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Abstract. In this paper we use a set of partial differential equations to prove an expansion theorem
for multiple complex Hermite polynomials. This expansion theorem allows us to develop a systematic
and completely new approach to the complex Hermite polynomials. Using this expansion, we derive the
Poisson Kernel, the Nielsen type formula, the addition formula for the complex Hermite polynomials with
ease. A multilinear generating function for the complex Hermite polynomials is proved.

1. Introduction and preliminary

With the aid of a system of partial differential equations, we proved an expansion theorem for the bivariate
Hermite polynomials in [13, Theorem 1.8]. This expansion theorem allows us to develop a systematic
method to prove the identities involving the Hermite polynomials. I find the idea of [13] has universal
significance, which stimulates us to develop a new method to treat the complex Hermite polynomials.

Definition 1.1. For complex numbers x, y and non-negative integers m,n, the complex Hermite polynomials are
defined by

Hm,n(x, y) =

m∧n∑
k=0

(−1)kk!
(
m
k

)(
n
k

)
xm−kyn−k,

where m ∧ n = min{m,n}.

The polynomials Hm,n(z, z̄) were first considered by Itô [12] in his study of complex multiple Wiener integrals
and their applications to normal stochastic processes. These polynomials are also applied in [1] to coherent
states, and in [19], [20] to quantum optics and quasi-probabilities respectively. Several papers about this
topic have been published in recent year, see for example [6], [9], [10], [11].

For our purpose, we need extend slightly the complex Hermite polynomials by adding an extra param-
eter to them, and for convenience, we still call the extended complex Hermite polynomials as the complex
Hermite polynomials.
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Definition 1.2. For any complex numbers x, y and z, the complex Hermite polynomials Hm,n(x, y, z) are defined as

Hm,n(x, y, z) =

m∧n∑
k=0

k!
(
m
k

)(
n
k

)
xm−kyn−kzk.

It is obvious that when z = −1, Hm,n(x, y, z) reduce to the usual complex Hermite polynomials Hm,n(x, y). By
a simple calculation, we also find the following proposition.

Proposition 1.3. The polynomials Hm,n(x, y, z) and the polynomials Hm,n(x, y) satisfy

Hm,n(x, y, z) =
(√
−z

)m+n
Hm,n

(
x
√
−z
,

y
√
−z

)
.

Thus we may regard Hm,n(x, y, z) as a variant form of the usual complex Hermite polynomials Hm,n(x, y).
Although Hm,n(x, y, z) are equivalent to the complex Hermite polynomials Hm,n(x, y), the former have a
richer mathematical structure than the latter.

Remark 1.4. The polynomials Hm,n(x, y,−z) have been considered by Datolli et al. [5, pp.23–24], and several
basic properties about Hm,n(x, y,−z) were obtained by them.

To state our expansion theorem, we now introduce the definition of the k-fold complex Hermite series in
several variables.

Definition 1.5. The k-fold complex Hermite series are defined as

∞∑
m1,n1,...,mk,nk=0

λm1,n1,...,mk ,nk Hm1,n1 (x1, y1, z1) · · ·Hmk ,nk (xk, yk, zk),

where λm1,n1,...,mk,nk are complex numbers independent of x1, y1, z1, . . . , xk, yk, zk.

The principal result of this paper is the following expansion theorem for the analytic functions in several
variables.

Theorem 1.6. If f (x1, y1, z1, . . . , xk, yk, zk) is a 3k-variable analytic function at (0, 0, . . . , 0) ∈ C3k, then, f can be
expanded in an absolutely and uniformly convergent k-fold complex Hermite series, if and only if, for j ∈ {1, 2, . . . , k}, f
satisfies the partial differential equations

∂ f
∂z j

=
∂2 f
∂x j∂y j

.

This theorem is a powerful tool for proving formulas involving the complex Hermite polynomials, which
allows us to develop a systematic method to derive identities involving the complex Hermite polynomials.

2. The proof of Theorem 1.6

Using exp(sx + ty + stz) = exp(sx) exp(ty) exp(stz) and the Maclaurin expansion for the exponential
function, one can easily derive Proposition 2.1.

Proposition 2.1. For any complex numbers x, y, z and s, t, we have

∞∑
m,n=0

Hm,n(x, y, z)
smtn

m!n!
= exp(sx + ty + stz).

