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Commutators of the B-Maximal Operator and B-Maximal Commutators

Simten Bayrakci®

? Akdeniz University, Antalya, TURKEY

Abstract. In this paper we consider the commutator of the B-maximal operator and the B-maximal
commutator associated with the Laplace-Bessel differential operator. The boundedness of the commutator

of the B-maximal operator with BMO symbols on weighted Lebesque space and weak-type inequality for
the commutator of the B-maximal operator are proved.

1. Introduction

The Laplace-Bessel differential operator

is known as an important operator in Fourier-Bessel harmonic analysis and applications. This operator,
associated with the Bessel differential operator

42 N 2vd ”
a2t dt’
has been studied many mathematicians.[2-7, 14-17, 23-27, 29, 31, 32]

Given a linear operator T acting on functions and given a function b, the commutator [T, b] formally
defined as

B, = >0

[T,blf = T(bf) = bT(f).

The first result on commutators was obtained by Coifman, Rochberg, Weiss [12]. They showed that
if T is a classical singular integral operator and b € BMO, then the commutator [T,b] is bounded on
L,(R"), 1 < p < oo. Later, Chanillo [11] proved a similar result when singular integral operators are
replaced by the fractional integral operators.

Coifman and Meyer [13] observed that the L, boundedness for the commutator [T, b] could be obtained
from the weighted L, estimate for T with the weight function class of Muckenhoupt A,. Later, Alvarez,

Bagby, Kurtz, Perez [9] extended the idea of Coifman and Meyer and Perez [30] obtained a weak-type
inequality for the commutator [T, b].
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In [28], Milman and Schonbek proved that the commutator of the classical Hardy-Littlewood maximal
function [M, b], defined by
[M, b]f(x) = M(bf)() — b@Mf (@), x € R"

isbounded onL,, 1 < p < co when bisin BMO(IR"). Moreover, the classical maximal commutator associated
with the classical translation is defined by
M@ = sup = [ 1060 =W f € LR,
Q: xeQ |Q|
Q

These operators play an important role in studying the commutators of singular integral operator
with BMO symbols. Alphonse [8] obtained weak type inequality for maximal commutators, and pointwise
estimates of the maximal commutator and the commutator of the maximal function are proved by Agcayazi,
Gogatishvili, Koca, Mustafayev [1]. Commutators have been research area many mathematicians such as
Guliyev, Hasanov, Hu, Lin, Yang, Janson [18, 20, 21] and others.

In this paper, we consider the commutator [Mp, b] of the Hardy-Littlewood maximal operator Mp and
the B-maximal commutator associated with the Laplace-Bessel differential operator. The paper is organized

as follow. Section 2 contains some basic definitions and results which are needed in this paper. Main results
and its proofs are in the Section 3.

2. Preliminaries and Notations

Let R} = {x:x = (x1,..x,) € R",x, > 0} and B(x,r) = {y € R} : [x — y| < r}. For a measurable set E C R’}
let |El, = f x2dx, v > 0.

Denote by TY (y € R}), generalized translation operator acting according to the law:

1/2
Tyf(x)_r(v);(l//z)) ff( -y, \/ 2xnyncosa+yn) sin® ! a da,

where x = (¥, x,), y = (v, y») and x’,y’ € R". We remark that TY is closely connected with Bessel
differential operator B, , see [23, 24] for details.
The weighted space L,, = L,,(R), 1 < p < oo consists of measurable functions on R} with the norm
given by
/p

I, =| [ reorsivas

R"

In the case p = oo, the space L, is defined by means of the usual modification H f ” . = esssup|f(x)l,
x € R},

We denote by L (IR%), locally integrable with respect to the measure x2'dx functions defined on RR’.

Letl <p < co. A welght function w is said to be of Muckenhoupt class A, if [w],,, s finite, where [w] A
is defined by

PV

p-1

1 2 1 f —1/p-1, 2
w = s _ w Vd w p Vd
el = |B<x,r>|vf W By, ) W

B(x,r) B(x,r)

The Hardy-Littlewood maximal function generated by generalized translation operator, called the B-
maximal function M3f, is defined by

1
Mg f(x) = sup BO.L f TY|f(x)ly2dy, x € R".

>0
B(0,r)
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The operator Mp : f — Maf is called the B-maximal operator. The boundedness of the B-maximal operator
Mg on L, is proved by V.Guliyev, [16].

