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Abstract. In this paper, we introduce the notion of exceptional family for the system of implicit generalized
order complementarity problems in vector lattice. We present some alternative existence results of the
solutions for the system of implicit generalized order complementarity problems via topological degree
aspects. The new developments in this paper generalize and improve some known results in the literature.

1. Introduction

The problems of optimization, game theory, mechanics, engineering, etc., can be transformed and
designed in the form of complementarity problems (CPs) [5–8], among which, order complementarity
problems (OCPs) are the particular class of complementarity problems. Borwein and Dempster [3], and
Isac and Kostreva [9] studied the linear type OCP and the generalized order complementarity problems
(GOCPs), respectively. The reader can find various results related to OCP in [2, 8, 10]. In [11], Isac et al.
introduced and studied the existence consequences of multi-valued generalized order complementarity
problems (MGOCPs). Later, Huang and Fang [1], and Fang et al. [12] considered the system of MGOCPs.
Applications of order complementarity problems and numerical results are discussed in [5, 13–16].

The CPs and variational inequality problems (VIPs) had been considered extensively via the approach
of exceptional family of elements (EFE) [17–22, 26–30]. Smith [4] first introduced the concept of EFE, which
is an efficient method for the solvability of CP and VIP. As a result of which, several kinds of development
of EFE were studied for various types of CPs and VIPs in [17–22, 26–30]. The nonexistence of EFE shows
the solvability of the CP and VIP. In 2010, Németh [23] gave an advanced circulation of EFE, i.e., the ordered
exceptional family of elements (OEFE) to OCP, and proved an alternative existence theorem for OCP. Huang
and Ma [31] also discussed the existence of solutions of OCP by using the concept of topological degree
and proved that Theorem 8 of [31] is weaker than Theorem 3.1 [23].

Recently, Zhao et al. [24] considered the OEFE for the system of generalized order complementarity
problems (SGOCPs), which are the generalizations of the general order complementarity problems [16, 23].
In [23] and [24], it has been shown that the nonexistence of OEFE implies the solution to OCP and SGOCP,
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respectively. Therefore, it is a highly challenging task to obtain the new significant conditions in the sense
of the existence of solutions to CP and VIP.

Inspired by the above research, we propose the concept of OEFE for the system of implicit generalized
order complementarity problems (SIGOCPs). We show that nonexistence of OEFE suffices the existence
of solutions to the SIGOCP. Moreover, we also present two remarkable sufficient conditions for generating
solutions to the SIGOCPs.

The following is a description of the subsequent sections. In section 2, the preliminaries and some
fundamental concepts are discussed. Section 3 presents the concept of the OEFE for SIGOCP with existence
results and new significant settings for the nonexistence of OEFE. Finally, section 4 concludes the findings.

2. Preliminaries

Let (X, ||.||) be a Banach space with C ⊂ X be a closed, pointed convex cone. We say a relation ≤ on
X is an order relation if ≤ is reflexive, antisymmetric as well as transitive. The cone C ⊂ X can induce a
natural relation ≤ on X, i.e, y ≤ z iff z − y ∈ C. So, the cone C = {y ∈ X : y ≥ 0}, and the triplet (X, ||.||,C)
is called an ordered Banach space (OBS). The relation is induced by a cone C ⊂ X on X iff it is invariant
under translation (i.e, if a ≤ b, then a + d ≤ b + d ∀ d ∈ X), scaling (i.e, if a ≤ b, then αa ≤ αb ∀ α > 0) and
continuity (i.e, if any two convergent sequence {an} and {bn}with limit point a and b, respectively, managing
{an} ≤ {bn} ∀ n ∈N, then a ≤ b).

Definition 2.1. We say an OBS (X, ||.||,C) is a vector lattice if for every z, x ∈ X, the z ∧ x = inf {z, x} (equivalently
z ∨ x = sup {z, x}) exists through the order induced by C. We denote it as (X, ||.||,C≤).

Unless otherwise specified, we regard (X, ||.||,C≤) as the vector lattices with latticial cone C ⊂ X. We
denote z+ = 0 ∨ z = −0 ∧ (−z) and ∧m

i=1{z
i
r} = z1

r ∧ z2
r , ...,∧zm

r . The following are some useful properties of the
notion z+,∨ and ∧, which are used throughout this paper.