In order to prove Theorem 1.6, we need the following three propositions.
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Proposition 2.2. The complex Hermite polynomials Hm,n(x, y, z) satisfy the partial differential equation

∂Hm,n

∂z
=
∂2Hm,n

∂x∂y
.

Proof. Applying the partial differential operator ∂2/∂x∂y to act both sides of the equation in Proposition 2.1,
we find that

∞∑
m,n=0

∂2Hm,n

∂x∂y
smtn

m!n!
= st exp(sx + ty + stz).

Upon differentiating both sides of the equation in Proposition 2.2 with respect to z, we arrive at

∞∑
m,n=0

∂Hm,n

∂z
smtn

m!n!
= st exp(sx + ty + stz).

A comparison of these two equations immediately gives us that

∞∑
m,n=0

∂Hm,n

∂z
smtn

m!n!
=

∞∑
m,n=0

∂2Hm,n

∂x∂y
smtn

m!n!
.

Equating the coefficients of like powers of s and t, we complete the proof of the proposition.

Proposition 2.3. The following exponential operator representation for the complex Hermite polynomials holds:

Hm,n(x, y, z) = exp
(
z
∂2

∂x∂y

)
{xmyn

}.

This operational identity for the complex Hermite polynomials is equivalent to [5, Eq.(1.5.2d)].

Remark 2.4. Using the exponential operator exp
(
−z ∂2

∂x∂y

)
to act both sides of the equation in Proposition 2.3,

we have

xmyn = exp
(
−z

∂2

∂x∂y

)
{Hm,n(x, y)} (2.1)

=

m∧n∑
k=0

k!
(
m
k

)(
n
k

)
exp

(
−z

∂2

∂x∂y

)
{xm−kyn−k

}zk

=

m∧n∑
k=0

k!
(
m
k

)(
n
k

)
Hm−k(x, y,−z)Hn−k(x, y,−z)zk.

Proposition 2.5. If f (x1, x2, . . . , xk) is analytic at the origin (0, 0, . . . , 0) ∈ Ck, then, f can be expanded in an
absolutely and uniformly convergent power series,

f (x1, x2, . . . , xk) =

∞∑
n1,n2,...,nk=0

λn1,n2,...,nk x
n1
1 xn2

2 · · · x
nk
k .

This proposition can be found in the standard textbooks for complex analysis in several variables (see, for
example [14, p. 5, Proposition 1]).

Now we begin to prove Theorem 1.6 with the help of the above three propositions.
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Proof. The theorem can be proved by mathematical induction. We first prove the theorem for the case k = 1.
Since f is analytic at (0, 0, 0),we know that f can be expanded in an absolutely and uniformly convergent

power series in a neighborhood of (0, 0). Thus there exists a sequence {λm,n,p} independent of x1, y1 and z1
such that

f (x1, y1, z1) =

∞∑
m,n,p=0

λm,n,pxm
1 yn

1zp
1. (2.2)

The series on the right-hand side of the equation above is absolutely and uniformly convergent.
Upon substituting the equation above into the following partial differential equation:

∂ f
∂z1

=
∂2 f

∂x1∂y1
,

and then using the identities, Dz1 {z
p
1} = pzp−1

1 , in the resulting equation, we obtain

∞∑
m,n,p=0

pλm,n,pxm
1 yn

1zp−1
1 =

∂2

∂x1∂y1


∞∑

m,n,p=0

λm,n,pxm
1 yn

1zp
1

 .
Upon equating the coefficients of zp−1

1 on both sides of the equation, we deduce that

p
∞∑

m,n=0

λm,n,pxm
1 yn

1 =
∂2

∂x1∂y1

 ∞∑
m,n=0

λm,n,p−1xm
1 yn

1

 .
If we iterate this relation (p − 1) times and interchange the order of differentiation and summation, we
deduce that

∞∑
m,n=0

λm,n,pxm
1 yn

1 =
1
p!

∂2p

∂xp
1∂yp

1

 ∞∑
m,n=0

λm,n,0xm
1 yn

1


=

1
p!

∞∑
m,n=0

λm,n,0
∂2p

∂xp
1∂yp

1

{xm
1 yn

1}.

