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Abstract. This article for non-affine nonlinear stochastic networked systems investigates the convergence
analysis and the tracking performance verification of two iterative learning control (ILC) update laws. In
first ILC update law, if the information isn’t transferred, the update of the algorithm will stop. In second
ILC update law, the update of the algorithm in each iteration will be continued using the newest accessible
data even if no data is transferred in the current iteration. It is indicated that the input signals converge to
the desired input, and no restrictive condition is imposed on the probabilities of the successful transfer of
data. The convergence analysis of the two algorithms is based on concept almost sure. The comparisons of
two presented ILC update laws are presented with a numerical example. Also, the tracking performance
and effectiveness of the presented algorithms are shown.

1. Introduction

In most application industrial projects, the same task is iterated frequently at a fixed time to complete
the industrial products. For such systems that consist of successive categories of the production project
such that each batch follows the desired pattern at a fixed time and is reiterated repeatedly, operational
data and experiences can be used for the next batch. This application of experience and information in the
industry is the learning concept that is an incentive for providing and creating a branch of smart control,
namely iterative learning control (ILC). ILC is a control process formed considering the process of human
learning so that learning the iterative factors of the system based on information from prior done periods
are performed to improve system tracking performance. In this control process, the dynamic information
of the system is not much needed, and ILC is a control method based on the data. ILC can productively
confront with different conventional control problems and have excellent performance despite all these
control problems.

Besides, there are many results concerning systems with stochastic signals described by random vari-
ables. Systems involving stochastic signals such as system noise, measurement noise, and random data
dropout are described with stochastic iterative learning control (SILC).

In this regard, many studies and researches have been done, so there is numerous literature in this branch
of control in different fields of industrial and chemical applications, medical engineering, etc. Already, many
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kinds of research have been done on different topics of ILC such as stability, robustness, frequency analysis,
update law design, and applied research. The studies in this field can be seen in survey articles such as
[1, 2, 7, 13, 14].

In [9], the status of the SILC according to basic techniques from three aspects was investigated.
Of Internet services, it is possible to network the control systems by helping techniques of network and

communication due to low cost, high performance, robustness, flexibility, and facility. Control systems
with these properties constitute network control systems (NCSs). In the implementation of networked
control systems, data transfer suffers from the problem such as data dropouts which can impair tracking
performance. Restrictions on the physical properties of wires or wireless net communication devices such as
temporal oscillation of the net or the limit bandwidth enable delay in communication and data dropout. In
NCSs, the network is in between the controller and the system, and the purpose is an efficient performance
and a proper efficiency in difficult transfers i.e. loss of information. The network is modeled as a random
switch. When the switch is opened, the data transmission becomes problematic, and the data is lost. Due to
the random data dropouts, the direct methods of control and classical approximation are not used in NCSs.
Several papers on the application of the ILC algorithm are available for NCSs concerning the main aspects,
namely, the convergence analysis, data conditions, and the design of the compensation structure. One can
observe that these articles listed in [8]. Indeed, [8] is a survey about ILC with incomplete information and
the corresponding control systems.

In this paper, we present two ILC update laws (4), (5) and (6), (7) for non-affine nonlinear networked
systems with measurement noise. The ILC update law (6), (7) implies that even with the data dropout event,
the update of input continues with the newest accessible data. In the ILC update law (4), (5), update law
with the data dropout event is stopped. In general, the data dropouts must be previously unknown, and no
limiting condition is imposed on the data dropouts. We use the almost sure concept of convergence analysis
for stochastic non-affine nonlinear systems with data dropouts considered with the Bernoulli model. That is
why the randomness of data dropouts is included. Here, the system information is assumed to be unknown
and the proposed update laws are data-driven. Also, there is no restrictive condition for the random data
dropout probabilities in the convergence analysis of the input error. Let αk(t) that has Bernoulli distribution
be used for modeling the transfer of yk(t). It is proven that if

∣∣∣1 − ρkC+D2
k(t)

∣∣∣ < 1 then, input error converges
to zero in the almost sure concept in the ILC update laws (4), (5) and (6), (7). ρk is the decreasing sequence
with the (3) properties, and D2

k(t) is introduced in the requirement R4.
Notations: The real number field is indicated with R. The probability of an event is shown by P. The

mathematical expectation is indicated by E. The transpose of a vector or matrix is indicated by superscript
T. |.| is absolute value notation. ”i.o.” denotes ”infinitely often”, ”a.s.” shows ”almost surely” and ”w.p.1.”
indicates ”with probability one”. ”i.i.d.” is ”independent and identically distributed”.

