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Eskişehir, Turkey

Abstract. In this work, using crossed resolutions, we will give a construction of a free reduced quadratic
resolutions of a commutative k-algebra and explain its 2-skeleton.

Introduction

To investigate homological properties of commutative algebras, André used simplicial methods in [1]
and introduced ‘step-by-step’ construction of a resolution of a commutative algebra. This resolution is built
up so that at each stage the next step is formed by adding in new simplicies to kill the homotopy modules
of the previous step. Illusie [13], by using the simplicial resolution, constructed the cotangent complex
of an algebra. Comparing this with results on crossed resolutions, in group cohomology theory, Porter
[18] showed how this corresponds to a crossed resolution of algebras. Arvasi-Porter, [3], related André’s
construction to an obvious construction of a crossed resolution of an algebra by using a description of the
passage from simplicial algebras to crossed complexes of algebras given by Carrasco and Cegarra [10] in
the group case. This construction does give a ‘step-by-step’ construction of a crossed resolution given one
of a simplicial resolution and its 1-and 2-skeleton.

As an algebraic model of homotopy connected 2-types, the notion of crossed module was introduced by
Whitehead in [20] and these crossed modules are equivalent to the simplicial groups with Moore complex
of length 1. The commutative algebra analogue of crossed modules has been studied by Porter in [18].
Conduché in [11] defined the notion of 2-crossed module as an algebraic model of homotopy connected
3-types and showed how to obtain a 2-crossed module from a simplicial group. The notion of 2-crossed
module for commutative algebras was given in [12]. For detailed information about 2-crossed modules
of commutative algebras see [2, 6]. Baues, defined quadratic modules of groups for homotopy connected
3-types and gave a construction of a quadratic module from a simplicial group in Appendix B to chapter IV
of [8]. In [4], Arvasi and Ulualan gave the connections between quadratic modules, 2-crossed modules (cf.
[11]) and simplicial groups. For the commutative algebra version see also their work, [5]. Reduced quadratic
modules of commutative algebras are special kind of quadratic modules of algebras (cf. [5]), describing
the 3-types of simply connected CW-complexes which are constructed with algebras of nilpotency degree
2. As a close relationship between crossed modules and reduced quadratic modules over groups, in [15],
Muro defined the suspension functor from crossed modules to reduced quadratic modules which sends a
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2-type to the 3-type of its suspension. In [16], the notions of reduced quadratic complexes of commutative
algebras was constructed, and the suspension functor from crossed modules to reduced quadratic modules
of commutative algebras was given. Using these results, we extend this functor to crossed complexes and
quadratic complexes and we give a construction reduced quadratic resolutions .

1. Preliminaries

In what follows ‘algebras’ will be commutative algebras over an unspecified commutative ring, k, but
for convenience are not required to have a multiplicative identity.

1.1. Reduced Quadratic Modules

Crossed modules were initially defined by Whitehead as models for homotopy connected 2-types in
[20]. The commutative algebra analogue of crossed modules has been studied by Porter in [18]. Throughout
this paper we denote an action of r ∈ R on c ∈ C by r · c.

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C, together
with an R-algebra morphism ∂ : C→ R, such that for all c ∈ C, r ∈ R; ∂(r · c) = r∂c. This is a crossed module if
in addition, for all c, c′ ∈ C, ∂c · c′ = cc′. This condition is called the Peiffer identity. We denote such a crossed
module by (C,R, ∂).

A morphism of crossed modules from (C,R, ∂) to (C′,R′, ∂′) is pair of k-algebras morphisms, ϕ : C→ C′

and ψ : R→ R′ such that ϕ(r · c) = ψ(r) · ϕ(c) and ∂′ϕ(c) = ψ∂(c).
Recall from [5] that a nil(2)-module is a pre-crossed module ∂ : C → R with additional “nilpotency”

condition. This condition is P3(∂) = 0 where P3(∂) is generated by Peiffer elements 〈x1, x2, x3〉 of length 3.
A Peiffer element in a pre-crossed module ∂ : C→ R is defined by

〈x, y〉 = xy − x · ∂(y)

for x, y ∈ C.
For an algebra C, the C/C2 is the quotient of the algebra C by its ideal of squares. Then, there is a functor

from the category of k-algebras to the category of the k-modules. This functor C goes to C/C2, plays the
role of abelianization in the category of k-algebras. As modules are often called singular algebras.