Substituting this equation into (2.2) and using a simple calculation, we conclude that

f (x1, y1, z1) =

∞∑
p=0

zp
∞∑

m.n=0

λm,n,pxm
1 yn

1

=

∞∑
p=0

zp
1

p!

∞∑
m,n=0

λm,n,0
∂2p

∂xp
1∂yp

1

{xm
1 yn

1}.

Interchanging the order of summation and using Proposition 2.3, we deduce that

f (x1, y1, z1) =

∞∑
m,n=0

λm,n,0 exp
(
z1

∂2

∂x1, ∂y1

)
{xm

1 yn
1}

=

∞∑
m,n=0

λm,n,0Hm,n(x1, y1, z1).

This indicates that f (x1, y1, z1) can be expanded in terms of Hm,n(x1, y1, z1).
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Conversely, if f (x1, y1, z1) can be expanded in terms of Hm,n(x1, y1, z1), then, using Proposition 2.2, we
find that f (x1, y1, z1) satisfies the partial differential equation

∂ f
∂z1

=
∂2 f

∂x1∂y1
.

This shows that Theorem 1.6 holds for the case with k = 1.
Now, we assume that the theorem is true for the case k − 1 and consider the case k. If we regard

f (x1, y1, z1, . . . , xk, yk, zk) as a function of x1, y1 and z1, then, f is analytic at (0, 0, 0) and satisfies the partial
differential equation

∂ f
∂z1

=
∂2 f

∂x1∂y1
.

Hence there exists a sequence {cm1,n1 (x2, y2, z2, . . . , xk, yk, zk)} independent of x1, y1 and z1 such that

f (x1, y1, z1, . . . , xk, yk, zk) (2.3)

=

∞∑
m1,n1=0

cm1,n1 (x2, y2, z2, . . . , xk, yk, zk)Hm1,n1 (x1, y1, z1).

Setting z1 = 0 in the equation and using the obvious equation Hm1,n1 (x1, y1, 0) = xm1
1 yn1

1 , we obtain

f (x1, y1, 0, . . . , xk, yk, zk)

=

∞∑
m1,n1=0

cm1,n1 (x2, y2, z2, . . . , xk, yk, zk)xm1
1 yn1

1 .

Using the Maclaurin expansion for analytic functions of two variables, we immediately deduce that

cm1,n1 (x2, y2, z2 . . . , xk, yk, zk)

=
∂m1+n1 f (x1, y1, 0, . . . , xk, yk, zk)

m1!n1!∂x1
m1∂y1

n1

∣∣∣∣
x1=y1=0

.

Since f (x1, y1, z1, . . . , xk, yk, zk) is analytic at (0, . . . , 0) ∈ C2k, from the above equation, we know that
cm1,n1 (x2, y2, z2, . . . , xk, yk, zk) is analytic at

(x2, y2, z2, . . . , xk, yk, zk) = (0, . . . , 0) ∈ C3k−3.

Substituting (2.3) into the partial differential equations in Theorem 1.6, we find that for j = 2, . . . , k,

∞∑
n1=0

∂cm1,n1 (x2, y2, z2, . . . , xk, yk, zk)
∂z j

Hm1,n1 (x1, y1, z1)

=

∞∑
m1,n1=0

∂2cm1,n1 (x2, y2, z2, . . . , xk, yk, zk)
∂x j∂y j

Hn1 (x1, y1, z1).

By equating the coefficients of Hm1,n1 (x1, y1, z1) in the above equation, we find that for j = 2, . . . , k,

∂cm1,n1 (x2, y2, z2, . . . , xk, yk, zk)
∂z j

=
∂2cm1,n1 (x2, y2, z2, . . . , xk, yk, zk)

∂x j∂y j
.
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Thus by the inductive hypothesis, there exists a sequence λm1,n1,...,mk,nk independent of x2, y2, z2, . . . , xk, yk, zk
(of course independent of x1, y1 and z1) such that

cm1,n1 (x2, y2, z2 . . . , xk, yk, zk)

=

∞∑
m1,n1,...,mk ,nk=0

λm1,n1,...,mk ,nk Hm2,n2 (x2, y2, z2) . . .Hmk ,nk (xk, yk, zk).

Substituting this equation into (2.3), we find that f can be expanded into a k-fold complex Hermite series.
Conversely, if f is a k-fold complex Hermite series, then it satisfies the partial differential equations in
Theorem 1.6 by using Proposition 2.2. Hence we complete the proof of the theorem.