In Section (2), we present the problem formulation. Convergence analysis is investigated in Section
(3). In Section (4), for extra analyze of the convergence characteristics and the tracking performance of the
proposed model in this paper, the numerical example is presented. In Section (5), the paper is concluded.

2. Problem formulation

The discrete-time non-affine nonlinear system with measurement noise is considered as below:

xk(t + 1) = f (t, xk(t),uk(t)),
yk(t) = C(t)xk(t) + ζk(t),

(1)

where t = 0, 1, ...,N is the time index, the given positive integer N is the iteration length, and k = 1, 2, ...
indicates the iteration index. Vector input, vector output, and vector state are indicated by uk(t) ∈ R,
yk(t) ∈ R, and xk(t) ∈ Rn, respectively. Measurement noise is indicated by the stochastic variable ζk(t).
Nonlinear function f (t, xk(t),uk(t)) and time-varying vector C(t) are unknown information on the system.

Some of the requirements are stated in the following.

• R1. ∀ t = 0, 1, ...,N, f (t, ., .) is a continuously differential function with respect to x and u.
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• R2. For desired initial state xd(0) where, yd(0) = C(0)xd(0) there exists a unique ud(t) for generating
reference output yd(t), such that

xd(t + 1) = f (t, xd(t),ud(t)),
yd(t) = C(t)xd(t).

(2)

• R3. ∀t the measurement noise sequence ζk(t), k = 0, 1, ... with Eζk(t) = 0 and supkE|ζk(t)|2 < ∞ is i.i.d.

lim
n→∞

1
n

n∑
k=1
ζk(t) (ζk(t))T = ζt a.s., so that ζt is an unknown matrix.

Remark 2.1. The condition applied to the measurement noise is based on the repetition axis, and because the
repetitive and independent process is performed, it is no strict requirement.

• R4. ∀ t = 0, 1, ...,N, function f (t, xk(t),uk(t)) satisfies the global Lipschitz condition, that is, ∀ x1, x2 ∈ Rn

and ∀u1, u2 ∈ R,
∣∣∣ f (t, x1,u1) − f (t, x2,u2)

∣∣∣ ≤ l1 |x1 − x2| + l2 |u1 − u2|, where l1 > 0 and l2 > 0 are the

Lipschitz constants. We specify D1
k(t) =

∂ f
∂x

∣∣∣x̃k(t) and D2
k(t) =

∂ f
∂u

∣∣∣ũk(t) where the vector ũk(t) is between
ud(t) and uk(t), and the vector x̃k(t) is between xd(t) and xk(t). Without loss of generality, we assume
D2

k(t) is non-singular. Also, ∀k, t,
∣∣∣D1

k(t)
∣∣∣ ≤ l1 and

∣∣∣D2
k(t)

∣∣∣ ≤ l2.

• R5. It is assumed that unknown value C(t + 1)D2
k(t) is nonzero, and its sign does not change during

the learning process, in other words, it is considered C(t + 1)D2
k(t) > 0.

• R6. The i.i.d. initial state sequence is exactly resetting asymptotically in the concept that xk(0)→ xd(0)
when k→∞. Moreover, the initial state sequence and the measurement noise sequence are mutually
independent.

Remark 2.2. It is noteworthy that the classically identical initial condition is a specific case of R6.

In networked control systems on the ILC controller, the networks are employed to communicate the iterative
learning controller and the operational plant. As it is observed in Figure 1, the system output of the current
repetition is transferred through the communication network to the ILC controller. In this way, due to
communication problems of wireless or wired, networks may have problems such as data dropouts or
delays. Accordingly, conventionalized updating laws cannot be applied to control networked systems.
This paper considers data dropouts on measurement side.

Remark 2.3. If data dropout on both measurement and actuator sides are taken into account, a more detailed analysis
is needed because the asynchronous update between the control signal fed to the plant and the control signal generated
by the learning controller must be considered. Given that these are out of the scope of this article, for example, see [10]
for more details.

Similar to some articles on NCSs, in this paper, the Bernoulli random variables are used to express the
packet dropout. For modeling the transfer of yk(t), αk(t) that has Bernoulli distribution is used. For this
purpose, if yk(t) is successfully transferred αk(t) = 1, and if yk(t) is not successfully transferred αk(t) = 0. It
can be assumed the probability of successfully transferred output is 0 < r < 1, that is, P(αk(t) = 1) = r and
P(αk(t) = 0) = 1 − r, ∀k, t. Therefore, we result in Eαk(t) = r.