∂cr : Ccr = C/P2(∂)→ R

is the crossed module associated to pre-crossed module ∂ : C→ R, and

∂nil : C/P3(∂)→ R

is the nil(2)-module associated to pre-crossed module ∂ : C→ R, where P2(∂) = 〈C,C〉 is the Peiffer ideal of
C generated by the elements of the form

〈x, y〉 = xy − x · ∂y,

for x, y ∈ C.

Definition 1.1. ([5]) A reduced quadratic module (ω, δ) consists of the following diagram,

C ⊗ C

ω

��

w

""E
E
E
E
E
E
E
E
E

C2 δ
// C1

of algebras such that the following axioms are satisfied.
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RQM1- The algebra C1 is a nil(2)-algebra and C = C1/(C1)2 is the singularization of algebra C1. The quotient
map q : C1 → C is given by x −→ {x}

RQM2- For the morphism δ and the quadratic map ω,

δω({x} ⊗ {y}) = w({x} ⊗ {y}) = xy

for x, y ∈ C1.

RQM3- For a ∈ C2, x ∈ C1,

0 = ω({δa} ⊗ {x} + {x} ⊗ {δa}).

RQM4- For a, b ∈ C2,

ω({δa} ⊗ {δb}) = ab.

We denote the category of reduced quadratic modules by RQM.
Simplicial Commutative Algebras
Recall from [2] that a simplicial algebra E consists of a family of algebras En together with face and

degeneracy maps dn
i : En → En−1, 0 ≤ i ≤ n (n , 0) and sn

i : En → En+1, 0 ≤ i ≤ n satisfying the usual
simplicial identities. In fact it can be completely described as a functor E : ∆op

→ Alg where ∆ is the
category of finite ordinals. We obtain for each k ≥ 0 a subcategory ∆≤k determined by the objects [ j] of ∆
with j ≤ k . A k-truncated simplicial algebra is a functor from ∆

op
≤k to the category of commutative algebras

Alg. We denote the category of k-truncated simplicial algebra by TrkSimpAlg. A reduced simplicial algebra
is a simplicial algebra in which the first component is trivial. We denote the category of reduced simplicial
algebras by ReSimpAlg.

Given a simplicial algebra E, the Moore complex (NE, ∂) of E, is the chain complex defined by;

NEn =

n−1⋂
i=0

Kerdn
i

with ∂n : NEn → NEn−1 induced from dn
n by restriction.

Peiffer Pairings in the Moore Complex of a Simplicial Algebra
We recall briefly from [10] the construction of a family of k-linear morphisms. For details see [10] and

[2]. We define a set P(n) consisting of pairs of elements (α, β) from S(n) with α ∩ β = ∅ and β < α where
α = (ir, ...i1), β = ( js, ... j1) ∈ S(n). The k-linear morphisms that we will need,

{Cα,β : NEn−#α ⊗NEn−#β → NGn : (α, β) ∈ P(n),n ≥ 0}

are given as composites:

Cα,β(xα ⊗ yβ) = pµ(sα ⊗ sβ)(xα ⊗ yβ)
= p(sα(xα)sβ(xβ))
= (1 − sn−1dn−1)...(1 − s0d0)(sα(xα)sβ(xβ)),

where

sα = sir ...si1 : NEn−#α → En, sβ = s js ...s j1 : NEn−#β → En,

p : En → NEn is defined by composite projections p = pn−1...p0 with p j = 1 − s jd j for j = 0, 1, ...,n − 1 and
µ : En ⊗ En → En denotes multiplication.

We will now consider that the ideal In in En such that generated by all elements of the form;

Cα,β(xα ⊗ yβ)

where xα ∈ NEn−#α and yβ ∈ NEn−#β and for all (α, β) ∈ P(n).
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Proposition 1.2. ([2]) Let E be simplicial algebra and n > 0, and Dn the ideal in En generated by degenerate elements.
We suppose En = Dn, and let In be the ideal generated by elements of the form Cα,β(xα ⊗ yβ) with (α, β) ∈ P(n)
where xα ∈ NEn−#α, yβ ∈ NEn−#β with 1 ≤ r, s ≤ n. Then, ∂n(NEn) = ∂n(In).

