pointwise defined on |. Where I is the gamma function defined by

l"(a):f s%le=sds.
0

Definition 2.2 ([16]). For a function x € AC" (J), the Riemann-Liouville fractional order derivative of order o of x,
is defined by

D“x(t)—; 4 nft(t—s)”_a_lx(s)ds
o S Tm-a)\dt] J, !

where n = [a] + 1 and [«] denotes the integer part of real number a.
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Lemma 2.3 ([16]). The general solution of linear fractional differential equation
Dg.x(t) =0,
is given by
x®) =t N+ ot P At et i eR, i=1,2,..,1,
where n = [a] + 1 and [«] denotes the integer part of real number a.

Lemma 2.4 ([16]). We have
T'(B)

I = ———— 1 g >0, > 0.

T T(a+p)

Theorem 2.5 (Banach’s fixed point theorem [25]). Let Q be a non-empty closed convex subset of a Banach space
(S, 1I.11), then any contraction mapping @ of () into itself has a unique fixed point.

Theorem 2.6 (Krasnoselskii’s fixed point theorem [25]). Let Q) be a non-empty closed bounded convex subset
of a Banach space (S, ||.l). Suppose that F1 and F, map Q into S such that

(i) Fix + Foy € Q forall x, y € Q,

(ii) Fy is continuous and compact,

(iii) F, is a contraction with constant | < 1.

Then there is a z € Q with F1z + Fyz = z.
3. Existence and uniqueness

Let us start by defining what we mean by a solution of the problem (1).

Definition 3.1. A function x € C'((0,T], R) is said to be a solution of (1) if x satisfies Dy, x (t) = f (t, x(t),Dg.x (t))
forany t € (0, T] and t'~%x (1‘)|t:0 = xp — g(x).

For the existence of solutions for the problem (1), we need the following auxiliary lemma.

Lemma 3.2. The function x solves (1) if and only if it is a solution of the integral equation

t
x(t) = 27 (o — g () + —— f (t=5)""" f(s,x(5), D§.x (s))ds, t € (0,T]. )
I'(a) Jo
Proof. Suppose the function x satisfies the problem (1), then applying I§, to both sides of (1), we have

I3.Dgx (t) = I3 (£, x (B), Dg.x (8)).
In view of Lemma 2.3, we get

1

t
a_l 103
Wfo (t—s) f(s,x(s),DO+x(s))ds. o

x(H) =ct* !+

The condition +~%x (t)| i—o = %o — g(x) implies that
c1=x—g(x). 4)

Substituting (4) in (3) we get the integral equation (2). The converse can be proven by direct computations.
The proof is completed. [
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In the following subsections we prove existence, as well as existence and uniqueness results, for the
problem (1) by using a variety of fixed point theorems.

The following assumptions will be used in our main results.

(H1) There exist constants k; > 0 and k; € (0,1) such that

|f (t,u,0) = f (t,u",07)

fort € (0,T], u,v,u*,v* € Rand f(,,0,0) € Ci_o (J,R).
(H2) There exist a constant b € (0, 1) such that

<k |lu—ul+k|v-207,

<blu—-ulle,,,

lg () - g ()
foru,u* € Ci_, (J, R).

3.1. Existence and uniqueness results via Banach’s fixed point theorem
Theorem 3.3. Assume that the assumptions (H1) and (H2) are satisfied. If

I'(a)ka T
bt Toma-m) <V 5)
then there exists a unique solution for the problem (1) in the space C1_, (J, R).

Proof. We define the operator @ : Ci_, (,R) = Ci_ (J,R) by

t
(@x) (t) = t* (xg — g (x)) + L f (t—9)"""h(s)ds, t € (0,T],

I'(a) Jo
where &1 : (0, T] — R be a function satisfying the functional equation

h(t) = f(t,x(b),h(t)).

By Lemma 3.2, the fixed points of operator ® are solutions of (1). The operator ® is well define, i.e. for
every x € Ci_, (J,R) and t > 0, the integral

1

t
a-1
@ fo (t—s)* " h(s)ds, (6)

belongs to Ci— (J,R). Under the condition (H1),

|h ()| = |f (t,x(t),h(t))| < 1 klk Ix (£)| + ct*! for each t € (0, T], (7)
L)

sup, |7 £(t,0,0)
where ¢ = I%E"Ti('. For every x € C1—, (J,R), we have

tl—a £
['(a) Jo

tl—a

t
_ el

o | =9

- ' a1 ky a—l)

@ fo (t—ys) (1 s |x (s)| + cs ds

< tl__aft (t—s) s L‘Sl_ax ©)] +eds
~ I'(a) Jo L=k

ki - -1
< (m ”.X”CPU( + C)t aIg+ (ta )

(t—s)"Th(s)ds| <

<
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By Lemma 2.4, we have

tlfa
I'(a)

t
a—1
| (=9 hls)ds TQo —\1 T Qo)

k T'(a)t® k I'(a) T*
<[ e o) O (| E@T
1-k —ky

That is to say that the integral exists and belongs to Ci—, (J, R).
Letx,y € C1—4 (J, R). Then for ¢ € (0, T], we have