The purpose of the control in this paper is to design an ILC algorithm for updating and generating

the inputs with due attention to minimize lim sup
n→∞

1
n

n∑
k=1

∣∣∣yd(t) − yk(t)
∣∣∣2,∀t = 0, 1, ...,N in the data dropouts

environment. It should also be borne in mind that given the unpredictable measurement noise, the
convergence investigation of the suggested model in this paper is that the inputs of the system converge
directly to the desired input.

A mechanism is required to assure the convergence of the input error to zero and overcome the influence
of stochastic noises in the stochastic systems. Since the error includes two elements, the real tracking
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Figure 1: Diagram of a control system with a network at the measurement side

error, and the measurement noise, unlike the onset of the learning process where the actual output error is
predominant, with increasing repetitions, the measurement noise in tracking error may be dominated. Thus,
to counteract the effect of measured noise, avoiding unstable conditions, and ensuring the convergence of
inputs, the decreasing sequence ρk with the following properties is considered for our update laws in this
paper.

ρk → 0, ρk > 0,
∞∑

k=1

ρ2
k < ∞,

∞∑
k=1

ρk = ∞, ∀k = 1, 2, ... (3)

In this paper, the following ILC algorithms are proposed. In this way, the purpose of control is achieved
under stochastic measurement noises for non-affine nonlinear systems. The first update law is az fallows:

uk+1(t) = uk(t) + ρkEk(t + 1) (4)

where,

Ek(t) =

 ek(t), i f αk(t) = 1
0, i f αk(t) = 0

(5)

Also, ek(t) = yd(t) − yk(t) is the tracking error.
In ILC update law (4), (5), upon the successful transference of output, the algorithm updates its input. In

this case, the update of the input signal will stop if the corresponding output is dropped out. Considering
the inherent mechanism of (4), (5), the higher the probability of the data dropout, the slower the convergence
of the algorithm. So, we look for faster convergence considering the high probability of the data dropout.
Therefore, the following update law is considered.

The second ILC update law is presented as follows:

uk+1(t) = uk(t) + ρkĒk(t + 1) (6)
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where Ēk(t) = yd(t) − ȳk(t) and also, ȳk(t) is the latest accessible output as fallows:

ȳk(t) =

 yk(t), i f αk(t) = 1
ȳk−1(t), i f αk(t) = 0

(7)

In ILC update law (6), (7), the update of input will always continue even if data dropout occurs. The update
of input is performed using the transferred output of the end iteration. If the data dropout occurs, then
the update of input is performed with the newest accessible output of previous iterations. Because of the
permanent update ILC update law (6), (7), tracking the performance of ILC update law (6), (7) is better than
ILC update law (4), (5). Also, the convergence speed of ILC update law (6), (7) is faster than ILC update
law (4), (5).

Recall that in this paper, the convergence analysis of ILC update law (6), (7) and ILC update law (4), (5)
is performed as well as their performance evaluation for stochastic non-affine nonlinear systems.

In the following for ease of writing, we set fk(t) = f (t, xk(t), uk(t)), fd(t) = f (t, xd(t), ud(t)), δ fk(t) =
fd(t) − fk(t), and C+D2

k(t) = C(t + 1)D2
k(t).

3. Convergence analysis

Here, the convergence argument, regarding the recommended laws (4), (5) and (6), (7) are performed.
In this respect, the following Lemmas are needed to prove the convergence of the algorithms.

Lemma 3.1. Consider assumptions R1-R6 for the system (1). If lim
k→∞

δuk(m) = 0, m = 0, 1, ..., t, then
∣∣∣δ fk(t + 1)

∣∣∣ −−−→
k→∞

0 and |δxk(t + 1)| −−−→
k→∞

0 at time t+1.

Proof. Concerning (1) and (2) it results

δxk(t + 1) = f (t, xd(t),ud(t)) − f (t, xk(t),uk(t))

= D1
k(t)δxk(t) + D2

k(t)δuk(t)
(8)

The proof is provided by mathematical induction.
Initial step. Let t = 0, we have

δxk(1) = D1
k(0)δxk(0) + D2

k(0)δuk(0) (9)

With due attention to R6, δxk(0) −−−→
k→∞

0, and because by concerning R4 D1
k(0) is bounded, we have

D1
k(0)δxk(0) −−−→

k→∞
0. Considering assumptions of Lemma (3.1) δuk(0) −−−→

k→∞
0, and since with respect to

R4, D2
k(0) is bounded, it results in D2

k(0)δuk(0) −−−→
k→∞

0. Therefore, from (9), we result in δxk(1) −−−→
k→∞

0. Now

concerning R1, it results in δ fk(1) −−−→
k→∞

0.

