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Some Identities on A-Analogues of r-Stirling Numbers of the First Kind
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Abstract. In this paper, we study A-analogues of the r-Stirling numbers of the first kind which have close
connections with the r-Stirling numbers of the first kind and A-Stirling numbers of the first kind. Specifically,
we give the recurrence relations for these numbers and show their connections with the A-Stirling numbers
of the first kind and higher-order Daehee polynomials.

1. Introduction

It is known that the Stirling numbers of the first kind are defined as
n
() = Y Suln !, (see [1,2,6 - 9,14]), (1)
1=0

where (x)o =1, (X)), =x(x—=1)---(x—n+1), (n>1).
For A € R, the A-analogue of falling factorial sequence is defined by

(or =1, @1 =x(x = A)(x =2A) -~ (x = (n = 1)A), (n = 1),

2
(see [2,10,14,15,17]). @
In view of (1), we define A-analogues of the Stirling numbers of the first kind as
(1 = Z Sia(n k), (see [2,11 —13,16,17]). 3)
k=0
It is not difficult to show that
;_Dox ]_Do(x)l,)\l _
1+ At)T = ;‘(Z)At = ; ot (see [4,7-17]), (4)

where (7), are the A-analogues of binomial coefficients (;) given by (7), = (xl)l"" .
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The r-Stirling numbers of the first kind are defined by the generating function

(o)

%(log(l + t))k @+t =Y s0m, k)g, (see [3,20 — 23]). )
n=k

where k € N U {0} and € R.
The unsigned r-Stirling numbers of the first kind are defined as

n

x+r)(x+r+1)---(x+r+n-1)= Z [Z::]rxk, (see [1,17,22]). (6)
k=0
Thus, by (5), we get
=@+ +r—1)(x+r—n+1)= Z SV, k), (see [1]). 7)

From (5) and (7), we note that

Sy, k) = (1, (8)

k+rdy
The higher-order Daehee polynomials are defined by

k 00 n
(@) 1+t = nz_(;DS‘Rx)%r (see [5,18,19,24]). ©

When x = 0, DY = D¥(0) are called the higher-order Daehee numbers. In particular, for k = 1, D, (x) =
D;l)(x), (n > 0), are called the ordinary Daehee polynomials.

In this paper, we consider A-analogues of r-Stirling numbers of the first kind which are derived from the
A-analogues of the falling factorial sequence and investigate some properties for these numbers. Specifically,
we give some identities and recurrence relations for the A-analogues of r-Stirling numbers of the first
kind and show their connections with the A-Stirling numbers of the first kind and higher-order Daehee
polynomials.

2. A-analogues of r-Stirling numbers of the first kind

From (3) and (4), we have

o e o [k k
(1+ AT = Z(x)m,% = Z [Z S1alk, ”)xn]%

- k=0 \n=0 (10)
x"
[ Zsmk n)k,] -
n=0
On the other hand, we also have
x x - IOg(l + /\t) " x"
T = 5] log(1+At) — el
1+ AB)T = ¢i Y, (—A - (11)

n=0

Therefore, by (10) and (11), we get the generating function for S; 1(, k), (1, k > 0), which is given by

log(1 + At
n'(og( + )) stk")k,- W)
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Now, we define A-analogues of r-Stirling numbers of the first kind as

k o]
%(log(1+)\t)) 1+ ABi = Zs(r)/\(” k) 5 (13)
n=k

where k € N U {0}, and r € R.
From (12) and (13), we note that S(O) 1(n,k) = S10(n, k), (n > k > 0). Also, it is easy to show that

X r > tl’l
L+ ADTA+ADT = Y @+ Pua—. ”
n=0 :
By (14), we get
3 t”—m X+r) o _ L Xlog(1+At)
é(x+r)n,)\a—2( " )At = (1 + At)Ten o8t
1 (log(1+ At .
Zxkﬁ(gT) (1+AD? (15)
k=0
:ZkaS (nk Z(Zs (n, k)x ]_
k=0 n=k n=0 \ k=0

Therefore, by comparing the coefficients on both sides of (15), we obtain the following theorem.

Theorem 2.1. For n > 0, we have
n
(X + Py = Z S (1, ko,
k=0

Now, we observe that

(16)

Thus, by (15) and (16), we get

Z St A(” k)x = Z [i (ZI)SLA(W, k)(T)n—m,A]xk- (17)

k=0 \m=k

Therefore, by comparing the coefficients on both sides of (17), we obtain the following theorem.
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Theorem 2.2. Forn > 0, we have

SCIEDY (Z)sl,A(m, )1

m=k

Now, we define A-analogues of the unsigned r-Stirling numbers of the first kind as follows:

n

AR+ 7+ A +r+20) + ok r+ (e =1A) = Y [17] ok

k+r
k=0

Note that lim1 [[17], , = [/, (n > k> 0).