1 ! _
|(@x) (1) — (@y) (B)] < * 7 g (0) — g ()| + @ fo (t =) |l () — hy (5)| ds
where Iy, hy, € C1-, (], R) be such that
hy () = f(tx(t), he (1),

and
hy () = (L y(0), by ().
By (H1) we have
e (B) =y (8)] = 'f (tx (1), Iy () = f(t,y(t),hy (t))‘ <k [x(t) =y )] + ke | (8) = By (1)

Then

&) =y (O] < 7= kO -y @)

Therefore, for each t € (0, T]
(@00 -@o] <0 ool + i[9 0yl
PEL= Nere " Ty @ -k Jy /

a= k t a-1 _a— -
=t 1b”x—yHCM+m£(t—s) g 1(51 (x(s)—y(s))|ds

i k .
<t - yHcHx "1 —1k2 0 (t 1) (5 y”cH '

By Lemma 2.4, we have

N T (o) kg2
|(@x) (1) - (@y) (1)) < * b ||x - y”cl_a r(zi) (i k) H Hcl_a ’
which implies that
—a I (a) kyt*
[ (@00 - @) <6l - vl + rons kil

I'(a)kT®
<b Hx - y“CI_a + T (2;)( (11_ k) “x - y”Cl_a :
Thus
T'(a) kT
”(Dx—(l)y”Cl_a <|b+ r(zao; (11 k2) - “cl_a,'

From (5), @ is a contraction. As a consequence of Banach'’s fixed point theorem, we get that ® has a unique
fixed point which is a unique solution of the problem (1). O
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3.2. Existence results via Krasnoselskii’s fixed point theorem
Theorem 3.4. Assume (H1), (H2) and the following hypothesis

(H3) There exist p1 € C1-o (], R"), p2, p3 € C(J, R") with p, = SUp,; P3 (t) < 1 such that
|f (t,u,0)| <p1(t) +p2 (O lul +p3 (D o],

fort € (0,T] and each u,v € R.

If
_py P @T
(1—p;)r(2a)

where p; = sup,; p2 (). Then the boundary value problem (1) has at least one solution in Q.
Proof. Set
rpl @

R= 1 A=+ Q+ — L "
(1—p;)r(2a)

1-A

where p; = sup,.; {#1%p1 ()} and Q = |g (0)|. Let us fix
M > RA.

Consider the non-empty closed bounded convex subset Q) = {x €Ci_a (I R) : Ixllc,_, < M} and define two
operators F, and F, on (), as follows

_ 1 ' a-1
ED0 = [ = hod
and

(Fx) () =" (x0 = g (1),

where 1 : (0, T] — R be a function satisfying the functional equation

h(t) = f(t,x(b),h(t)).

We shall use the Krasnoselskii fixed point theorem to prove there exists at least one fixed point of the
operator F, + F; in Q). The proof will be given in several steps.

Step 1. We prove that F,x + Foy € Q for all x, y € Q.

For any x,y € Qand t € (0, T], we have

|(F.x) (1) + (Fay) ()] < |27 (%0 — g (1) + = (t — )" h(s)ds

1"()

t
< 31 || + 01 |g<x>—g(0)|+t“-1 |g<0>|+ﬁ fo (£=5)""" 5" 5! (s)| ds

1
I' (@)

< 197 xo| + t97IOM + 197 1Q+—f(t s)*7! “1)51 "h(s))ds 8)

¢
< Uxol + 7 b Ixlle,, + TIQ+ —— (t —g)r gt |51*“h (s)| ds
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By (H3), for each t € (0, T], we have
(B = |f (t,x ), h®)] < p1 &) +p2 () Ix (O] + ps (£) 1 (B)].
Hence, we get

|7 n ()] < £7%p1 (8) + p2 () [P (O] + p3 B[R (1)] < pi + psM + p3 [ R (1)

7

then, we have

_ pi+pM

o (1) < ————. 9)

| ) 1-p;
Replacing (9) in the inequality (8) and with Lemma 2.4, we get

_ _ i pEpMy 1 o
F.x)(t) + (Foy) (t)| <t xo| + t*71bM + 7! +(¥)—f t—s)* s s
[(F0) (1) + (Fay) ()] < 7" ol T Jrw ¢
a-1 a-1 a-1 PitPoM\ T(a) 5,y
<t xol + DM + ¢ Q+( T r(20()1‘
Therefore
Tp'T (« T (o) T
|7 ((F, ) (8) + (Fox) ()] < ol + Q + Iy, LTy
(1-p3)T a) (1-p3)T @a)
Thus
M 1

IFox+Foxll  sA+aM <+ (1 - E)M =M.