To determine if a given function is an analytic functions in several complex variables, we can use the
following theorem due to Hartogs (see, for example, [17, p. 28]).

Theorem 2.6. If a complex valued function f (z1, z2, . . . , zn) is holomorphic (analytic) in each variable separately in
a domain U ∈ Cn, then, it is holomorphic (analytic) in U.

3. The Poisson Kernel for the complex Hermite polynomials

In this section we will use Theorem 1.6 to give a completely new proof of the following Poisson kernel
for the complex Hermite polynomials. This formula was first derived by Carlitz [4, p.13] in 1978, and
rediscovered by Wünsche [20] without proof in 1999. Ismail [9, Theorem 3.3] recovered it as a specific case
of his Kibble–Slepian formula. For other different proofs, please see [7, Theorem 4.1], [10]. Our proof is
brand new.

Theorem 3.1. For |stz1z2| < 1, the Mehler formula for the complex Hermite polynomials states that

∞∑
m,n=0

Hm,n(x1, y1, z1)Hm,n(x2, y2, z2)
m!n!

smtn

=
1

1 − stz1z2
exp

(
sx1x2 + ty1y2 + (z1x2y2 + z2x1y1)st

1 − stz1z2

)
.

Proof. If we use f (x1, y1, z1) to denote the right-hand side of the equation in Theorem 3.1, then, it is easily
seen that f (x1, y1, z1) is an analytic function of x1, y1, z1 for any x1, y1 and |stz1z2| < 1. Hence f (x1, y1, z1) is
analytic at (x1, y1, z1) = (0, 0, 0). By a direct computation, we find that

∂ f
∂z1

=
∂2 f

∂x1∂y1
=

(
z2st

(1 − stz1z2)2 +
st(x2 + y1z2)(y2 + x1z2)

(1 − stz1z2)2

)
f .

Thus, by Theorem 1.6, there exists a sequence {λm,n} independent of x1, y1 and z1 such that

1
1 − stz1z2

exp
(

sx1x2 + ty1y2 + (z1x2y2 + z2x1y1)st
1 − stz1z2

)
(3.1)

=

∞∑
m,n=0

λm,nHm,n(x1, y1, z1).

Setting z1 = 0 in this equation and using Hm,n(x1, y1, 0) = xm
1 yn

1 in the resulting equation, we immediately
find that

exp(sx1x2 + ty1y2 + x1y1z2st) =

∞∑
m,n=0

λm,nxm
1 yn

1 .
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Using the generating function for the complex Hermite polynomials in Proposition 2.1, we have

exp(sx1x2 + ty1y2 + x1y1z2st) =

∞∑
m,n=0

Hm,n(x2, y2, z2)
m!n!

(sx1)m(ty1)n.

Comparing the right-hand sides of these two equations, we conclude that

λm,n =
Hm,n(x2, y2, z2)

m!n!
smtn.

Substituting this into (3.1), we complete the proof of Theorem 3.1.

Using Proposition 2.3, we easily find that the Poisson kernel for the complex Hermite polynomials is
equivalent to the following exponential operational identity, which is equivalent to [21, Equation (5.1)].

Theorem 3.2. For |stz1z2| < 1, we have the exponential operator identity

exp
(
z2

∂2

∂x2∂y2

) {
exp(sx1x2 + ty1y2 + ty1y2 + stz1x2y2)

}
=

1
1 − stz1z2

exp
(

sx1x2 + ty1y2 + (z1x2y2 + z2x1y1)st
1 − stz1z2

)
.

4. The Nielsen type formulas for the complex Hermite polynomials

We begin this section with the following formula for the complex Hermite polynomials.

Theorem 4.1. For any complex numbers x, y, z, s1, s2, t1 and t2, we have

exp
(
(s1 + s2)x + (t1 + t2)y + (s1 + s2)(t1 + t2)z

)
=

∞∑
m1,n1,m2,n2=0

Hm1+m2,n1+n2 (x, y, z)
sm1

1 sm2
2 tn1

1 tn2
2

m1!m2!n1!n2!
.