Inductive step. We assume that conclusions of Lemma (3.1) hold for i = 0, 1, ..., t, we prove that results
are true for t + 1. The process of proving here is similar to the initial step of induction. Thus, it is proven
δxk(t + 1) −−−→

k→∞
0 and δ fk(t + 1) −−−→

k→∞
0.

3.1. Convergence analysis of ILC update law (4), (5)
Here, we investigate the convergence of the ILC update law (4), (5). In ILC update law (4), (5), if the

corresponding output is dropped out, the input is kept invariable.
In this regard, for convergence analysis, the below Theorem is established.

Theorem 3.2. Let update law (4), (5) be used to the non-affine nonlinear stochastic networked system (1). If∣∣∣1 − ρkC+D2
k(t)

∣∣∣ < 1 then for uk(t) generated by update law (4), we conclude that uk(t) → ud(t) w.p.1, for all t when
k→∞.
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Proof. To show convergence it must be proved δuk(t) = ud(t) − uk(t)→ 0 for all t = 0, 1, ..., N when k → ∞.
Note that we define the status error with δxk(t) = xd(t) − xk(t).

According to (1) and (2), from (4) and (5) we conclude that

δuk+1(t) = δuk(t) − ρkEk(t + 1)
= δuk(t) − ρkαk(t + 1)ek(t + 1)
= δuk(t) − ρkαk(t + 1)C(t + 1)(xd(t + 1) − xk(t + 1))
+ ρkαk(t + 1)ζk(t + 1)

(10)

So, again from (1) and (2), we have that

δuk+1(t) = δuk(t) − ρkαk(t + 1)C(t + 1)( fd(t) − fk(t))
+ ρkαk(t + 1)ζk(t + 1)

= δuk(t) − ρkαk(t + 1)C(t + 1)(D1
k(t)δxk(t)

+ D2
k(t)δuk(t))

+ ρkαk(t + 1)ζk(t + 1)

(11)

Therefore, we have

δuk+1(t) = [1 − ρkC+D2
k(t)]δuk(t)

+ ρkC+D2
k(t)δuk(t)

− ρkαk(t + 1)C+D2
k(t)δuk(t)

− ρkαk(t + 1)C(t + 1)D1
k(t)δxk(t)

+ ρkαk(t + 1)ζk(t + 1)

(12)

Notice that αk(t + 1) is independent of ζk(t + 1). We take the norm from both sides of (12), we have

|δuk+1(t)| ≤
∣∣∣1 − ρkC+D2

k(t)
∣∣∣ |δuk(t)|

+
∣∣∣ρk

∣∣∣ |C(t + 1)|
∣∣∣D2

k(t)
∣∣∣ |δuk(t)|

+
∣∣∣ρk

∣∣∣ |αk(t + 1)| |C(t + 1)|
∣∣∣D2

k(t)
∣∣∣ |δuk(t)|

+
∣∣∣ρk

∣∣∣ |αk(t + 1)| |C(t + 1)|
∣∣∣D1

k(t)
∣∣∣ |δxk(t)|

+
∣∣∣ρk

∣∣∣ |αk(t + 1)| |ζk(t + 1)| a.s.

(13)

It can be proven lim
k→∞

δuk(t) = 0, ∀t by using mathematical induction.

Initial step. The case t = 0 is considered.

|δuk+1(0)| ≤
∣∣∣1 − ρkC+D2

k(0)
∣∣∣ |δuk(0)|

+
∣∣∣ρk

∣∣∣ |C(1)|
∣∣∣D2

k(0)
∣∣∣ |δuk(0)|

+
∣∣∣ρk

∣∣∣ |αk(1)| |C(1)|
∣∣∣D2

k(0)
∣∣∣ |δuk(0)|

+
∣∣∣ρk

∣∣∣ |αk(1)| |C(1)|
∣∣∣D1

k(0)
∣∣∣ |δxk(0)|

+
∣∣∣ρk

∣∣∣ |αk(1)| |ζk(1)| a.s.

(14)

With respect to R5, for enough large k we conclude that C+D2
k(0) > ψ, where ψ is an appropriate constant.