If n = 2, 3 or 4 , then the image of the Moore complex of the simplicial algebra E can be given in the form

∂n(NEn) =
∑
I,J

KIKJ

where I, J ⊂ [n − 1], with I ∪ J = [n − 1] and where KI =
⋂

i∈I ker di and KJ =
⋂

j∈J ker d j (cf. [2]).

1.2. From Reduced Simplicial Algebras to Reduced Quadratic Modules

By using the images of the Cα,β functions in the Moore complex of a simplicial commutative algebra
given in [2], we can give a construction of a reduced quadratic module from a simplicial algebra.

Let E be a reduced simplicial algebra with Moore complex (NE, ∂) and En = Dn for all n ≥ 0. Let
M = NE1/(NE1)3 = (NE1)nil. Then the algebra M becomes a nil(2)-algebra. Let q1 : NE1 → M be the
quotient map. Let P be the ideal of (NE2/∂3NE3) generated by elements of the form s1(xy)(s1z − s0z) or
s1(x)(s1(yz) − s0(yz)) for x, y, z ∈ NE1. Let

L = (NE2/∂3NE3)/P

be the quotient algebra and let

q2 : NE2/∂3NE3 → L.

be the quotient morphism. Then, we have a commutative diagram

NE2/∂3(NE3)

q2

��

∂2 // NE1

q1

��
L

δ
// M.

Since

∂2(s1(xy)(s1z − s0z)) = xy(z − s0d1z)
= xyz − xy · ∂1(z)

= xyz ∈ (NE1)3 (by reduced condition)

and

∂2(s1(x)(s1(yz) − s0(yz))) = x(yz − s0d1(yz))
= xyz − x · ∂1(yz)

= xyz ∈ (NE1)3 (by reduced condition)

we have ∂2(P) ⊆ (NE1)3. Thus the map δ : L → M given by δ(a + P) = ∂2(a) + (NE1)3 is a well-defined
homomorphism. Indeed, if a + P = b + P we have a− b ∈ P and ∂2(a)− ∂2(b) ∈ ∂2(P) and since ∂2(P) ⊆ (NE1)3

we have ∂2(a) − ∂2(b) ∈ (NE1)3 and then ∂2(a) + (NE1)3 = ∂2(b) + (NE1)3, that is we have δ(a + P) = δ(b + P).
Let

C = M/M2
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be the singularization of the algebra M. Thus we have the following commutative diagram

C ⊗ C

ω

��

w

%%J
J
J
J
J
J
J
J
J
J

L
δ

// M

NE2

∂3(NE3)

q2

OO

∂2

// NE1

q1

OO

where the map w : C ⊗ C → M is given by w({q1(x)} ⊗ {q1(y)}) = q1(x)q1(y) for x, y ∈ NE1 and the quadratic
map is defined by

ω{q1x} ⊗ {q1y} = q2(s1x(s1y − s0y) + ∂(NE3)

for x, y ∈ NE1 and q1x, q1y ∈M.
Thus, we have

Proposition 1.3. The diagram
C ⊗ C

ω

��

w

""F
F
F
F
F
F
F
F

L
δ
// M

is a reduced quadratic module.

Proof. The axioms of reduced quadratic module can be verified by using the images of the generate elements
Cα,β in ∂3(NE3) = ∂3(I3) similarly given in [2].

2. Crossed Complexes and Crossed Resolutions

A crossed complex of commutative algebras is a sequence of k-algebras

C : · · · // Cn
∂n // Cn−1 · · · // C2

∂2 // C1
∂1 // C0

in which
(i) (C1,C0, ∂1) is a crossed module,
(ii) for i > 1,Ci is an C0- module on which ∂1C1 operates trivially and each ∂i is an C0- module morphism,
(iii) for i ≥ 1, ∂i+1∂i = 0.
Morphisms of crossed complexes are defined in the obvious way.
The homology of a crossed complex C can be defined by

Hn(C) = ker ∂n/Im∂n+1.

A crossed complex C is exact if for n ≥ 1,

ker(∂n) = Im∂n+1.

