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Some Inequalities Involving Hilbert-Schmidt Numerical Radius on
2 X 2 Operator Matrices
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Abstract. We present some inequalities related to the Hilbert-Schmidt numerical radius of 2 X 2 operator

matrices. More precisely, we present a formula for the Hilbert-Schmidt numerical radius of an operator as
follows:

wy(T) = sup |laA + BB,

a2+p2=1

where T = A +iB is the Cartesian decomposition of T € HS(H).

1. Introduction

Let (H,(., .)) be a complex Hilbert space and B(H) denotes the C*-algebra of all bounded linear
operators on H. In the case when dimH = n, we identify B(H) with the matrix algebra M, of all n X n
matrices with entries in the complex field. The numerical radius of T € B(H) is defined by

w(T) :=supf| (Tx,x) |: x € H,|| x ||=1}.

It is well known that w(-) defines a norm on B(#H), which is equivalent to the usual operator norm ||.|. In
fact, for any T € B(H), %IITII < w(T) < ||T|; see [8]. For more facts about the numerical radius, we refer the
reader to [4-6, 8]. A norm N(:) on B(H) is an algebra norm if N(AB) < N(A)N(B) for every A, B € B(H).
For T € B(H), |||l is the Hilbert-Schmidt norm of T and say that T belongs to the Hilbert-Schmidt class,

HS(H), if ||T|l2 = (tr (T*T))!/? < co. Note that || - ||, is unitarily invariant, that is for every T € HS(H) and
unitaries U, V € B(H), we have |[UTV||, = ||T],.

Recently Abu-Omar et.al [1] defined the Hilbert-Schmidt numerical radius as follows:

wa(T) = sup ||Re(€®T)ll,
0eR

in which w,(-) is a norm on B(H). This norm is equivalent to the Hilbert-Schmidt norm ||.||;. In fact, for
any T € HS(H),

%HTHZ < wy(T) < [Tl 1)
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If T is normal and the sequence of its nonzero eigenvalues have the same argument, then w,(T) = ||T||, and
if tr (T)?> = 0, then wy(T) = %EHTHZ; see[1]. Hence, the inequalities in (1) are sharp. There is more properties
about the Hilbert-Schmidt numerical radius. For example w,(-) is self-adjoint, that is for any T € B(H),
we have wy(T) = wy(T*). Also, wy(-) is weakly unitarily invariant, that is for any unitary U € B(H),
ZUZ(UTU*) = ZUZ(T)

Let Hi, Ho,- -+, H, be Hilbert spaces, and consider H = EB;I:l H;. With respect to this decomposition,
every operator T € B(H) has an n X n operator matrix representation T = [T,-]-] with entries Tij € ]B(?{j,‘]’(i),
the space of all bounded linear operators from H; to H;. Operator matrices provide a usual tool for studying
Hilbert space operators, which have been extensively studied in the literatures.

The authors in [2] obtained several Hilbert-Schmidt numerical radius inequalities, including lower and

upper bounds for 2 X 2 operator matrices. For example, on off-diagonal operator matrix [ g 13 ], we have

the following inequalities:

max(wa(A + B), wa(A — B)) _ " ([ 0 A ]) - w>(A + B) + wo(A — B) ®
B 0|~ ’

V2 il V2

where A, B € HS(H).
In this paper we establish some Hilbert-Schmidt numerical radius inequalities, which are based on
off-diagonal parts of 2 X 2 operator matrices. We also, find some upper bounds for 2 X 2 operator matrices.

2. Main results

In this section, we state some the Hilbert-Schmidt numerical radius inequalities for 2 X 2 operator
matrices defined on H; & H,. To prove our results, we need the following lemma, which known in [1].