Hence Fix + Foy € Qforall x, y € Q.
Step 2. We show that F; is continuous.
Let (x,),en be a sequence such that x, — x in Ci—, (J, R), then for each t € (0, T], we have
1 t
(F) )= E0 0] < 75 [ =9 1 © - hE1ds, (10)
'(a) Jo

where h,, h € C1—, (J,R) be such that

hn (t) = f (t/ Xn (t) /hn (t)) ’
and

h(t) = f(t,x(t),h(b).
By (H1) we have

Il (1) = (O] = |f (£, 20 (), 1 (1) = £ (1,2 (), B (@)| < Kl () = x (D] + Ko | (1) = B (D).
Then

kq
| (8) — R (8)] < | (£) — x (£)] . (11)

1-ky
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By replacing (11) in inequality (10), we find

I(F ) () — (Fo) (8)] < fu—wlmm x (Ol ds

ﬂkﬂm

l’llal 1-a
abﬁmf“ 51 (x,y () — x (£))| ds

(%) lhew = e,

<
=71_ kz o+
By Lemma 2.4, we have

T (a) k21

[(Fixe) () = (Bx) (0] < g5y

x“Cl_“ ’

which implies that

. @k . T@hT
£ ((Fyx) (1) = (Fix) ()] < mllx = Xlle, ., (1 )T Q2 )”
Thus
T (@) ky T
||F x,—F x“c1 X W (2t x”cl_a ’

and hence
||F1xn - le“CH — 0asn — oo.
Consequently, F, is continuous.

Step 3. We prove that F; is compact.
Forall x € Qand ¢t € (0, T], we have

L
< — t—g)* " s" “h(s)|ds.
(ED0]< g [ -9 o) as
Replacing (9) in the inequality (12) and with Lemma 2.4, we get

PsM\ T (@) 5,
|@@m|(—féﬂﬂifl.

Therefore

1-a Pi+PMy T o,
|t (FIX) (t)| < (W) F(ZQ)T

Thus

p; +p5M\ T (a) "
I, = (B2

Hence F; (Q) is uniformly bounded.

=, -

4888

(12)
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It remains to show that F; (Q)) is equicontinuous, let 0 < #; < f;, < T and x € Q). Then
|57 (F,%) (t2) — 17 (F,x) (1))

f tr t
L f B (ty —5)* " h(s)ds + f B (ty —5)* " h(s)ds — f 20 (= 5)* " h(s)ds
['(a) |Jo t 0

1 " 1-a -1 ja— —a -1 ja-1] | 1-a
Smfo |57 (b = 5)* ¥ = 17 (1 — 9)* " 527 [s'0h (5)| ds
1 ("
+_
I'(a) t
p’i+p;M 1 ftl 1-a a-1 1-a a-1] .a-1
< - £ | — — — —
< \F@ s |37 (t = )" = 17 (1 —5)* Y| s* s

p;+p;M 1 ftz 1-a _ a1 a1
+—1—P§ _F(a) , ty " (ty — )" s ds|.

B (f — )1 527! (sl‘“h (s)( ds

As t; — ty, the right-hand side of the above inequality tends to zero. That is to say that F, (Q) is equicon-
tinuous, then by Ascoli-Arzela theorem, we can conclude that the operator F, is compact.

Step 4. We prove that F, : QO — C1_, (J,R) is a contraction mapping.

For all x € Q and from (H2), we have

(E2) 0 = ) @] = [ @) - g )] < 27|l y].
Therefore

[ (0 () - Ey) )] < bl -y, -
Thus

IFx = Euylle, <l -y, .-

Hence, the operator F; is a contraction.

Clearly, all the hypotheses of the Krasnoselskii fixed point theorem (see [25]) are satisfied. Thus there a
fixed point x € Q) such that x = F,x + F,x, which is a solution of the problem (1). O
4. Example

We consider the following fractional initial value problem

2
Di.x(t) = : —+ 1, te(01],
4exP(—t+2)(1+|x(t)I+ D03+X(t)) £ (13)

1 LA
Hx®)|_,=3- Zlcitfy(t,-),
£

n
where0 <t <..<t, <landc,i=1,..,n are positive constants with }_ ¢; < }I' Set
i=1

1 1
—, te(0,1], u,veR,

) A R * A

We have

C1-([0,1],R) = C; ([0,1],R) = {1 : (0,1] = R: 5h € C([0,1], R)},
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with a = % Clearly the functions f and g are continuous, f(.,0,0) € C 1 ([0,1], R). For each u,u*,v,v* € R

and

and

t € (0,1], we have

|f(t, u,v)— f (¢t u,v)

1 1 1
dexp(—t +2) ((1 Flul+ol) (1wl + |v*|))l
< lu—uw| + v — v
T dexp(—t+2) (1 + [ul + o) (1 + |ur| + [o*])

1
< —(u-u'l+ -1,
4e

n 1 n 1
< Yt (k) = ()l < Y cillu=wlle, < 7 lhe=ulc, -

174
i=1 i=1 3

g @) g @)

Hence, conditions (H1) and (H2) are satisfied with k; = k, = ﬁand b= %. The condition

r(3)
T@kT* 1 i
b+1"(20z)(1—k2)_4+r(%)(1_ﬁ)_0'4<1'

is satisfied with T = 1. It follows from Theorem 3.3 that the problem (13) has a unique solution in the space
Acknowledgments. The authors would like to thank the anonymous referee for his valuable comments.
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