A crossed resolution of a commutative k-algebra B is a crossed complex

C : · · · // Cn
∂n // Cn−1 · · · // C2

∂2 // C1
∂1 // C0
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of k-algebras, where ∂1 is a crossed C0-module, together with f : C0 → B a morphism, such that the sequence

· · · // C2
∂2 // C1

∂1 // C0
f // B // 0

is exact.
If, for i ≥ 0, the Ci are free and ∂1 is a free crossed module, then the resolution is called a free crossed

resolution of the algebra B.

2.1. From Simplicial Resolution to Crossed Resolution

In this section, we recall the construction of the 2-skeleton of a free crossed resolution of a commutative
algebra by using the free simplicial resolution. For more details see [3].

Step-by-Step Construction
This section is a brief résumé of how to construct simplicial resolutions. The work depends heavily on a

variety of sources, mainly [1] and [3], [14]. The reader is referred to the book of André [1] and to the article
of Arvasi and Porter [3] for full details and more references.

First, some notation and terminology. Let [n] = {0 < 1 < · · · < n} be an ordered set. We define the
following maps.

First, the injective monotone map δn
i : [n − 1]→ [n] is given by

δn
i (x) =

{
x if x < i,
x + 1 if x > i

for 0 6 i 6 n , 0. On the other hand, an increasing surjective monotone map σn
i : [n + 1]→ [n] is given by

σn
i (x) =

{
x if x 6 i,
x − 1 if x > i

for 0 6 i 6 n. We denote by {m,n} the set of increasing surjective maps [m]→ [n] (cf. [3]).
Killing Elements in Homotopy Modules
Let E be a simplicial algebra and k > 1 be fixed. Suppose we are given a set Ω of elements

Ω = {xλ : λ ∈ Λ},

xλ ∈ πk−1(E); then we can choose a corresponding set of elements wλ ∈ NEk−1 so that

xλ = wλ + ∂k(NEk).

(If k = 1, then as NE0 = E0, the condition that wλ ∈ NE0 is empty). We want to define a simplicial algebra,
F = E[Ω] with a monomorphism i : E→ F such that

πk−1(i) : πk−1(E)→ πk−1(F)

“kills off” the xλ ’s. We do this by adding new indeterminates into NEk to enlarge it so as to make i(wλ) ∈
∂(NFk). More precisely,

(1) Fn is a free En-algebra,

Fn = En[yλ,t] with λ ∈ Λ and t ∈ {n, k}.

(2) For 0 6 i 6 n, the algebra homomorphism sn
i : Fn → Fn+1 is obtained from the homomorphism

sn
i : En → En+1 with the relations

sn
i (yλ,t) = yλ,u with u = tσn

i , t : [n]→ [k].
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(3) For 0 6 i 6 n , 0, the algebra homomorphism dn
i : Fn → Fn−1 is obtained from dn

i : En → En−1 with
the relations

dn
i (yλ,t) =


yλ,u if the map u = tδn

i is surjective
t′(wλ) if tδn

i = δk
kt′

0 if tδn
i = δk

jt
′ with j , k

by extending linearly.
Here t′ : [n − 1]→ [k − 1]. It thus corresponds to a unique algebra t′ : Ek−1 → En−1 (see André [1]).
Free Simplicial Algebras
Recall from [3] the definition of free simplicial algebra given by the step-by-step construction of André

[1] according to the above statements.
Let E be a simplicial algebra and k > 1, k-skeletal be fixed. A simplicial algebra F is called a free if
(i) Fn = En for n < k,
(ii) Fk = a free Ek-algebra over a set of non- degenerate indeterminates, all of whose faces are zero except

the kth,
(iii) Fn is a free En-algebra over the degenerate elements for n > k.
A variant of the step-by-step construction gives: if A is a simplicial algebra, then there exists a free

simplicial algebra E and an epimorphism E → A which induces isomorphisms on all homotopy modules.
The details are omitted as they are well-known.