Considering to R6, it concludes that δxk(0)→ 0. Also, by R4, we conclude that D1
k(0) and D2

k(0) are bounded.
Notice that αk(1) is bounded. Thus, in (14), we conclude that

∣∣∣ρk

∣∣∣ |αk(1)| |C(1)|
∣∣∣D1

k(0)
∣∣∣ |δxk(0)| → 0 w.p.1 when

k → ∞. In (14), concerning δuk(0) is input error vector therefore, its norm is bounded. Thus, concerning
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lim
k→∞

ρk = 0 we conclude that
∣∣∣ρk

∣∣∣ |C(1)|
∣∣∣D2

k(0)
∣∣∣ |δuk(0)| → 0 and

∣∣∣ρk

∣∣∣ |αk(1)| |C(1)|
∣∣∣D2

k(0)
∣∣∣ |δuk(0)| → 0 w.p.1, when

k → ∞. |ζk(1)| is bounded because of ζk(1) is continuous function white noise on [0, N]. Thus, concerning
lim
k→∞

ρk = 0 we conclude that
∣∣∣ρk

∣∣∣ |αk(1)| |ζk(1)| → 0, w.p.1, when k→∞.

Let σ1 =
∣∣∣1 − ρkC+D2

k(0)
∣∣∣, σi = 0, i = 2, 3, ..., ek = |δuk(0)|, and ϕk = 0, given the assumption of Theorem (3.2)

namely
∣∣∣1 − ρkC+D2

k(0)
∣∣∣ < 1 and Lemma (1) of paper [5] from inequality (14), it has resulted lim

k→∞
|δuk(0)| = 0,

w.p.1.
Inductive step. We assume that δuk(m)→ 0 is correct for m = 0, 1, ..., t − 1, then we prove δuk(m)→ 0 for

m = t. In (13), concerning the assumption of inductive and Lemma (3.1), we have δxk(t) → 0. Moreover,
by R4, we conclude that D1

k(t) and D2
k(t) is bounded. Also, αk(t + 1) is bounded. Therefore, in (13) we have∣∣∣ρk

∣∣∣ |αk(t + 1)| |C(t + 1)|
∣∣∣D1

k(t)
∣∣∣ |δxk(t)| → 0 w.p.1 when k → ∞. Concerning δuk(t) is input error vector there-

fore, its norm is bounded. Therefore, concerning lim
k→∞

ρk = 0 we conclude that
∣∣∣ρk

∣∣∣ |C(t + 1)|
∣∣∣D2

k(t)
∣∣∣ |δuk(t)| → 0

and
∣∣∣ρk

∣∣∣ |αk(t + 1)| |C(t + 1)|
∣∣∣D2

k(t)
∣∣∣ |δuk(t)| → 0 w.p.1, when k→∞.

ζk(t + 1) is continuous function white noise on [0, N] therefore, |ζk(t + 1)| is bounded. With respect to
lim
k→∞

ρk = 0, we have
∣∣∣ρk

∣∣∣ |αk(t + 1)| |ζk(t + 1)| → 0 w.p.1, when k→∞.

Set σ1 =
∣∣∣1 − ρkC+D2

k(t)
∣∣∣, σi = 0, i = 2, 3, ..., ek = |δuk(t)|, and ϕk = 0, with respect to

∣∣∣1 − ρkC+D2
k(t)

∣∣∣ < 1,
Lemma (1) of paper [5], and (13), we have lim

k→∞
|δuk(t)| = 0, w.p.1.

Thus, in the ILC update law (4), (5), it was proven that input error converges to zero w.p.1 when the
number of iterations tends to infinity.

3.2. Convergence analysis of ILC update law (6), (7)

In ILC update law (6), (7), the input of the algorithm is updated in each repetition. The error applied in
ILC update law (6), (7) is probably unknown due to the lost output and the error data could be with different
probabilities from each prior iteration. Therefore, similar to [11], we introduced

{
τt

k

}
, 0 ≤ t ≤ N, k = 1, 2, ...

to determine the random delay of iterations due to stochastic lost data. Thus, the updating law (6) is
rewritten as below:

uk+1(t) = uk+1(t) + ρkek−τt+1
k

(t + 1) (15)

It is to be mentioned that τt+1
k ≤ k, and ei(t + 1) when i > k − τt+1

k is not available, namely just ek−τt+1
k

(t + 1) is
accessible to update uk+1(t). Thus, in the ith-iteration, the updating law (15) successively updates the input
ui(t) by the same error ek−τt+1

k
(t + 1) as k − τt+1

k < i ≤ k.

Theorem 3.3. Let update law (15) be used to the non-affine nonlinear stochastic networked system (1). If
∣∣∣1 − ρkC+D2

k(t)
∣∣∣ <

1 then for uk(t) generated by update law (15), we conclude that uk(t)→ ud(t) w.p.1, for all t when k→∞.