(i) (z + x) ∧ (y + x) = x + z ∧ y,

(ii) (z + x) ∨ (y + x) = x + z ∨ y,

(iii) z ∧ x = x − (x − z)+.

Definition 2.2. [23] A continuous mapping f : S ⊂ X → X is completely continuous, if for every bounded set
D ⊂ S, the image set f (D) is relatively compact.

Remark 2.3. From Definition 2.2, it is easy to prove that addition of two completely continuous mappings is
completely continuous and the composition of a continuous function with completely continuous mapping
is also completely continuous.

Definition 2.4. [24] Let E be a nonempty subset of the real Banach space X and G : E ⊂ X → X. A point z∗ ⊂ E is
called a fixed point of G iff G(z∗) = z∗.

We briefly introduce some topological degree concepts for the implementation of our main result. Let
V be an open bounded set of X. Denote V and ∂V as the closure and boundary of V. Denote I : X → X
as the identity mapping. For any arbitrary p ∈ V and a completely continuous mapping f : V → X with
p < (I − f )(∂V), we write deg(A,V, p) as the topological degree associated to A = I − f , V and p. Let us recall
the Poincaré-Bohl and the Kronecker theorems (see, [30]).

Theorem 2.5. (Poincaré-Bohl theorem [30]) Let V ⊂ X be an open bounded set. Assume H : V × [0, 1] → X be a
completely continuous mapping with p < h(z, t) = z−H(z, t) ∀ (z, t) ∈ ∂V × [0, 1]. Then, deg(h(z, t),V, p) is constant
for all t ∈ [0, 1].

Theorem 2.6. (Kronecker theorem, [30]) Let V ⊂ X be an open bounded set and f : V → X be a completely
continuous mapping. If deg(I − f ,V, p) , 0, then z − f (z) = p has at least a solution in V.
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Theorem 2.7. ([25]) Let V ⊂ X be an open bounded set. Then, deg(I,V, p) = 1 ∀ p ∈ V.

Let S ⊂ X be a nonempty closed and convex set. Suppose f1, f2, ..., fm : X × X → X are m (m ∈ N)
mappings of the form fi(y, z) = y − Si(y, z), where Si is a mapping from X × X to X for each i. We introduce
the system of implicit generalized order complementarity problem, which is to find (y∗, z∗) ∈ S×S such that

SIGOCP({ fi}ni=1,S)

 inf { f1(y∗, z∗), f2(y∗, z∗), ..., fm(y∗, z∗)}=0,
inf { f1(z∗, y∗), f2(z∗, y∗), ..., fm(z∗, y∗)}=0.

(1)

The SIGOCP ({ fi}ni=1,S) contains a large class of problems as special cases. So, it is very interesting to
study the existence consequence of problem 1.

If S1(y, z) = 0 for all (y, z) ∈ X × X then f1(y, z) = y and f1(z, y) = z. So, the problem 1 reduces to system
of generalized order complementarity problem, which is to find (y∗, z∗) ∈ S × S such that

SGOCP({ fi}ni=1,S)

 inf {y∗, f2(y∗, z∗), ..., fm(y∗, z∗)}=0,
inf {z∗, f2(z∗, y∗), ..., fm(z∗, y∗)}=0.

(2)

The problem SGOCP was first studied by Zhao et al. in [24] via the notion of exceptional family by apply-
ing Leray-Schauder alternative theorem [16, 24]. The existence of the set valued version of problem 2 was
investigated by Huang and Fang [1].

If S1(y, z) = 0 for all (y, z) ∈ X × X, and for i , 1,Si(y, z) = Si(z) for all (y, z) ∈ X × X, then problem 1
becomes the the following order complementarity problem, which is to find (y∗, z∗) ∈ S × S such that inf {y∗, y∗ − S2(z∗), ..., y∗ − Sm(z∗)}=0,

inf {z∗, z∗ − S2(y∗), ..., z∗ − Sm(y∗)}=0.
(3)

Also, some existence results related to the set-valued version of problem 3 has been discussed in [12].