The space of functions of bounded mean oscillation associated with Laplace-Bessel differential operator
is denoted by BMOp = BMO3(IR"}) and defined by the following finite norm

1 2v
”f”BMOB = xe]ls(?,libo |B(O, r)|v f |Tyf(x) - fB(O,r)(X)| ]/,, dy

B(0,r)

where fyon(%) = goar [ T/f0y2dy.
B(0,r)

The classical BMO space plays an important role in Fourier harmonic analysis and applications, in-
troduced by John and Nirenberg [22] in 1961. It is easy to see that L, & BMO. A famous example is
loglx| € BMO(R})\Lo(R}). BMO space turned out to be the “right” space to study instead of L,. Many of
the operators which are ill-behaved on L, are bounded on BMO.

Definitions of the commutator of the B-maximal operator and the B-maximal commutator associated
with the Laplace-Bessel differential operator are given below.

Definition 2.1. Let b be a measurable function defined on IR!,. The commutator [Mp, b] of the B-maximal operator
Mg is defined by
[Mg, b]f(x) = Mp(bf)(x) = b(x)Mpf(x), x € R}.

Definition 2.2. Let b € Ll (IR?). The B-maximal commutator Mg is defined by

f T (b(x) - b(y)) F)] 12y, x € R

B(0,7)

1
M X) = sup ————

5 () = SUP (B0 o,
3. Main Results

In classical theory, if w and w™ belong to the Muckenhoupt class A,, then the Hardy-Littlewood maximal

operator M is bounded on L, (wildx) . S0, Milman and Schonbek [28] prove that if b € BMO, b > 0, then the
commutator [M, b] of the Hardy-Littlewood maximal operator is bounded on L,, 1 < p < co.

In Fourier-Bessel harmonic analysis, the boundedness of the Hardy-Littlewood maximal function gen-
erated by the Laplace-Bessel differential operator such that w belongs to the suitable Muckenhoupt class
on weighted Lebesque space was proved by Guliyev [19]. This result is given in the next theorem.

Theorem 3.1. a)If feL,,(w,R}), weA,, (R}), 1<p<oo, then
”MBf) Lplv(w,]R:‘) <C ”f‘

where the constant C depends on p, w, v, n.
bIf feli,(wR), weA,(R}), 1<p<oo, then

M5l ey = 1A

where the constant C depends on w, v, n. Here WL, ,(w, R’}) denotes the weak-L1 ,(w, R%) space.

Lpy(wRY)

Liy (w,]R:‘ )

By using similar arguments in ([28], Theorem4.4), we get the following theorem from the Theorem3.1.

Theorem 3.2. Let fe€L,,(R}), 1 <p <oco andb € BMOg, b > 0. Then the commutator of the B-maximal
operator [Mp, b] is bounded on L, ,RY), that is,

H[MB, b]f”LM < ”b”BMOB ”f“Lp,\. :
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The commutator of the B-maximal operator [M3, ] and the B-maximal commutator Mg, are essentially
different from each other. However, if b satisfies some conditions, then the operator Mp; controls [Mg, b].

Lemma 3.3. Let b is any non-negative locally integrable function defined on R’;. Then
|[Ms, B1F()] < M f(x)
forall f € LY(IRY).