Now, we recall the 1- and 2-skeletons of a free simplicial algebra given as

E(1) : · · ·R[s0X, s1X]
////// R[X]

////oooo
Roo

f // R/I

E(2) : · · ·R[s0X, s1X][Y]
////// R[X]

////oooo
Roo

with the simplicial structure defined as in Section 3 of [3]. Analysis of this 2-dimensional construction
data shows that it consists of some 1-dimensional data, namely the function ϑ : X → R, that is used to
induce d1 : R[X] → R, together with strictly 2-dimensional construction data consisting of the function
ψ : Y → R+[X] and this function is used to induce d2 : R[s0X, s1X][Y] → R[X]. We will denote this
2-dimensional construction data by (ϑ,ψ,R).

Proposition 2.1. ([3]) Given a presentation P = (R; x1, ..., xn) of an R-algebra B and E(1) the 1-skeleton of the free
simplicial algebra generated by this presentation, then

δ : NE(1)
1 /∂2(NE(1)

2 )→ NE(1)
0

is the free crossed module on (x1, ..., xn)→ R.

Proposition 2.2. ([3])Let E be a simplicial algebra; then defining

Cn(E) =
NEn

NEn ∩Dn + dn+1(NEn+1 ∩Dn+1)

with

∂n(z) = dn(z)

yields a crossed complex C(E) of algebras.

By using the 1- and 2-skeletons of the free simplicial resolution of algebra R/(x1, ..., xn) and the image
of the Peiffer elements in the Moore complex of this simplicial resolution (cf. [2]) and by using the functor
from simplicial algebras to crossed complexes analogously to that given by Carrasco and Cegarra (cf.
[10]), Arvasi and Porter constructed the 2-skeleton of a free crossed resolution of the commutative algebra
B = R/(x1, ..., xn) in section 4 of [3] as given in the following proposition.
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Proposition 2.3. ([3]) Let E(2) be the 2-skeleton of a free simplicial algebra in 2-dimensional construction data. Then

C(2) :
(R[s0(X), s1(X)])+[Y]

[Q2 + P2]
∂2 // R+[X]/P1

∂1 // R

is the 2-skeleton of a free crossed resolution of R/(x1, ..., xn), where ∂2 and ∂1 are given respectively by ∂2(Yi + (Q2 +
P2)) = d2(Yi) + P1 and ∂1(Xi + P1) = d1(Xi) for Yi ∈ (R[s0(X), s1(X)])+[Y] and Xi ∈ R[X]+ and where

(R[s0X, s1X])+[Y] + (s0X − s1X)
Q2 + P2

= C2(E(2))

and

R+[X]/P1 = C1(E(1)).

Note that Q2 = NE(2)
2 ∩D2 is the ideal of (R[s0X, s1X])+[Y]+ (s0X− s1X) generated by elements of the form

s1(Xi)(s0(X j) − s1(X j))

for Xi,X j ∈ R[X].
On the other hand P2 = ∂3(NE(2)

3 ) is the ideal of (R[s0X, s1X])+[Y] + (s0X − s1X) generated by elements of
the form

(s1s0d1(Xi) − s0(Xi))Y j (i)
Yi(s1d2Y j − Y j) (ii)

(s0Xi − s1Xi)(s1d2Y j − Y j) (iii)
Yi(Y j + s0d2Y j − s1d2Y j) (iv)

s1Xi(s0d2Y j − s1d2Y j + Y j) (v)
(s0d2Yi − s1d2Yi + Yi)(s1d2Y j − Y j) (vi)

for Xi,X j ∈ R+[X], Yi,Y j ∈ (R[s0X, s1X])+[Y] + (s0X − s1X) and P1 is the Peiffer ideal of R+[X].

3. Free Reduced Quadratic Resolution of a Commutative Algebra

Muro gave in [15] the suspension functor by using central push-out from crossed modules to reduced
quadratic modules, and showed that this functor preserves the free crossed modules of groups. In [16],
Odabas and Ulualan gave this functor for crossed modules of commutative algebras. We recall briefly this
functor from [16].

Let ∂ : L→ M be a crossed module of commutative algebras. Let I = {1, 2, 3} be index set with partially
ordered 1 < 2 and 1 < 3. We know that the direct system, F : I→ C, is the following diagram;

F1
ϕ1

3 //

ϕ1
2

��

F3

F2

We will construct a functor from I to the category of commutative algebras, using the crossed module
∂ : L→M.