Setting Si(y, z) = Si(y) ∀ y, z ∈ X for each i in problem 1, then SIGOCP ({ fi}ni=1,S) takes the form of OCP
[23], which is to find y∗ ∈ S such that

inf { f1(y∗), f2(y∗), ..., fm(y∗)} = 0. (4)

Németh had studied the existence results for the OCP via OEFE [23]. OCP was also called the implicit order
complementarity problem in [16]. Setting Si(y, z) = Si(y) ∀ y, z ∈ X for each i , 1 in problem 2, then the
SGOCP reduces to GOCP, which was considered by Isac and Kostreva [9]. The GOCP is to find y∗ ∈ S such
that

inf {y∗, f2(y∗), ..., fm(y∗)} = 0. (5)

From the above, one can clearly observe that the SIGOCP ({ fi}ni=1,S) can control all the above problems.

3. Order Exceptional family and Existence Results

This section introduces the notion of OEFE for SIGOCP ({ fi}mi=1,S).

Definition 3.1. Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤). Let f1, f2, ..., fm : X×X→ X
are m mappings with the form fi(y, z) = y − Si(y, z), where Si : X × X → X for each i. A sequence of elements
(yr, zr) ∈ S × S is said to be an OEFE for SIGOCP ({ fi}mi=1,S), if for each r > 0, ∃ a real number µr > 0, such that the
following conditions are satisfied:

(i) ||(yr, zr)|| → ∞ (r→∞);
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(ii) ∧m
i=1{u

i
r} = 0 and ∧m

i=1{v
i
r} = 0, where ui

r = µryr + fi(yr, zr) and vi
r = µrzr + fi(zr, yr) for each i.

If Si(y, z) = Si(y) ∀ y, z ∈ X, then, Definition 3.1 is reduced to Definition 3.1 in [23]. Now, we present an
important alternative existence results for SIGOCP ({ fi}mi=1,S).

Theorem 3.2. Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤). Suppose that f1, f2, ..., fm :
X×X→ X are given mappings with the form fi(y, z) = y− Si(y, z), where Si : X×X→ X is completely continuous
for each i satisfying Sm(S × S) + C ⊂ S. Then, either SIGOCP ({ fi}mi=1,S) has a solution or an OEFE.

Proof. Consider the mapping Ψ : X × X→ X, which is defined as:

Ψ(y, z) = y − f1(y, z) ∧ f2(y, z) ∧ ... ∧ fm(y, z) ∀ y, z ∈ X.

Define G : X × X→ X × X as:

G(y, z) = (Ψ(y, z),Ψ(z, y)),
= (y − f1(y, z) ∧ f2(y, z) ∧ ... ∧ fm(y, z), z − f1(z, y) ∧ f2(z, y) ∧ ... ∧ fm(z, y)). (6)

From (6), (y∗, z∗) ∈ S × S is a solution of SIGOCP ({ fi}mi=1,S) iff (y∗, z∗) is a fixed point of G.

Denote Ψi(y, z) = y− f1(y, z)∧ f2(y, z)∧ ...∧ fi(y, z) ∀ y, z ∈ X and i = 1, 2, ...,m. We prove that Ψi(y, z) is
completely continuous for each i and Ψ(y, z) ⊂ S.

As, Si : X × X→ X is completely continuous mapping for each i. So, for i = 1,
we get

Ψ1(y, z) = y − f1(y, z) = S1(y, z),

which is completely continuous. Suppose Ψi(y, z) is completely continuous mapping for i = 1, 2, ...,m − 1.

Ψi+1(y, z) = y − f1(y, z) ∧ f2(y, z) ∧ ... ∧ fm(y, z),
= y − (y −Ψi(y, z)) ∧ fi+1(y, z),
= y − (y −Ψi(y, z)) ∧ (x − Si+1(y, z)),
= y − [(y − Si+1(y, z)) − (x − Si+1(y, z) − x + Ψi(y, z))+],
= Si+1(y, z) + (Ψi(y, z) − Si+1(y, z))+. (7)

From (7), Ψi(y, z) is a completely continuous mapping for all i = 1, 2, ...,m.
One can observe that Ψ(y, z) = Ψm(y, z). The complete continuity of Ψ(z, y) and Ψ(z, y) = Ψm(z, y) are

also drawn analogously. Since, Sm(S × S) + C ⊂ S, from (7), we get

Ψ(S × S) ⊂ S.