Proof. Denote the left-hand side of the equation in Theorem 4.1 by f (x, y, z). It is easily seen that f (x, y, z) is
analytic at (0, 0, 0). A simple computation shows that

∂ f
∂z

=
∂2 f
∂x∂y

= (s1 + s2)(t1 + t2) f (x, y, z).

Thus, by Theorem 1.6, there exists a sequence {λk,l} independent of x, y and z such that

exp
(
(s1 + s2)x + (t1 + t2)y + (s1 + s2)(t1 + t2)z

)
(4.1)

=

∞∑
k1,l=0

λk,lHk,l(x, y, z).

Upon setting z = 0 in the equation and using Hk,l(x, y, 0) = xkyl, we deduce that

exp
(
(s1 + s2)x + (t1 + t2)y

)
=

∞∑
k1,l=0

λk,lxkyl.

Equating the coefficients of xkyl on both sides of this equation, we find that k!l!λk,l = (s1 + s2)k(t1 + t2)l.
Substituting this into the right-hand side of (4.1), expanding (s1 + s2)k(t1 + t2)l using the binomial theorem
and interchanging the order of summation, we complete the proof of Theorem 4.1.
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Using Theorem 4.1 and method of equating the coefficients of like power, we can derive the following
Nielsen type formula for the complex Hermite polynomials, which is equivalent to [6, Equation (3.11)] and
[9, Equation (4.7)].

Theorem 4.2. For any non-negative integers m j,n j, p j j ∈ {1, 2}, we have

Hm1+m2,n1+n2 (x, y, z)
m1!m2!n1!n2!

=

m1∧n2∑
p1=0

n1∧m2∑
p2=0

Hm1−p1,n1−p2 (x, y, z)Hm2−p2,n2−p1 (x, y, z)zp1+p2

p1!p2!(m1 − p1)!(m2 − p2)!(n1 − p2)!(n2 − p1)!
.

Upon multiplying both sides of the equation in Theorem 4.1 by exp(−s1t2 − s2t1)z and then equating the
coefficients of like power, we can also derive the following formula due to Ismail [9, Theorem 4.1].

Theorem 4.3. For any non-negative integers m j,n j, p j j ∈ {1, 2}, we have

Hm1,n1 (x, y, z)Hm2,n2 (x, y, z)
m1!m2!n1!n2!

=

m1∧n2∑
p1=0

n1∧m2∑
p2=0

Hm1+m2−p1−p2,n1+n2−p1−p2 (x, y, z)(−z)p1+p2

p1!p2!(m1 − p1)!(m2 − p2)!(n1 − p1)!(n2 − p2)!
.

5. Addition formula for the complex Hermite polynomials

Theorem 5.1. If M,N are two non-negative integers, then, we have the following addition formula for the complex
Hermite polynomials:

HM,N(a1x1 + · · · + akxk, b1y1 + · · · + bkyk, a1b1z1 + · · · + akbkzk)

=
∑

m1,n1,...,mk ,nk

M!N!
m1!n1! . . .mk!nk!

am1
1 · · · a

mk
k bn1

1 · · · b
nk
k

×Hm1,n1 (x1, y1, z1) · · ·Hmk ,nk (xk, yk, zk).

The sum is taken over all combinations of non-negative integers indices m1 through mk and n1 through nk such that

m1 + · · · + mk = M, and n1 + · · · + nk = N.

Proof. Upon denoting the left-hand side of the equation in Theorem 5.1 by

f (x1, y1, z1, . . . , xk, yk, zk),

it is obvious that this function is analytic at (0, . . . , 0) ∈ C3k. For simplicity, we temporarily denote

x = a1x1 + · · · + akxk,

y = b1y1 + · · · + bkyk,

z = a1b1z1 + · · · + akbkzk.

By a simple calculation, we find that for j = 1, . . . , k,

∂ f
∂z j

=
∂2 f
∂x j∂y j

= a jb j
∂HM,N

∂z
.

Thus, by Theorem 1.6, there exists a sequence {λm1,n1,...,mk ,nk } independent of

x1, y1, z1, . . . , xk, yk, zk
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such that

HM,N(a1x1 + · · · + akxk, b1y1 + · · · + bkyk, a1b1z1 + · · · + akbkzk)

=

∞∑
m1,n1,...,mk ,nk=0

λm1,n1,...,mk ,nk Hm1,n1 (x1, y1, z1) · · ·Hmk,nk (xk, yk, zk).