Suppose that F1 = L ⊗M, F2 = L and F3 =
(
M/M2

⊗M/M2
)
/K. We can define the morphisms between

them

ϕ1
2 : F1 −→ F2

(l ⊗m) 7−→ l ·m
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This morphism satisfies the following;

ϕ1
2(id ⊗ ∂)(l ⊗ l′) = ϕ1

2(l ⊗ ∂l′)
= l · ∂l′

= ll′

= w′(l ⊗ l′)

that is,

ϕ1
2(id ⊗ ∂) = w′ : L ⊗ L→ L

where w′ is the multiplication map and

∂ϕ1
2(l ⊗m) = ∂(l ·m)

= (∂l)m
= w′(∂l ⊗m)
= w′(∂ ⊗ id)(l ⊗m)

thus, we have

∂ϕ1
2 = w′(∂ ⊗ id) : L ⊗M→M.

We now define the morphism

ϕ1
3 : F1 = L ⊗M→ (M/M2

⊗M/M2)/K = F3

by composition of the following maps

L ⊗M
q⊗q // L/L2

⊗M/M2 ∂2
⊗id // (M/M2

⊗M/M2)/K,

where q : M→M/M2 is the quotient map and K is the image of

∂2
⊗ id + id ⊗ ∂2 : L/L2

⊗M/M2
−→M/M2

⊗M/M2.

That is, ϕ1
3 is given by

ϕ1
3(l ⊗m) = ∂2q(l) ⊗ q(m) + K.

Therefore, we have the following diagrams

L ⊗M
ϕ1

3 //

ϕ1
2

��

(M/M2
⊗M/M2)/K

L

and

L ⊗M
ϕ1

3 //

ϕ1
2

��

(M/M2
⊗M/M2)/K

ω
��

L r
// L

∑
and this diagram is a push-out and where

L
∑

=
L × (M/M2

⊗M/M2)/K
W

,
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W = {(l ·m, ∂2q(l) ⊗ qm + K) : l ∈ L,m ∈M}.

There is a morphism w given by

w : (M/M2
⊗M/M2)/K −→ Mnil

(qm ⊗ qm′) + K 7−→ mm′.

Furthermore, there is also a morphism

L
∂nilq // Mnil

given by composition of the following maps

L
q // Lnil ∂nil

// Mnil

where, q : L→ Lnil is the quotient map.
Obviously, according to above descriptions, we have

w(∂2
⊗ id)(q ⊗ q) = ∂nilqϕ1

2.

Thus, we have the following diagram

L ⊗M

ϕ1
2

��

ϕ1
3 // (M/M2

⊗M/M2)/K

ω
�� w

��

L r
//

∂nilq --

L
∑

δ

''
Mnil

.

There is a unique morphism

δ : L
∑
→Mnil

satisfying the following equalities

δω = w

and

δr = ∂nilq.

Thus the following diagram

(M/M2
⊗M/M2)/K

ω
��

w

''OO
O
O
O
O
O
O
O
O
O
O

L
∑

δ
// Mnil.

is a reduced quadratic module (cf. [16]).



A. F. Aslan / Filomat 34:14 (2020), 4893–4906 4903

3.1. Free crossed and reduced quadratic modules
Let (C,R, ∂) be a crossed module, let Y be a set, and let ν : Y → C be a function, then (C,R, ∂) is said to

be a free crossed module with basis ν if for any crossed module (C′,R, ∂′) and a function ν′ : Y → C′ such
that ∂′ν′ = ∂ν, there is a unique morphism Φ : C→ C′ such that Φν = ν′.

The free crossed module (C,R, ∂) is totally free if R is a free algebra. On replacing “crossed” by “pre-
crossed” in the above definition of a (totally) free crossed module, we obtain the definition of a (totally) free
pre-crossed module.

Theorem 3.1. ([3]) A free crossed module (C,R, ∂) exists on any function f : Y→ R with codomain R.

Definition 3.2. Let
C ⊗ C ω // L δ // M

be a reduced quadratic module, let Y be a set and let ν : Y → L be a function and M is free nil(2)-algebra, then this
reduced quadratic module is called the totally free reduced quadratic module with basis ν : Y→ L, or alternatively on
the function δν : Y → M, if for any reduced quadratic module (L′,M, δ′, ω′) and a function ν′ : Y → L′ such that
δ′ν′ = δν, there is a unique morphism Φ : L→ L′ such that Φν = ν′.