Lemma 2.1. Let A, B, C, D belongs to the Hilbert-Schmidt class HS(H). Then the following statements hold:

(a) wz( Ig g ])s wi(A) + wi(D). In particular, if A, D are self-adjoint, then w, ([ 13 g ]): w3(A) + wi(D);
el Eonf3 5]

ol 2 Anf2 8
@5 4]

In particular,

) < \/wg(A + B) + w3(A — B). In the cases A, B are self-adjoint the inequality becomes equality.

o3 3]

Lemma 2.2. Let A;, X; € HS(H)(1 <i < n). Then

wr [i AiXiA:
i=1

In particular for any A, X € HS(H),

n

Z 1Al 211A7|2)w2 (X

i=1

<

wy(AXA") < |IAlGwa(X). ©)
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Proof. We have,

() AiRe(¢"X))A7)

i=1

n
Re(e™ Z AXAY)
i=1

2 2

n
< Y 1ALI4; b IRe(e ) Xilo

i=1

So by taking the supremum over 8, we obtain

n
Y AxiA;
i=1

as required. [

n

Y ||Ai||z||A;||z]wz<Xi)

i=1

wr <

Now, we present our first result.

Theorem 2.3. Let A,B, X € HS(H). Then

[wa(X + X*) + wp(X — X))

wy(BX"A”™ + AXB") < (2||All21|BIl2)
V2
A B 0 X
Proof. Assume that C = [ 0 0 ] and Z = [ X0 ], we have
w,(BX'A* + AXB') = w, ([ BX°A (’; AXB 8 ]) (by Lemma 2.1(a))
= wp(CZC")
< |IClwa(Z) (by (3))
= (IAI + IBI3)w2(2)
ZUQ(X + X*) + ZUQ(X - X*)
< (IIAI13 + IBI13) (by (2))
2 2 V2 y
Note that, if we replace A by tA and B by 1B for any t > 0, then minso £*||A|2 + %[|B|I? = min;so W—;”BH%
2||All2[IBIl2. So
L ) wa(X + X*) + wr(X = X*
w0 (BXA" + AXB') < (2]JAll|Bll) L2E ) + 22X = X
V2
[
Remark 2.4. By putting X* = —X in (4) and for A € HS(H), we have the following inequality:
wa(AX = XA") < 2 V2||Alwa(X).

Remark 2.5. For any self-adjoint operator X, we have the following inequality:
wy(BXA" + AXB) < 2 V2(IAllIBl)w2(X).

In the following we obtain an upper bound for an 2 X 2 off-diagonal operator matrix.
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Theorem 2.6. Let A,B € HS(H). Then

wy (|: g 13 ]) < wy(A) + wo(B).

2 2
0 A 00 0 0 00 . 0 A| |0 A 0 0
Proof. Notethat[o 0] :[0 O]’[B 0] :[0 0].Smce[B 0]—[0 0]+[B 0],soby

applying the properties of w,, we have

oA el el 1
S C B

< ZUz(A) + wz(B)
|

Aldalabih and Kittaneh in [2] obtained some upper bounds for the Hilbert-Schmidt numerical radius of

operator matrix [ ] Now, we find an upper bound for the Hilbert-Schmidt numerical radius of the

A B

4 i A B
operator matrix | _, _p |

Theorem 2.7. Let A,B € HS(H). Then

% max(wz(A — B), wa(A + B)) < w, ([ i‘ _BB ])

12 \Jw 2(A) +w (B) max(w,(A — B), wa(A + B)). (6)

Proof. Notice

o 2 Bl % 0)

S max(w,(A — B), wo(A + B)
> N .

For the second inequality in (6), we have

A B A 0 0
ol 4 5)enld S]=( % b
< w%(A)+w§(B)max(zU2(A —\]/35), ws(A + B))

(by Lemma 2.1(2) and (2)).

(by (2))
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Remark 2.8. If A, B € HS(H) are self-adjoint, then

\W3(A) + wi(B) < wy ([ _1?4 _BB ])

<L w3(A) + wA(B) max(wa(A — B), wa(A + B)).