The complete continuity of Ψ(y, z) ⊂ S and Ψ(z, y) ⊂ S suggest that G(y, z) = (Ψ(y, z),Ψ(z, y)) is also
completely continuous and G(S × S) ⊂ S × S.

Now, define the mapping H : (X × X) × [0, 1]→ X × X as following:

H((y, z), t) = (1 − t)G(y, z). (8)

Clearly, H is a completely continuous mapping.
From (8), we deduce

H((y, z), 0) = G(y, z)

and
H((y, z), 1) = θ
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∀ x, y ∈ S (where θ is the zero vector of X × X).
Consider the mapping h : (S × S) × [0, 1]→ X × X defined as:

h((y, z), t) = (y, z) −H((y, z), t),
= t(y, z) + (1 − t)((y, z) − G(y, z)). (9)

From (9), we have

h((y, z), 0) = (y, z) − G(y, z) and h((y, z), 1) = (y, z). (10)

So, h : (S × S) × [0, 1]→ X × X is a homotopy between I − G and the identity mapping (I : X × X→ X × X).
For each r > 0, consider the following sets:

Sr = {(y, z) ∈ S × S : ||(y, z)|| < r}, S̄r = {(y, z) ∈ S × S : ||(y, z)|| ≤ r}

and
∂Sr = {(y, z) ∈ S × S : ||(y, z)|| = r}.

One can observe that the homotopy mapping h is a single valued mapping. So, the mapping h may or may
not have a fixed point depending upon the mapping G, which may or may not have a fixed point.

For each r > 0, we have the following two cases.
Case-1
If

θ < h((y, z), t) ∀ (y, z) ∈ ∂Sr and t ∈ [0, 1],
i.e, θ < t(y, z) + (1 − t)((y, z) − G(y, z)).

By Theorem 2.5, deg(h((y, z), t),Sr, θ) is a constant integer. Hence, we achieve

deg(h((y, z), 0),Sr, θ) = deg(h((y, z), 1),Sr, θ),

and from (10),

deg((y, z) − G(y, z),Sr, θ) = deg(I,Sr, θ). (11)

But, from Theorem 2.7, we obtain deg(I,Sr, θ) = 1. Therefore, from (11), we get

deg((y, z) − G(y, z),Sr, θ) = 1.

Thus, by Theorem 2.6, ∃ (y∗, z∗) ∈ Sr such that

(y∗, z∗) = G(y∗, z∗),
(y∗, z∗) = (x∗ − f1(y∗, z∗) ∧ f2(y∗, z∗) ∧ ... ∧ fm(y∗, z∗), y∗ − f1(z∗, y∗) ∧ f2(z∗, y∗) ∧ ... ∧ fm(z∗, y∗)). (12)

From (12), we get

f1(y∗, z∗) ∧ f2(y∗, z∗) ∧ ... ∧ fm(y∗, z∗) = 0

and
f1(z∗, y∗) ∧ f2(z∗, y∗) ∧ ... ∧ fm(z∗, y∗) = 0,

which concerns the solvability of SIGOCP ({ fi}mi=1,S).

Case-2
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If for each r > 0, ∃ (yr, zr) ∈ ∂Sr and tr ∈ [0, 1] such that

h((yr, zr), tr) = θ,

i.e,

h((yr, zr), tr) = tr(yr, zr) + (1 − tr)((yr, zr) − G(yr, zr)) = θ. (13)

Depending upon the scalar tr ∈ [0, 1], we consider the following three cases for the homotopy h.
If tr = 0, from (13), we have (yr, zr) − G(yr, zr) = θ, which concerns the solvability of SIGOCP ({ fi}mi=1,S).

If tr = 1, from (13), we have (yr, zr) = θ, which arises a contradiction to ||(yr, zr)|| = r. So, we exclude the
consideration for tr = 1.