Let R be a free algebra and let Y be a set and f : Y → R be a function with codomain R. Let E = R+[Y],
the positively graded part of the polynomial ring on Y so that R acts on E by multiplication. The function f
induces a morphism of R-algebras θ : R+[Y]→ R given by θ(y) = f (y). Let P2 be Peiffer ideal of R+[Y], then
take C = R+[Y]/P2. We have functions: ϕ : C⊗R→ C given byϕ(y⊗r) = y·r andϕ′ : C⊗R→ (R/R2

⊗R/R2)/K
given by ϕ′(y ⊗ r) = θ2q1(y) ⊗ q2(r) + K, where q1 : C→ C/C2 and q2 : R→ R/R2 are the quotient maps and
K is image of the function

θ2
⊗ id + id ⊗ θ2 : C/C2

⊗ R/R2
→ R/R2

⊗ R/R2.

Thus the diagram

C ⊗ R

ϕ

��

θ2(q1⊗q2) // (R/R2
⊗ R/R2)/K

ω
��

C r
// C

∑
is a push-out, where

C
∑

=
R+[Y]/P2 × (R/R2

⊗ R/R2)/K
W

and

W = {(y · r, θ2(q1 ⊗ q2)(y, r)) : y ∈ R+[Y]/P2, r ∈ R}.

Proposition 3.3. ([16]) The diagram

(R/R2
⊗ R/R2)/K

ω
��

w

&&NN
N
N
N
N
N
N
N
N
N
N

C
∑

δ
// Rnil

is a totally free reduced quadratic module on the function f nil : Y → Rnil, where δ = θnilq and q : C → Cnil is the
quotient map.
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Now, we define the notion of free reduced quadratic resolution of a commutative k-algebra and we give
its 2-skeleton by using the suspension functor from crossed to reduced quadratic modules.

A reduced quadratic complex of commutative k-algebras is a sequence of k-algebras

C ⊗ C

ω

��

w

""F
F
F
F
F
F
F
F
F

σ : · · · // σn
∂n // σn−1 · · · // σ2

∂2 // σ1
∂1

// σ0

in which
(i)

C ⊗ C

ω

��

w

""F
F
F
F
F
F
F
F
F

σ1
∂1

// σ0

is a reduced quadratic module,
(ii) for i > 1, σi is an σ0-module on which ∂1σ1 operates trivially and each ∂i is an σ0-module morphism,
(iii) for i ≥ 1, ∂i+1∂i = 0.
The homology of a reduced quadratic complex σ can be defined by

Hn(σ) = ker ∂n/Im∂n+1.

A reduced quadratic complex σ is exact if for n ≥ 1,

ker(∂n) = Im∂n+1.

A reduced quadratic resolution of a commutative k-algebra B is a reduced quadratic complex

C ⊗ C

ω

��

w

""F
F
F
F
F
F
F
F
F

σ : · · · // σn
∂n // σn−1 · · · // σ2

∂2 // σ1
∂1

// σ0

of k-algebras, where
C ⊗ C

ω

��

w

""F
F
F
F
F
F
F
F
F

σ1
∂1

// σ0

is a reduced quadratic module, together with f : σ0 → B a morphism, such that the sequence

· · · // σ2
∂2 // σ1

∂1 // σ0
f // B // 0

is exact.
If, for i ≥ 0, the σi are free and

C ⊗ C

ω

��

w

""F
F
F
F
F
F
F
F
F

σ1
∂1

// σ0
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is a free reduced quadratic module, then the resolution is called a free reduced quadratic resolution of the
algebra B. Note that if

C ⊗ C

ω

��

w

""F
F
F
F
F
F
F
F
F

σ : · · · // σn
∂n // σn−1 · · · // σ2

∂2 // σ1
∂1

// σ0

is a reduced quadratic complex, then the sequence

· · · // σn
∂n // σn−1 · · · // σ2

∂2 // σ1

ω(C ⊗ C)
∂1 // σ0

w(C ⊗ C)

becomes a chain complex of commutative algebras, where ∂2 = q2∂2 and ∂2 = q1∂1, and where

q2 : σ1 →
σ1

ω(C ⊗ C)
, q1 : σ0 →

σ0

w(C ⊗ C)

are the quotient maps. Since ∂1(ω(C ⊗ C)) = w(C ⊗ C), ∂1 is a well defined homomorphism.
Now, consider the crossed complex