V2

Remark 2.9. Note that in the proof of [2, Theorem 4] was seen if U = ~5 [ 5 _II ], then [ A+B A-B

—-(A-B) —-(A+B)
J0 A
a8 4
A+B A-B 0 A 0 A
1 — + _
So sw» ([ “(A—B) —(A+B) ]) = w, (LI [ B 0 ]U) = w, ([ B 0 ]) Thus Theorem 2.7 and [2, Theorem
4] are equivalent.

A A . A AT
Remark 2.10. For A = B, we have V2w,(A) < w, A —A < 2wy(A). Since A -A = 0 so

A A A A A A .
([ A A ]) \15 [ A —A ] ; Thus wy(A) < %l'[ A A ] i < 2wn(A). Also, its known that
H —A A | = 2||Allz, so

All2 < V2w, (A). We reach to first inequality in (1).

In the next theorem we obtain some new upper and lower bounds for w; ([ é g ]) .

Theorem 2.11. Let A,B,C,D € HS(H).
(i) If A, D are self-adjoint, then

Wy ([ é lB) ]) > max(,/w%(A) +wi(D), wz(]f/; C), wZ(]f/; C)).

(i1)

wz([ ‘é g ]) < Jor(4) + w20y + 2B F C)JEWZ(B i)
Proof. (i) Let A,D € HS(H) be self-adjoint. Since w; ([ é g ]) > Wy ([ 18 g D and w, ([
0
C

(& B]zmele( S 5 )] e 3))
wy C D > max | w; 0 D , W C 0
S max( /wi(A) N w%(D), max(w, (B +5§), wo(B — C)))

(by Lemma 2.1(a) and (2))

C -C
:max( w%(A)+w§(D), ZUZ(Bi/;- )Iwz(lj/E )).

A
C

O w

S
~———
\%
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(ii) We have
A B _ A 0 0 B
wr C D = Wy 0 D + c o0
A 0 0 B
B+C)+wy(B-C
< Juda) + wi(p) + 22 >ﬁwz< )
(by Lemma 2.1(a) and (2)).
|

Remark 2.12. By letting A, B € HS(H) with A be self-adjoint, we have

V2 max(ws(A), ws(B)) < wz([ A ]) < V2(wy(A) + ws(B)). )

Lemma 2.13. Let A, B € HS(H). Then
1 . .
wy ([ g g ]) = —sup lle® A + e7OB*||,.
2 0eR
Proof. For any T € B(H), we have wy(T) = supyy [IRe(€T)l, = 3 supyeg 69T + e T |,. By letting

0 A
T—[B 0 ],wehave

w5 6l & )
B 0| 75P éB 0 ||,
= 1Sup [ —i0 0 —2i0 R\* EiQ(A - eiZieB*) ]
2 0er |l €7 (A+e="B) 0 )

= V2||Al).

= —sup lle®A + e~ OBl (since
OeR

5]

2

O

3. Applications

In this section, we present some applications of some given results. At first we start by an application
of [1, Theorem 5].

Lemma 3.1. [1] Let A, B, X € B(H). If N() is an algebra norm, then
wnN(AXB + B*XA") < (N(A)N(B) + N(B")N(A"))wn(X). (8)

There is an special case of (8), when X = I(identity operator matrix) and N(-) the Hilbert Schmidt norm || - ||»
as following;:

Wy (AX + XA") < 2||Allwo(X). )

Now, as an application of (9) we obtain a lower bound for w, ([ Ié g ])
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Theorem 3.2. Let A, B,C,D € HS(H) such that B, C be self-adjoint. Then

Wy ([ é g ]) > %max(w2(A + D), wy(B + Q)).

~

A
C

Proof. PutX:[ lB)]andA:[o

I 0 ]in (9). So

) > 1 B+C A+D
=G\ A+D B+C

S 1 B+C 0 0 A+D
_ﬁmax wo 0 B+C |I"®2\| A+D 0
> ﬁ max( V2w,(B + C), %wz(z‘\ +D))

= % max(w,(B + C), wa(A + D)).

|

Applying (7) in the next theorem, we state an application of (5).