By Theorem 2.1 and (18), we get
(c=Pua = Y ST, k),
k=0
and

(X—T)nA—Z( S

From (19) and (20), we can easily derive the following equation (21).

S0, k) = (<1, (n2 k2 0).

k+r
For n > 1, by Theorem 2.1, we get
n+1 n+1
(et Paa = ) ST 01+ 1,Kx = )" SY 00+ 1,0 + (s .
k=0 k=1
On the other hand, by (2), we get

(X + Dnrrp = (X + )y a(x +7—nA)

—x Z SO (n, k) — (nA — 1) Z S (k)

= Z S(r) (n,k — 1)x* - Z(n/\ - r)S A(n Kk + (r = nA) @) + x"1
= Z {89 01,k = 1) = (A = NSO (0, )} o + (Pt + 2741,
k=1

Therefore, by Theorem 2.1 and (23), we obtain the following theorem.

Theorem 2.3. For 1 < k < n, we have

SO (n+1,k) = S (n,k = 1) = (nA = 1SV, (n, k).

454

(18)

(19)

(20)

(21)

(22)

(23)
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From (13), we note that

1 (log(1 + At)\* . _ 1 (log(1+A48)) g5 (log(1 +ADY
o - o

k+1\, 1 (log(1+ A8\
I A

(k i l)rl Y Siatnk+D=
n=k+l n:
ks n+k

k+1 t
! -
r( 1 );Sm(n+k,k+l)(n+k)!

On the other hand, we have

1 (log(1 + Ap)\*
o

- )(1+At)3 s (M)( + Apt

[Eor g

1
n n\ sk
M\ ) 41 |t
1=0 (Z)Dl g (r)n—l,/\m] R

>‘“I

I}
o

W

I
o

n
Thus, by (24) and (25), we get

n k+l)

Z (( % Atk k+]) = Z (’;)Dyo P

1=0 1=0

Therefore, by (26), we obtain the following theorem.

Theorem 2.4. For n > 0, we have

n n o ck+l

Y (’;)ngw(r)n_l,,\ = Z ((M)) S+ Kk +1).

1=0

Now, we observe that

1 (log(1 + At) (2 #) 1 (log(1+ A\
H(—/\ )“ “‘=[Z ”‘E]H(—/\ )

-y [ ()51 k)(r»,_m) L
k \m=k

n=

Therefore, by (13) and (27), we obtain the following theorem.

Theorem 2.5. Forn, k > 0, with n > k, we have

S(r) (7’1 k) Z (Z)(r)n—m,)\sl,)\(mr k)

m=k

it ok +1 t"
[(n+k)!;r( l )Sm(n+kk+l)]—'.
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(24)

(25)

(26)

(27)
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From (13), we note that

1 (log(1+AH\" 1 {log(l + A\
%( g)\ ) E( g)\ )(“M)A

_(m+k)! 1 log(1 + At)
T omlk! (m+k)! ( A

(m+k) Z s A(n m+k)—

n=m+k

m+k
) 1+ AH7

On the other hand,

1 (log(1+At)\" 1 (log(1 + At)\" ;

Sial,mg ] [Z S(r) }
n—m (r) t"
P m+k(2( )s (,K)S1A(n —l,m)]m.

1=k

Iuet M

Therefore, by (28) and (29), we obtain the following theorem.

Theorem 2.6. For m,n,k > 0 with n > m + k, we have

(m M k)s‘” (n,m + k) = 2 (’;)sm(z, K)Sy(n — 1, m).

1=k

By (12), we get

n k
ZSl,\(n e = kl(log(l”t)) (1+ A5+ A
n=k

n!
:( (Ao ]( Amtm]
1=k m=0
= (Z SO (k)5 ](Z(—l)’”(r + (m - 1)A)m,A%]
1=k m=0 ’

n=k

n

[Z (’;)sgi;a, K1)+ (n -1 - 1>A)n—'%] :7

1=k

Comparing the coefficients on both sides of (30), we have the following theorem.