Proof. First, we specify that k − τt
k −−−→k→∞

∞ a.s., ∀t . Given that the data dropouts have the Bernoulli distri-

bution, τt
k has a geometric distribution, namely τt

k ∼ G(r). For each T ∼ G(r) with geometric distribution,

we have E(T)= 1
r , var(T) = 1−r

r2 , and E(T)2 = 1
r . Also, we conclude that

∞∑
m=1

P
{
T ≥ m

1
2

}
=

∞∑
m=1

P
{
T2
≥ m

}
=

∞∑
m=1

∞∑
i=m

P
{
i ≤ T2

≤ i + 1
}

=
∞∑

i=1
iP

{
i ≤ T2

≤ i + 1
}

≤ E(T2) < ∞. Considering the Borel-Cantelli Lemma, we have P
{
T ≥ m

1
2 i.o.

}
= 0. Therefore, it concludes

that lim
k→∞

τt
k

k = 0, ∀t, a.s. , namely lim
k→∞

k−τt
k

k = 1 and lim
k→∞

k − τt
k = ∞ a.s., ∀t .
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According to (1) and (2), from (15) we conclude that

δuk+1(t) = δuk(t) − ρkek−τt+1
k

(t + 1)

= δuk(t) − ρkC(t + 1)(xd(t + 1) − xk−τt+1
k

(t + 1)

+ ρkζk−τt+1
k

(t + 1)

(16)

So, again from (1) and (2), we have that

δuk+1(t) = δuk(t) − ρkC(t + 1)( fd(t) − fk−τt+1
k

(t))

+ ρkζk−τt+1
k

(t + 1)

= δuk(t) − ρkC(t + 1)(D1
k−τt+1

k
(t)δxk−τt+1

k
(t)

+ D2
k−τt+1

k
(t)δuk−τt+1

k
(t))

+ ρkζk−τt+1
k

(t + 1)

(17)

Therefore, we have

δuk+1(t) = [1 − ρkC+D2
k(t)]δuk(t)

+ ρkC+D2
k(t)δuk(t)

− ρkC(t + 1)D1
k−τt+1

k
(t)δxk−τt+1

k
(t)

− ρkC+D2
k−τt+1

k
(t)δuk−τt+1

k
(t)

+ ρkζk−τt+1
k

(t + 1)

(18)

We take the norm from both sides of (18), we have

|δuk+1(t)| ≤
∣∣∣1 − ρkC+D2

k(t)
∣∣∣ |δuk(t)|

+
∣∣∣ρk

∣∣∣ |C(t + 1)|
∣∣∣D2

k(t)
∣∣∣ |δuk(t)|

+
∣∣∣ρk

∣∣∣ |C(t + 1)|
∣∣∣∣D2

k−τt+1
k

(t)
∣∣∣∣ ∣∣∣∣δuk−τt+1

k
(t)

∣∣∣∣
+

∣∣∣ρk

∣∣∣ |C(t + 1)|
∣∣∣∣D1

k−τt+1
k

(t)
∣∣∣∣ ∣∣∣∣δxk−τt+1

k
(t)

∣∣∣∣
+

∣∣∣ρk

∣∣∣ ∣∣∣∣ζk−τt+1
k

(t + 1)
∣∣∣∣ a.s.

(19)

By using mathematical induction, it can prove lim
k→∞
|δuk(t)| = 0.

Initial step. In (19), let t = 0

|δuk+1(0)| ≤
∣∣∣1 − ρkC+D2

k(0)
∣∣∣ |δuk(0)|

+
∣∣∣ρk

∣∣∣ |C(1)|
∣∣∣D2

k(0)
∣∣∣ |δuk(0)|

+
∣∣∣ρk

∣∣∣ |C(1)|
∣∣∣∣D2

k−τt+1
k

(0)
∣∣∣∣ ∣∣∣∣δuk−τ1

k
(0)

∣∣∣∣
+

∣∣∣ρk

∣∣∣ |C(1)|
∣∣∣∣D1

k−τ1
k
(0)

∣∣∣∣ ∣∣∣∣δxk−τ1
k
(0)

∣∣∣∣
+

∣∣∣ρk

∣∣∣ ∣∣∣∣ζk−τ1
k
(1)

∣∣∣∣ a.s.

(20)

With respect to R5, for enough large k we conclude that C+D2
k(0) > ψ, whereψ is an appropriate constant.