Now, for the case 0 < tr < 1, we have

θ = tr(yr, zr) + (1 − tr)((yr, zr) − G(yr, zr)),

−
tr

1 − tr
(yr, zr) = (yr, zr) − G(yr, zr),

−
tr

1 − tr
(yr, zr) = (yr, zr) − (Ψ(yr, zr),Ψ(zr, yr)). (14)

Let µr = tr
1−tr

. So, clearly µr > 0. From (14), we have

−(µryr, µrzr) = (yr, zr) − (Ψ(yr, zr),Ψ(zr, yr)),
−(µryr, µrzr) = ( f1(yr, zr) ∧ f2(yr, zr) ∧ ... ∧ fm(yr, zr), f1(zr, yr) ∧ f2(zr, yr) ∧ ... ∧ fm(zr, yr)).

Therefore, we obtain

−µryr = inf { f1(yr, zr), f2(yr, zr), ..., fm(yr, zr)}, (15)

−µrzr = inf { f1(zr, yr), f2(zr, yr), ..., fm(zr, yr)}. (16)

Denote
ui

r = µryr + fi(yr, zr), i = 1, 2, ...,m,

and
vi

r = µrzr + fi(zr, yr), i = 1, 2, ...,m.

Then,

u1
r ∧ u2

r ∧ ... ∧ um
r = µryr + f1(yr, zr) ∧ µryr + f2(yr, zr) ∧ ... ∧ µryr + fm(yr, zr),

= µryr + f1(yr, zr) ∧ f2(yr, zr) ∧ ... ∧ fm(yr, zr). (17)

From (15) and (17), we obtain u1
r ∧ u2

r ∧ ... ∧ um
r = 0.

Also,

v1
r ∧ v2

r ∧ ... ∧ vm
r = µrzr + f1(zr, yr) ∧ µrzr + f2(zr, yr) ∧ ... ∧ µrzr + fm(zr, yr),

= µrzr + f1(zr, yr) ∧ f2(zr, yr) ∧ ... ∧ fm(zr, yr). (18)

Combining (16) and (18), we obtain v1
r ∧ v2

r ∧ ... ∧ vm
r = 0.

Now, for the case tr ∈ (0, 1), we have (yr, zr) ∈ ∂Sr. So, for each r, we have ||(yr, zr)|| = r. Therefore,
||(yr, zr)|| → ∞ (r→ ∞). All the above calculations are well fitted to the Definition 3.1 for the case tr ∈ (0, 1).
Hence, {(yr, zr)}r>0 is an OEFE.
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Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied. Suppose that f1, f2, ..., fm : X × X → X are given
mappings with the form fi(y, z) = y − Si(y, z), where Si : X × X → X is completely continuous for each i such that
Sm(S × S) + C ⊂ S. If the problem SIGOCP ({ fi}mi=1,S) is without OEFE, then SIGOCP ({ fi}mi=1,S) has a solution.

From Theorem 3.3, it is clear that the nonexistence of OEFE is a sufficient condition for the solvability of
SIGOCP ({ fi}mi=1,S). Now, we present some remarkable sufficient conditions under which SIGOCP ({ fi}mi=1,S)
does not have OEFE.

Condition 3.4. Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤). Suppose that f1, f2, ..., fm :
X×X→ X are given mappings with the form fi(y, z) = y−Si(y, z).We say that the family of mappings { fi}mi=1 satisfy
the condition, if there is γ > 0 such that either one or both of the following conditions

inf { f1(y, z), f2(y, z), ..., fm(y, z)} < −S \ {0}, (19)

inf { f1(z, y), f2(z, y), ..., fm(z, y)} < −S \ {0} (20)

are satisfied for all (y, z) ∈ S × S with ||(y, z)|| > γ.

Theorem 3.5. Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤). Suppose that f1, f2, ..., fm :
X×X→ X are given mappings with the form fi(y, z) = y−Si(y, z). If the family of mappings { fi}mi=1 satisfy Condition
3.4. Then, SIGOCP ({ fi}mi=1,S) is without OEFE.