Setting z1 = · · · = zk = 0 and in the resulting equation using the fact that

Hm j,n j (x j, y j, 0) = xm j

j yn j

j ,

we deduce that

(a1x1 + · · · + akxk)M(b1y1 + · · · + bkyk)N

=

∞∑
m1,n1,...,mk ,nk=0

λm1,n1,...,mk ,nk x
m1
1 yn1

1 · · · x
mk
k ynk

k .

Expanding the left-hand side by the multinomial theorem and then equating the coefficients of multiple
power series, we complete the proof of Theorem 5.1.

6. A multilinear generating function for the complex Hermite polynomials

Theorem 6.1. If |s1t1z1 + · · · + srtrzr| < 1 and a, b, c are defined by

a = s1x1 + · · · + srxr,

b = t1y1 + · · · + tryr,

c = s1t1z1 + · · · + srtrzr,

then, we have the following multilinear generating function for the complex Hermite polynomials:

1
(1 − cz)

exp
(

ax + by + cxy + abz
1 − cz

)
(6.1)

=

∞∑
m1,n1,...,mr,nr=0

Hm1,n1 (x1, y1, z1) · · ·Hmr,nr (xr, yr, zr)

×Hm1+···+mr,n1+···+nr (x, y, z)
sm1

1 tn1 · · · smr
r tnr

r

m1!n1! · · ·mr!nr!
.

Proof. If we use f (x, y, z) to denote the left-hand side of (6.1), then, it is easily seen that f is an analytic
function of x, y, z such that |s1t1z1 + · · · + srtrzr| < 1. Hence f (x, y, z) is analytic at (x, y, z) = (0, 0, 0). By a
straightforward computation, we conclude that

∂ f
∂z

=
∂2 f
∂x∂y

=

(
c

1 − cz
+

(a + cy)(b + cz)
(1 − cz)2

)
f .

Thus, by Theorem 1.6, there exists a sequence λk,l independent of x, y, z such that

f (x, y, z) =

∞∑
k,l=0

λk,lHk,l(x, y, z). (6.2)
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Setting z = 0 in the above equation and using the fact that Hk,l(x, y, 0) = xkyl, we find that

f (x, y, 0) =

∞∑
k1,l=0

λk,lxkyl. (6.3)

On other hand, from the definition of f (x, y, z), it is easily seen that

f (x, y, 0) =

r∏
j=1

exp(s jx jx + t jy jy + s jt jz jxy).

Using the generating function of the exponential type for the complex Hermite polynomials in Proposi-
tion 2.1, we find that

f (x, y, 0) =

∞∑
m1,n1,...,mr,nr=0

Hm1,n1 (x1, y1, z1) · · ·Hmr,nr (xr, yr, zr)

×
(s1x)m1 (t1y)n1 · · · (srx)mr (try)nr

m1!n1! · · ·mr!nr!
.

Comparing this equation with (6.3) and equating the coefficients of xkyl, we conclude that

λk,l =

∞∑
m1+···+mr=k
n1+···+nr=l

Hm1,n1 (x1, y1, z1) · · ·Hmr,nr (xr, yr, zr)

×
sm1

1 tn1
1 · · · s

mr
r tnr

r

m1!n1! · · ·mr!nr!
.

Substituting this into (6.2), we complete the proof of Theorem 6.1.

7. A generating function for the products of the Hermite polynomials and the complex Hermite poly-
nomials

As usual, for any real number x, we use [x] to denote the greatest integer function. For any complex number
x, the Hermite polynomials are defined by

Hn(x) =

[ n
2 ]∑

k=0

n!
k!(n − 2k)!

(2x)n−2k. (7.1)

The exponential generating function for the Hermite polynomials Hn(x) is given by

exp(2xt − t2) =

∞∑
n=0

Hn(x)
n!

tn, |t| < ∞. (7.2)

The following formula is equivalent to Wünsche [21, Equation (7.4)]. In his paper Professor Wünsche
just said that his formula can be proved by using auxiliary formulae prepared in Appendix A, but lacks
sufficient details. Now we will use Theorem 1.6 to give a very simple proof of Theorem 7.1.

Theorem 7.1. For |2stz| < 1,we have the following generating function for the Hermite polynomials and the complex
Hermite polynomials.