Proof. Since b is non-negative

s

™ o) - b ] = e [

0

1

(bf) (x’ — Y/, AJX% = 2x,y, cosa + yﬁ) sin? ! a da

T

—mmf

0

sin? ' a da

f(x' =y, \JX3 = 2x,y, cosa + yf,)

— [b(x)|

=c f(’(bf) (x’ -y, \/x% = 2xpYycosa + yﬁ) f(x/ -y, \/xﬁ - 2X,Yncosa + ygl) ) sin2! 4 da

and we have
[T oo f(0)| = bE)TY [f)|| < TV [(B() = b(x) ) ()]

Since by making use of the following inequality

sup u(r) — sup v(r)| < sup [u(r) — o(r)|, u(r),v(r) >0

>0 >0 >0
we have
M, B1F @] = [Ma(b() - @M f(x)
= y v Yy 2v
sup o | TSy b sup e [ ey
BOn B(0,7)
! — 2v
) r>O Y1BO, )lVB(Oj; [T1660f ()1 = BT f > dy
= My ((0() ~ B@)FO) ()
= Mppf(x).
0

Lemma3.4. . Let b e Ll“ °(R7}) Then
[[M3, b1f(x)| < Mg f(x) + 26~ (x)Mp f(x)

forall feLY(RY) whereb™(x) = max{~b(x),0}.
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Proof. Since

|[Ms, b1£(x) — [M3, bl £ ()| [Mp(0£)(x) = b(x)Mg f(x) = Mp(Ib|f)(x) + [b()IM5 f ()|
|(Ib(x)| = bx)M £ (x)|

2b™ (x)Mp f(x)

IA

we have
|[M3, b1£(x)| < (Mg, BI1£(x)| + 25~ (x)Mp f(x)

and by using Lemma 3.3, we get

|[Mg, b1 £ (x)| < M, f(x) + 26~ (x)Mp f(x)

The weak-type inequality for the commutator of the B-maximal operator is obtained using Lemma 3.4
and the weak type (1, 1) inequality for the B-maximal function. This result is the following.

Theorem 3.5. Let b € Lo. Then there exist a positive constant c1,c, such that

b q
llx € RY < 1 [Mg, b1 F1 > A, < o ol £, + (cZIIAIILW) I

forall f € L1, N Ly, 1 <q<oo and forall A > 0.

Proof. For A > 0, by using Lemma 3.4, we have

IN

+

v

[l € R+ |[M3, b1 f(0)] > )

{x e R} : Mgy f(x) > %}

{x €R: 267 (OMpf(x) > %}

14
v

IA

+

{x e R} : Mgy f(x) > %}

L+ 1.

A
{remry: 20bl Msf) > 5}

v v

Since the B-maximal operator is a weak type (1,1) we have

A
I = {x €R: 2Bl Maf(x) > E}

<Clbl. f Febdx = Culibl ||f], -
J

+
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Let us estimate I;. By using Holder inequality

Mo f() = supm f TV (b)) ~ b)) FGO) 2y

r>0

B(0,7)
1
s Y _ 2v
< sup IB(O,r)IvB(Of)T(lb(x) bIIf ) v, dy

_ 1 o 2 _ 2\ _
= sup B0, fcvf|b(x Y, A[x5 — 2x,yn cosa + y5) — b(y)l

>0
B(0,r) 0

X |f( =y, \JX2 = 2x,y, cos @ + y2)| sin® ' a da y2'dy

IA

T 1/p
1
SUP B0 AL o | b =y, \Jx2 = 2x,y, cosa + y2) — b(y)F sin® ! a da
8 1B(O, f [ f b6 =y, y ¥2) = b(y)|

B(0,7) 0

n 1/q
X [CV flf(x’ -, \/x% — 2%,y cosa + y2)|7 sin® ! da] y2dy, % + % =1
0
1
- y _ m1/p(TY qy1/q,,2v
< sup o [ (TG~ BN PRy
B(0,r)
1/p 1/g
1 1
Y _ P42V Y q,,2v
< |y | T worde| g | e
B(0,r) B(0,r)
< allbll, (Mgl f17) ().
Therefore
n A n /\ n q 1/'1 /\
I = {x€R+: M f(x) > E} - {xeR+: Mpf(x) > 5} < {xeR+: cillbll (Ml 1) (x) > E}

clblle \' g
(T) ”f” o’ 1< q < 00,

Finally the desired result follows from I; and I,. [J

4. Conclusions

This paper presents the boundedness of the commutator of the B-maximal operator with BMO symbols
and weak-type inequality for the commutator of the B-maximal operator on weighted Lebesque space.
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