Theorem 3.3. Let A, B € HS(H) such that B be self-adjoint. Then

wy ([ 1(‘)\ ]g ]) > }Imax(wz(A),wz(B)).

Proof. Let X = [ ]and Y= [ 0 -1 ] We have

I 0

wy ([ g g ]) = wy(X) > }IWQ(YX - XY")

1 B -A

1\ A B

> % max(wy(A), wa(B)).

O

4655

The following result gives a form of the Hilbert-Schmidt numerical radius by using Cartesian decomposi-

tion. A related result has been given in [7].

Theorem 3.4. Let T = A + iB be the Cartesian decomposition of T € HS(H). Then for any a, p € R

wy(T) = sup |laA + BBl.

a?+p2=1

In particular,

l o 1 1%
wy(T) > EIIT + T"|lp and wy(T) > EIIT = T"p.

(10)
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Proof. 1t is known w(T) = supy.g [IRe(€®T)|l,. We have

o €T + e 0T
Re(e”T) = —
_ (cos 6 +isinO)T + (cos 0 —isin O)T"
- 2
T T-T
= cos 6( > ) + sin O( % ) =Acos6 + Bsin6.

By putting @ = cos 6 and = sin 0, we get the desired result. In particularfora =1, =0andfora =0, =1
we get the result. [J

Lemma 3.5. [10] Let X > mlI > 0 for some positive real number m and Y be in the associated ideal corresponding to
a unitarily invariant norm ||| - |||. Then

1
miIY[lF < SHIXY + YX]|l. (11)

Proposition 3.6. Let A, B, X € M, be Hermitian and 0 < ml, < X for some positive real number m. Then
n
V2

Proof. The proof is similar to the technique used in reference [7]. O

A = Bll, < wa(AX — XB) < [IAX — XB]J. (12)

Theorem 3.7. Let A,B,X € HS(H) and 0 < ml, < X for some positive real number m. Then

0 AX - XB IAX — XBl» + [|A*X — XB"||»
m||A = Bl < w, ([ A*X — XB* 0 ]) < N . (13)
o . - . 0 A 0 B
Proof. By applying inequality (12) for self-adjoint operator matrices A; = A0 I By = B ol and

positive operator matrix X; = [ , we get

0
0 X

m
@Hfh = Bill £ wa(A1 X1 — X1By).
So
0 AX - XB
< 0 AX-XB N 0 0
s\l o 0 “2\l Ax - XB* 0
1 1
= —||AX - XB|, + —=||A"X — XB"||»
V2 V2
2 2
. 0 AX-XB 0 0
(since [ 0 0 ] =0 and [A*X—XB* 0 ] =0).
[

Remark 3.8. Note that inequalities (12) are special cases of inequalities (13).

We have another version of Theorem 3.7 as follows.
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Theorem 3.9. Let A,B € HS(H) and 0 < mI < X for some positive real number m. Then
~5IRe() = ReB)l < wx(Re(4)X - XRe(B)
2

1
< EIIAX — XB||» + [|IXA - BX]|>.

For its proof we use from w;(A + B) = %wz( A:)rB AE;B D < %[wz([ g 1(4)1
0 B
P

Proof. From Proposition 3.6, we have

™ ||Re(A) - Re(B)l2 < ws(Re(A)X — XRe(B))
2

w2 ((AX — XB) + (A*X — XBY))
2
V2 ([ 0 AX - XB ])

IA

> 2| Arx - XB* 0
V2 V2

= ——sup|le?AX - XB + ¢ 9(A*X — XB*)'|I,
2 2 feR

(by Lemma 2.13)

1
< EIIAX — XB||> + ||IXA - BX]|».

O
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