C : · · · // Cn
∂n // Cn−1 · · · // C2

∂2 // C1
∂1 // C0

in which ∂1 : C1 → C0 is a crossed module. If we apply the suspension functor to this crossed module, we
have a reduced quadratic module

(C0/(C0)2
⊗ C0/(C0)2)/K

ω
��

w

((QQ
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

C
∑
1 δ

// (C0)nil

as explained in section ??. Suppose that for n ≥ 2, σn = Cn, we have a reduced quadratic complex,

(C0/(C0)2
⊗ C0/(C0)2)/K

ω
��

w

((QQ
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

σ : · · · // σn
∂n // σn−1 · · · // σ2

∂2 // C
∑
1 δ

// (C0)nil.

Now, we recall the 2-skeleton of a free crossed resolution of R/(x1, ..., xn) from [3];

C(2) : · · · // C2(E(2))
∂2 // C1(E(1))

∂1 // R

as briefly explained in section 2.1.
Thus, we have that the following diagram

((R/R2) ⊗ (R/R2))/K

ω
��

w

&&MM
M
M
M
M
M
M
M
M
M
M
M

σ :
(R[s0X, s1X])+[Y] + (s0X − s1X)

Q2 + P2 ∂2

// (
R+[X]

P1
)
∑

δ
// (R)nil

is the 2-skeleton of a free reduced quadratic resolution of the commutative algebra B = R/(x1, ..., xn).
This follows immediately from the construction of the suspension functor and simplicial resolution and

from the results of [3] and section 2 of this paper.
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[1] M.André, Homologie des algèbres commutatives. Die Grundlehren der Mathematischen Wissenchaften, 206, Springer-Verlag (1970).
[2] Z. Arvasi and T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory and Applications of

Categories, Vol. 3, No. 1, (1997) 1–23.
[3] Z. Arvasi and T. Porter, Simplicial and crossed resolution of commutative algebras, Journal of Algebra, 181, (1996) 426–448.
[4] Z. Arvasi and E. Ulualan, On algebraic models for homotopy 3-types, Journal of Homotopy and Related Structures Vol.1, No 1,

(2006), 1–27.
[5] Z. Arvasi and E. Ulualan, Quadratic and 2-crossed modules of algebras, Algebra Colloquium, Vol. 14, No. 4, December, (2007).
[6] Z. Arvasi and A. Odabas, Computing 2-dimensional algebras: Crossed modules and Cat1-algebras, Journal of Algebra and Appl. ,

vol. 15, no. 10, 1650185, (2016).
[7] H.J. Baues, Algebraic homotopy, Cambridge Studies in Advanced Mathematics, 15, 450 pages, (1998).
[8] H.J. Baues, Combinatorial homotopy and 4-dimenional complexes, Walter de Gruyter, 15, 380 pages, (1991).
[9] P.Carrasco, Complejos hipercruzados, cohomologia y extensiones. Ph.D. Thesis, Univ. de Granada, (1987).

[10] P. Carrasco and A.M. Cegarra, Group-theoretic algebraic models for homotopy types, Journal of Pure and Applied Algebra, 75,
(1991), 195–235.
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[15] F. Muro, Suspensions of crossed and quadratic complexes, Co-H-stuctures and applications, Trans. Amer. Math. Soc., 357, (2005),

3623–3653.
[16] A. Odabas and E. Ulualan, On free quadratic modules of algebras, Bull. Malaysian Math. Sci. Soc., Volume 39, Issue 3, (2016),

1059-–1074.
[17] T. Porter, N-type of simplicial groups and crossed n-Cubes, Topology, 32, (1993), 5–24.
[18] T. Porter, Some Categorical Results in the theory of crossed modules in commutative algebras, Journal of Algebra , 109, (1987),

415–429.
[19] J.J. Rotman, An introduction to homological algebra, Academic Press, New York San Francisco London (1979).
[20] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc., 55, (1949), 453–496.