Proof. On the contrary, suppose that the family of mappings { fi}mi=1 has an OEFE {(yr, zr)}r>0 in the sense
of Definition 3.1. So, there exists a sufficient large index r̃, such that ||(yr, zr)|| > γ > 0 for all r > r̃ with
u1

r ∧ u2
r ∧ ... ∧ um

r = 0 and v1
r ∧ v2

r ∧ ... ∧ vm
r = 0. Proceeding as in Theorem 3.2, we have

−µryr = f1(yr, zr) ∧ f2(yr, zr) ∧ ... ∧ fm(yr, zr),
−µrzr = f1(zr, yr) ∧ f2(zr, yr) ∧ ... ∧ fm(zr, yr).

(21)

For all r > r̃, if yr = 0 (or respectively, zr = 0) then (20) (or respectively, (19)) does not hold, which implies
f1(zr, yr)∧ f2(zr, yr)∧ ...∧ fm(zr, yr) ∈ −S \ {0}, (or, respectively, f1(yr, zr)∧ f2(yr, zr)∧ ...∧ fm(yr, zr) ∈ −S \ {0}),
which contradicts first part of Condition 3.4.

For all r > r̃, if yr, zr , 0, then from (21), we get

f1(yr, zr) ∧ f2(yr, zr) ∧ ... ∧ fm(yr, zr) ∈ −S \ {0},

f1(zr, yr) ∧ f2(zr, yr) ∧ ... ∧ fm(zr, yr) ∈ −S \ {0},

which contradicts second part of Condition 3.4. Thus, { fi}mi=1 is without OEFE.

Theorem 3.6. Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤). Suppose that f1, f2, ..., fm :
X×X→ X are given mappings with the form fi(y, z) = y− Si(y, z), where Si : X×X→ X is completely continuous
for each i such that Sm(S×S) + C ⊂ S. If the family of mappings { fi}mi=1 satisfy Condition 3.4, then SIGOCP ({ fi}mi=1,S)
has a solution.

Condition 3.7. Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤). Suppose that f1, f2, ..., fm :
X × X→ X are given mappings of the form fi(y, z) = y − Si(y, z). We say that the family of mappings { fi}mi=1 satisfy
the condition, if there is non zero element (x̂, ŷ) ∈ X × X, such that either (19) (or (20)) or both (19) and (20) are
satisfied ∀ (y, z) ∈ S × S with ||(y, z)|| > ||(ŷ, ẑ)||.

Remark 3.8. Setting ||(ŷ, ẑ)|| = γ, Condition 3.7⇒ Condition 3.4, i.e, Condition 3.7 is stronger.

Similar to Theorems 3.6, we state the following result by using Condition 3.7 whose proof is omitted.
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Theorem 3.9. Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤). Suppose that f1, f2, ..., fm :
X×X→ X are given mappings with the form fi(y, z) = y− Si(y, z), where Si : X×X→ X is completely continuous
for each i such that Sm(S×S) + C ⊂ S. If the family of mappings { fi}mi=1 satisfy Condition 3.7, then SIGOCP ({ fi}mi=1,S)
has a solution.

Theorem 3.10. ([23]) Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤).Suppose that f1, f2, ..., fm :
X→ X are given mappings of the form fi(y) = y − Si(y), where Si : X→ X is completely continuous for each i such
that Sm(S) + C ⊂ S. Then, either OCP ({ fi}mi=1,S) has a solution or an OEFE.

Proof. Setting Si(y, z) = Si(y) ∀ y, z ∈ X in Theorem 3.2, the results follows.

Theorem 3.11. Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤). Suppose that f1, f2, ..., fm :
X × X → X are given mappings of the form fi(y, z) = y − Si(y, z), with S1(y, z) = 0 where Si : X × X → X is
completely continuous for each i , 1, such that Sm(S × S) + C ⊂ S. Then either SGOCP ({ fi}mi=1,S) has a solution or
an OEFE.

Proof. Since S1(y, z) = 0 ∀ y, z ∈ X. The assertion follows from Theorem 3.2.

Remark 3.12. Theorem 3.11 is weaker than Theorem 3.1 [24], which was studied by Zhao et al. (our
definition of OEFE is different from [24]). Moreover, in [24] Theorem 3.1 required the condition Si(S×S)+C ⊂
S for each i=1,2,...,m. (in our case, it requires only for the index m, but not for all i , m). Secondly, Theorem
3.1 [24] is demanded Si(S × S) ⊂ S for each i, which is being dropped in our Theorem 3.11.

