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On the Generalized q-Poly-Euler Polynomials of the Second Kind
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aAkdeniz University, Antalya, TR-07058, Turkey

Abstract. In this work, we define the generalized q-poly-Euler numbers of the second kind of order α
and the generalized q-poly-Euler polynomials of the second kind of order α. We investigate some basic
properties for these polynomials and numbers. In addition, we obtain many identities, relations including
the Roger-Szégo polynomials, the Al-Salam Carlitz polynomials, q-analogue Stirling numbers of the second
kind and two variable Bernoulli polynomials.

1. Introduction, Definitions and Notations

The classical Bernoulli polynomials and the classical Euler polynomials are defined by the following
generating functions, respectively;
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Also, let

Bn = Bn(0) and En = En(0)

where Bn and En are respectively, the Bernoulli numbers and the Euler numbers.
k ∈ Z, k > 1, then k-th polylogarithm is defined by ([2], [12], [14], [22]) as
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This function is convergent for |z| < 1, when k = 1

Li1(z) = − log(1 − z).

The q-numbers and q-factorial are defined by

[n]q =
1 − qn

1 − q
, q , 1, [n]q! = [n]q [n − 1]q · · · [1]q , (4)

n ∈N, q ∈ C, respectively where [0]q! = 1.
The analogue of

(
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q is defined by in [11]
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From (5), we get

(x + y)n
q :=

n∑
k=0

[
n
k

]
q

q(k
2)xn−kyk, n ∈N. (6)

The q-exponential functions are given by
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and
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From here, we easily see that eq(z)Eq(−z) = 1 in [11].
The above q-notation can be found in [11]. Luo in [24], Liu in [23], Wei et al. [34] and Srivastava in [32]

introduced and investigated Euler numbers and Euler polynomials. They gave several basic properties and
recursion relations of these polynomials. Carlitz [5] extended the classical Bernoulli and Euler numbers
and polynomials and introduced the q-Bernoulli and the q-Euler numbers and polynomials. Ozden et al.
in [29], by using a p-adic q-Volkenborn integral gave a new extension of q-Euler numbers and polynomials.
Kim et al. in [16] considered the poly-Bernoulli polynomials. Kim et al. in [17] and Kurt [18] gave
some relations for the poly-Genocchi polynomials. Mahmudov ([25], [26]) considered two variables the
q-Bernoulli polynomials, q-Euler polynomials and q-Genocchi polynomials. He gave some summation
properties of these polynomials. Kim et al. [15], Kurt ([20], [21]) gave some identities and the analogues of
the Srivastava-Pintér summation formulae for these polynomials. Ryoo et al. [30] introduced the q-poly-
tangent polynomials and gave the distribution of their zeros. Agarwal et al. [1] introduced and investigated
the q-extension of Euler polynomial of the second kind. Cieśliński in [6] improved q-exponential and
q-trigonometric functions. Duran et al. in ([7], [8], [9]) investigated the (p, q)-Euler polynomials and the
(p, q)-Hermite polynomials.

Sadjang [31] introduced and investigated to q-addition theorems for the q-Appell polynomials and the
associated classes of q-polynomials expressions.

Mahmudov ([25], [26]) defined and investigated the q-Bernoulli polynomials B(α)
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of order α, the
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the following generating functions
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where q ∈ C, α ∈N and 0 <
∣∣∣q∣∣∣ < 1.

Hamahata et al. [10] defined poly-Euler polynomials by
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For k = 1, we get E(1)
n (x) = En (x).

The q-analogue of the Stirling numbers of the second kind S2,q (n, k) is defined [26] as
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The q-Hermite polynomials Hn,q(x) is defined by Mahmudov in [27] as
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It is clear that
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)
.

The Roger-Szégo polynomials Hn(x : q) [see [3], Equ. (1)] and the Al-Salam Carlitz polynomials U(a)
n (x : q)

[see [13], page 534] are defined by the generating functions
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The classical Euler numbers of order α and the classical Euler polynomials of order α are defined [33]
by the following generating functions, respectively
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where α ∈ R and x ∈ C.
The classical Euler numbers of the second kind

v
En and the classical Euler polynomials of the second

kind
v

En (x) are defined in [1] by means of the following generating functions, respectively
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Agarwal et al. in [1] defined the q-Euler polynomials of second kind in two parameters as:
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where x, y ∈ C.

By this motivation, we define the generalized q-poly-Euler numbers
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For k = 1, Li1 (z) = − log (1 − z), from (17) and (18), we get
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2. Main Theorems

In this section, we give explicit relations for these polynomials. Also, we prove some relations between
the generalized q-poly-Euler polynomials of the second kind, the q-Stirling numbers of the second kind, the
two variable Bernoulli numbers and the Bernoulli polynomials.

Theorem 2.1. The generalized q-poly-Euler polynomials of the second kind of order α satisfy the following relations:
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The proof of this Theorem is easily obtained by using (17) and (18).

Theorem 2.2. The following relations hold true:
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The proof of these relations are easily obtained by applying the Cauchy product to (14), (15) and (16)
and comparing the coefficients. For y = 0, Theorem 2.2 is reduced to Theorem 2.12-(ii) in [1, p.142].

Theorem 2.3. We have the following relation
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The proof of this Theorem is depend on the equations (7), (8) and (14) and also the property of q-
exponential functions such as Eq (−t) eq (t) = 1.

We get the following corollary from (19) and (21).

Corollary 2.4. There is the following relation
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Theorem 2.5. There is the following relation between the generalized q-poly-Euler polynomials of the second kind
and q-Bernoulli polynomials B(α)
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Theorem 2.6. The following relation holds true:
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From comparing the coefficients of the both side, we have (23).

Theorem 2.7. There is the following relation between the generalized q-poly-Euler polynomials of the second kind
and the q-Stirling numbers S2,q (n, k) of the second kind as
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