∞∑
m,n=0

(−1)m+nHm,n(x, y, z)Hm(u)Hn(v)
smtn

m!n!

=
exp(u2 + v2)
√

1 − 4s2t2z2
exp

(
4stz(sx + u)(ty + v) − (sx + u)2

− (ty + v)2

1 − 4s2t2z2

)
.
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Proof. If we use f (x, y, z) to denote the right-hand side of the equation in Theorem 7.1, then, it is easily seen
that f is analytic at (0, 0, 0). A elementary calculation shows that

∂ f
∂z

=
∂2 f
∂x∂y

={
4s2t2z

1 − 4s2t2z2 +
4st(2stz(sx + u) − (yv + t))(2stz(ty + v) − (sx + u))

(1 − 4s2t2z2)2

}
f

Hence, by Theorem 1.6, there exists a sequence λm,n independent of x, y, z such that

f (x, y, z) =

∞∑
m,n=0

λm,nHm,n(x, y, z). (7.3)

Setting z = 0 in the above equation and using the fact that Hm,n(x, y, 0) = xmyn, we deduce that

exp(−(sx)2
− 2sxu − (ty)2

− 2tyv) =

∞∑
m,n=0

λm,nxmyn. (7.4)

Using the exponential generating function for the Hermite polynomials, we find that

exp(−(sx)2
− 2sxu) =

∞∑
m=0

Hm(u)
(−sx)m

m!
,

exp(−(ty)2
− 2tyv) =

∞∑
n=0

Hn(v)
(−ty)n

n!
.

Upon substituting these two equations into the left-hand side of (7.4) and equating the coefficients of like
power, we obtain

λm,n = (−1)m+nHm(u)Hn(v)
smtn

m!n!
.

Combining this equation with (7.3), we complete the proof of Theorem 7.1.

Theorem 7.1 contains the Mehler formula for the Hermite polynomials as a special case, which was discov-
ered by Mehler [15, p.174, Equation(18)] in 1866. One can also find this important formula in most books on
special functions, for example, [2, p.280, Equation (6.1.13)], [3, p.111, Equation(4.417)], [8, p.108, Equation
(4.7.6)], [16, p. 198, Equation (2)]. One very simple proof of this formula can be found in [13].

Theorem 7.2. For |2t| < 1, we have the Mehler formula for the Hermite polynomials:

∞∑
n=0

Hn(u)Hn(v)
n!

tn =
1

√

1 − 4t2
exp

(
4tuv − 4(u2 + v2)t2

1 − 4t2

)
.

Proof. Upon taking x = y = 0 in the equation in Theorem 7.1 and using the fact that

Hm,n(0, 0, z) = δm,nn!zn,

in the resulting equation, we immediately conclude that

∞∑
n=0

Hn(u)Hn(v)
n!

(stz)n =
exp(u2 + v2)
√

1 − 4s2t2z2
exp

(
4stuv − (u2 + v2)

1 − 4s2t2z2

)
.

Putting s = z = 1 in this equation and simplifying we complete the proof of Theorem 7.2.
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In the same way we can prove the following more general generating function formula, which appeared to
be new.

Theorem 7.3. If k is a non-negative integer and |2stz| < 1,we have the following generating function for the Hermite
polynomials and the complex Hermite polynomials:

∞∑
m,n=0

(−1)m+nHm,n(x, y, z)Hm+k(u)Hn(v)
smtn

m!n!

=
exp(u2 + v2)

(1 − 4s2t2z2)(k+1)/2
Hk

(
u + sx − 2stz(v + ty)
√

1 − 4s2t2z2

)
exp

(
4stz(sx + u)(ty + v) − (sx + u)2

− (ty + v)2

1 − 4s2t2z2

)
.

Upon putting x = y = 0 in Theorem 7.3 and using the fact that

Hm,n(0, 0, z) = δm,nn!zn,

in the resulting equation and finally setting s = z = 1, we derive the following formula due to Weisner [18,
Equation (4.9)].

Theorem 7.4. For |2t| < 1, we have
∞∑

n=0

Hn+k(u)Hn(v)
n!

tn =
1

(1 − 4t2)(k+1)/2
Hk

(
u − 2tv
√

1 − 4t2

)
exp

(
4tuv − 4(u2 + v2)t2

1 − 4t2

)
.
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