Theorem 3.13. Let S be a nonempty closed convex set of the vector lattice (X, ||.||,C≤). Suppose that f1, f2, ..., fm :
X × X → X are given mappings with the form fi(y, z) = y − Si(z), where Si : X → X is completely continuous for
each i such that Sm(S) + C ⊂ S satisfying Condition 3.4 (or 3.7). Then, the problem 3 has a solution.

Proof. Since Si(y, z) = Si(y) for all y, z ∈ X. So, fi(y, z) = y − Si(z) and fi(z, y) = z − Si(y) for all y, z ∈ X. Now,
by Theorem 3.2, we conclude that { fi}mi=1 has either a solution or an OEFE. The rest of the proofs are drawn
immediately from Theorem 3.6 (or Theorem 3.9), hence, it is omitted.

Using Theorem 3.3 and Condition 3.4, we present the following example in finite dimensional framework
for SIGOCP ({ fi}mi=1,S).

Example 3.14. Let X = (Rn, ||.||p),where p ∈ [1,∞). Then, X×X = (Rn
×Rn, ||(., .)||p),where ||(y, z)||p is defined

as (||x||pp + ||y||pp)
1
p .Assume S = C = Rn

+. Let Li j : Rn
×Rn

→ R and Mi j : Rn
×Rn

→ R be arbitrary continuous
mappings.

Further, let lim
||(y,z)||→∞

Li j(y, z) ≥ τi j and lim
||(y,z)||→∞

Mi j(y, z) ≥ %i j, where τi j and %i j are non-negative constants.

Define f1, f2, ..., fm : Rn
×Rn

→ Rn as:

fi(y, z) = (Li1(y, z)||(y, z)||Mi1(y,z)
p + y1, ...,Lin(y, z)||(y, z)||Min(y,z)

p + yn)

for i = 1, 2, ..,m − 1, and
fm(y, z) = (c1(y, z))|y1|, ..., cn(y, z))|yn|),

where ci : Rn
×Rn

→ [0, 1] are arbitrary continuous mappings for i = 1, 2, ...,n.
It is easy to calculate Si as:

Si = (−Li1(y, z))||(y, z)||Mi1(y,z)
p , ...,−L1n(y, z))||(y, z)||Min(y,z)

p ) for i = 1, 2, ...,m−1 and Sm = (y1− c1(y, z))|y1|, ..., yn−

cn(y, z))|yn|).

Clearly, for each i, Si is completely continuous and the condition Sm(Rn
+×R

n
+)+Rn

+ ⊂ R
n
+ is also satisfied.
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Now, when ||(y, z)||p is sufficiently large, it is not difficult to see fi(S × S) ∈ Rn
+ for all i = {1, 2, ...,m}.

Therefore,
f1(y, z) ∧ f2(y, z)∧, ..., fm(y, z) ≥ 0.

As ||(y, z)||p = ||(z, y)||p, we can proceed as in above and release the following :

f1(z, y) ∧ f2(z, y)∧, ..., fm(z, y) ≥ 0,

which implies
f1(yr, zr) ∧ f2(yr, zr) ∧ ... ∧ fm(yr, zr) < −S \ {0},

and
f1(zr, yr) ∧ f2(zr, yr) ∧ ... ∧ fm(zr, yr) < −S \ {0}.

Thus, all the hypotheses of Theorem 3.6 are satisfied. Hence, SIGOCP ({ fi}mi=1,R
n
+) has a solution.

4. Conclusions

In our work, we extend the notion of OEFE for SIGOCP ({ fi}mi=1,S) and prove that the nonexistence
of OEFE suffices the solution to SIGOCP ({ fi}mi=1,S). We establish several new sufficient conditions for the
nonexistence of OEFE. Finally, we deduce that our results generalize the results of Németh [23] and Zhao
et al. [24] in stronger sense. We require weaker conditions to prove the results of Zhao et al. [24]. We also
formulate and connect the existence results of Fang et al. [12] via OEFE. It would be interesting to study the
notion of OEFE for the system of the set-valued version of SIGOCP, which leaves future research avenues.
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