Considering to R6, it concludes that
∣∣∣∣δxk−τ1

k
(0)

∣∣∣∣ → 0 when k → ∞. Also, by R4, we conclude that D1
k−τ1

k
(0)
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is bounded. Thus, in (20), concerning lim
k→∞

ρk = 0 we conclude that
∣∣∣ρk

∣∣∣ |C(1)|
∣∣∣∣∣D1

k−τ1
k
(0)

∣∣∣∣∣ ∣∣∣∣δxk−τ1
k
(0)

∣∣∣∣ → 0 w.p.1,

when k → ∞. By R4, we conclude that D2
k(0) and D2

k−τ1
k
(0) are bounded. In (20), concerning δuk(0) and

δuk−τ1
k
(0) are input error vectors therefore, their norm are bounded. Thus, concerning lim

k→∞
ρk = 0 we conclude

that
∣∣∣ρk

∣∣∣ |C(1)|
∣∣∣D2

k(0)
∣∣∣ |δuk(0)| → 0 and

∣∣∣ρk

∣∣∣ |C(1)|
∣∣∣∣∣D2

k−τt+1
k

(0)
∣∣∣∣∣ ∣∣∣∣δuk−τ1

k
(0)

∣∣∣∣ → 0 w.p.1, when k → ∞.
∣∣∣∣ζk−τ1

k
(1)

∣∣∣∣ is

bounded because of ζk−τ1
k
(1) is continuous function white noise on [0, N]. Thus, concerning lim

k→∞
ρk = 0 it

results,
∣∣∣ρk

∣∣∣ ∣∣∣∣ζk−τ1
k
(1)

∣∣∣∣→ 0, w.p.1, when k→∞.

With respect to Lemma (1) of paper [5], let σ1 =
∣∣∣1 − ρkC+D2

k(0)
∣∣∣, σi = 0, i = 2, 3, ..., ek = |δuk(0)|, and

ϕk = 0, concerning
∣∣∣1 − ρkC+D2

k(0)
∣∣∣ < 1 and Lemma (1) of paper [5] from inequality (20), it has resulted

lim
k→∞
|δuk(0)| = 0, w.p.1.

Inductive step. We assume that δuk(m) → 0 is correct for m = 0, 1, ..., t − 1, then we prove δuk(t) → 0 for

m = t. In (19), concerning the assumption of inductive and Lemma (3.1), we have
∣∣∣∣δxk−τt+1

k
(t)

∣∣∣∣ → 0 when

k→∞. Also, by R4, we conclude that D1
k−τt+1

k
(t) is bounded. Thus, we conclude that

∣∣∣ρk

∣∣∣ |C(t + 1)|
∣∣∣∣∣D1

k−τ1
k
(t)

∣∣∣∣∣∣∣∣∣δxk−τt+1
k

(t)
∣∣∣∣ → 0 w.p.1, when k → ∞. Concerning δuk(t) and δuk−τ1

k
(t) are input error vectors therefore,

their norm are bounded. Similar to initial step, we can conclude that
∣∣∣ρk

∣∣∣ |C(t + 1)|
∣∣∣D2

k(t)
∣∣∣ |δuk(t)| → 0,∣∣∣ρk

∣∣∣ |C(t + 1)|
∣∣∣∣∣D2

k−τt+1
k

(t)
∣∣∣∣∣ ∣∣∣∣δuk−τt+1

k
(t)

∣∣∣∣→ 0, and
∣∣∣ρk

∣∣∣ ∣∣∣∣ζk−τt+1
k

(t + 1)
∣∣∣∣→ 0 w.p.1, when k→∞.

Concerning Lemma (1) of paper [5], let σ1 =
∣∣∣1 − ρkC+D2

k(t)
∣∣∣, σi = 0, i = 2, 3, ..., ek = |δuk(t)|, and ϕk = 0, by

considering the assumption of Theorem (3.3) namely
∣∣∣1 − ρkC+D2

k(t)
∣∣∣ < 1, Lemma (1) of paper [5], and (19),

we conclude that lim
k→∞
|δuk(t)| = 0, w.p.1.

4. Numerical example

A stochastic non-affine nonlinear networked system is considered as follows for indicating the desired
convergence of the recommended models (4), (5) and (6), (7).

x1
k
(t + 1) = −0.5 cos(t) cos(x1

k
(t)) + x1

k
(t) sin(x2

k
(t))

+
1
3

sin(
x1

k(t) + uk(t)
3

)uk(t)

x2
k
(t + 1) = −0.75 sin(t) sin(x2

k
(t)) + 0.3 cos(t) cos(x1

k
(t))

+ (0.5 +
cos(uk(t))

5
)uk(t)

yk(t) = 0.3x1
k
(t) + 0.25t0.25x2

k
(t) + ζk(t)

(21)

Where
[
x1

k(t)
x2

k(t)