Theorem 2.7. Forn,k > 0, with n > k, we have

sl,A<n,k>=Z(l)s<” (LR 4+ At = 1= 1)

1=k

456

(28)

(29)

(30)
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From (9), we have

1 (log(1 + At)\* -
L LESL] N

fan

t* (log(1 + At) k .
, (T (1 + AB)

[

AEer|Eng

(o8]

-G E{Z (o)

n=0 \m=0
On the other hand, by (13), we get

(e8]

1 10g(1+/\t) r G "
H(T 1+ Ap)i Zzs k)

_ N nkt 1"
kz:(; ) (1 + K k)= Tt

Thus, by comparing the coefficients on both sides of (31) and (32), we get

n

) 3 m &)
Z (m)Dm A (r)n—m,}l = (n+k) Sl A(?’l +k, k)

m=0

Therefore, by (33), we obtain the following theorem.
Theorem 2.8. For n,k > 0, we have
, n+k\y (n m
SV (n+k k) = ( N ) Z (m)D,(f?)\ (Fnmir-
m=0

From (9), we note that

k k
%(M) (1+ADT = ﬁ (bg(l—JrM)) (1+AHT

A k! At
N @
- E;A DY(5)—.

By (32) and (34), we get

L(m+k)!
n'k!

Wfn+k .
SO+ k) = A D(5) = A ( n )D(”k)(x)’ =0

In particular, for r = 0, from (30) and (35) we have

K
A”(” Z )D,(f) = S1(n+k k)

n+k
=Y (n ? k)S“A(z B+ (1 4+ k= 1= D)k,
1=k

where 1,k > 0.
Therefore, by (36), we obtain the following theorem.
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(31)

(32)

(33)

(34)

(35)

(36)
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Theorem 2.9. For n,k > 0, we have

n+k
1 (n ;— k)D(k) Z (” ‘; k)S(V) LI 0+ (n+ k=1 = 1)A) ki
1=k

In addition,

po- L ¥ ( + k)(l) ()
" Ry =1 kA

X (1 + (1 +k = 1 = 1)A)ppa (1D, (£).

Now, we observe that

s n 1 1+ At k , .
ZSl,A(ﬂ,k)% = ; ( 08 )) (1 + Af)f e~ 7 log(l+an

oom 1 (log(1+Ar)\"
——

(o (37)
{Z( )m*"ZsM(],rm J

m=0 j=m

o (n-k ]
:Z[ZZ(“)( 1)1 S1,2(j, m)S1,a(n — J/k)]

Therefore, by comparing the coefficients on both sides of (37), we obtain the following theorem
Theorem 2.10. For n,k > 0, with n > k, we have

k J
S1.01,K) = 22( )( D" S1,0(,m)S1,(n = i k).

=0 m=0
For m,n > 0, we define A-analogues of the Whitney’s type r-Stirling numbers of the first kind as

(mx+ 1 =mx+r)(mx+r—A)(mx+r—2A)---(mx+r—(n-1)A7A)

. 38
= Z T%(n, k|m)xk. 38)
k0
By (38), we get
n . t”
Z(mx + 1)y, A i Z [Z Ti/)A(n, klm)xk] o}
nooO kooO (39)
_ Z [Z TV, (n, klm)— ]
k=0 \ n=k
On the other hand, by binomial expansion, we get
- "o (mx+r
(mx + 1)y a— = ( ) "
;) n! nZ:O no ),
(1 " At) mx+r (1 " /\t)A mx(log(1+\t ) (40)

log(1 + At)

— * ok
= E( - ) (1+Abfx
k=0
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Comparing the coefficients on both sides of (39) and (40), the generating function for Tirz\(n, kim),
(n,k > 0), is given by

mk (log(1 + Ab)\
k! A

+ADT = Z TV, (n, klm)—. (41)
From (13) and (41), we note that
SO (n,k) = —T<’> ) (n,klm), (n >k > 0). (42)

It is known that the r-Whitney numbers are defined as
n
(mx+ 7" = Y W, (1, ) (X, (see [3]). (43)
k=0

By (3), we get

n
(mx + 12 = Z Spa(n, I)(mx +r)!
1=0

n 1
=Y Sualn D) Y mIWu, (0, )
1=0 j=0

= Z Z 51,/\(7’1, l)mjwm,.r(l/ ])(x)] (44)

=0 =

= Zzsu(n Nm' W1, ) 251(],’()95

j=0 I=j

=

Z Y S1aln, DS1G, Ry W, (1, ) |2

j=k 1=j
Therefore, by (38) and (44), we obtain the following theorem.

Theorem 2.11. For n,k > 0, with n > k, we have

n

TV (n,kim) = Y Y 81,201,081, Kym W (0, j).

j=k I=j
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