]
is the state vector, uk(t) is the input, and yk(t) is the output of the system (21). ζk(t) is

the measurement noise of the system (20) with normal distribution N(0, 0.012). The desired output is
demonstrated as yd(t) = 0.75 sin( π15 t) + 0.5 sin( π20 t), and the time interval is [0, 60]. x1

k(0) = x2
k(0) = 0 is the

initial state. The initial iteration input signal is u1(t) = 0. For evaluation of the tracking performance,
the algorithm is implemented for 500 iterations. The average absolute tracking error of outputs in the kth

iteration is |ek|=

(
N∑

t=1
|yd(t)−yk(t)|

)
/N. In the following, convergence attributes of the recommended models and

tracking performances concerning the different probabilities of the loss of data are investigated. To simplify,
ILC update law (4), (5) is denoted by model I and ILC update law (6), (7) is denoted by model II.
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Figure 2: Tracking performances of model I and model II for r = 0.85.
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Figure 3: Average absolute tracking errors of model I and model II for r = 0.85.
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Figure 4: Tracking performances of model I and model II for r = 0.3.

Let first r = 0.85, in this mode, the probability of successful transmission of the outputs are 85 0/0, and
only 15 0/0 of the data are dropped out. In Figure 2 tracking performance of the system (20) for r = 0.85
is shown for both model I and model II. Figure 3 displays the average absolute tracking error of outputs
for both model I and model II for r = 0.85. Results in Figure 2 and Figure 3 indicate that the model I
and model II have good tracking performances and are effective. Moreover, both algorithms have almost
similar performance, when the probability of successfully transmitting the data is high.

The other mode that we consider is r = 0.30. This means that 70 0/0 of the data are lost, and the
probability of successful transmission of data is 30 0/0. The final outputs of both model I and model II
considering r = 0.30 are shown in Figure 4. The average absolute tracking error of outputs for both model
I and model II considering r = 0.30 is plotted in Figure 5. As it is observed, the probability of successful
transmission of outputs in algorithms in this mode is low. In this situation, the model II works better
than the model I because more updates are performed in model II than model I over the same number
of iterations. The reason for this is that in the model I if the corresponding data is dropped out, then the
update of the control signal is not carried out, while in model II the update of the control signal is done,
even if the corresponding data is lost, and the update is never stopped. Unlike Figure 3, in Figure 5, the
model II has more updates due to the high probability of data dropout and larger learning gain so, the great
increase of average absolute tracking error in the initial repetitions are generated. In the following, we set
the different probabilities of the successful transmission of outputs, i.e, r = 0.9, 0.7, 0.5, and 0.3, for scrutiny
of the impact of different probabilities of data dropout. As observed in Figure 6 and Figure 8, in the model
II, almost a similar performance is preserved even if the probability of successful transmission of outputs
decreases as iterations increase. Whereas in the model I, when the probability of successful transmission of
outputs decreases, the tracking performance gets worse at the identical iterations, as observed in Figure 7
and Figure 9.

5. Conclusion

In this paper, the analysis of convergence, and the tracking performance scrutiny of two update laws
for stochastic non-affine nonlinear networked systems were investigated. For these stochastic non-affine
nonlinear networked systems in this paper, the random packet dropout formulated with random Bernoulli
variables was considered in the measurement side. In ILC update law (6), (7), the algorithm updates by
using the newest accessible output even if no output is transferred in the current iteration. In ILC update law
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Figure 5: Average absolute tracking errors of model I and model II for r = 0.3.
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Figure 6: Final outputs of model II for r = 0.9, r = 0.7, r = 0.5, r = 0.3.
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Figure 7: Final outputs of model I for r = 0.9, r = 0.7, r = 0.5, r = 0.3.
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Figure 8: Average absolute tracking error of model II for r = 0.9, r = 0.7, r = 0.5, r = 0.3.
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Figure 9: Average absolute tracking error of model I for r = 0.9, r = 0.7, r = 0.5, r = 0.3.

(4), (5), if the data were not received, the update of the algorithm would stop. In the presence of stochastic
measurement noise, the convergence analysis of the input error instead of the convergence analysis of the
output error for ILC update law (4), (5) and ILC update law (6), (7) was investigated. As noted, there is
no restrictive condition for the random data dropout probabilities in the convergence analysis of the input
error. It was indicated that if

∣∣∣1 − ρkC+D2
k(t)

∣∣∣ < 1 then input error converges to zero in the almost sure
concept in the ILC update laws (4), (5) and (6), (7). By a numerical example, the theoretical results were
more testified. The advantage of ILC update law (6), (7) is keeping similar performance with different
probabilities of data dropouts as iterations increase, while, in ILC update law (4), (5) by decreasing the
probability of the successful transfer of outputs, the performance gets worse at the same iterations.
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