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Abstract. Recently, the partially degenerate Bell numbers and polynomials were introduced as a degen-

erate version of Bell numbers and polynomials. In this paper, as a further degeneration of them, we study

fully degenerate Bell numbers and polynomials. Among other things, we derive various expressions for
the fully degenerate Bell numbers and polynomials.

1. Introduction

For A € R, the degenerate exponential function is defined by
() =(1+A1)7T, (see[4,9,11 - 14]). (1)
Note that lim, 0 €} () = e*. For brevity, we also write

er(t) = e;(t).

(2)
It is well known that the degenerate Stirling numbers of the second kind are given by

L -1 =Y S bL, (see ).
n=k

C)
Note that lim,_,0 SoA(11, k) = S2(n, k), where S»(n, k) are the ordinary Stirling numbers of the second kind.
The Bell polynomials (also called Tochard or exponential polynomials and denoted by ¢, (x)) are defined
by the generating function

D = 2 B,(x), (see [1-3,5~8,10]).
n=0 '

(4)
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From (4), we note that
_ X k" k
By() =™ ) 7o, (see [8,15)), )

k=0

which are known as Dobinski’s formula.
It is not difficult to show that

Bu(x) = ) Sa(n, b, (n 2 0), (see [7,8,15,16]). 6)
k=0

In [10], the partially degenerate Bell polynomials are introduced as

PR "
O =} by ?)
n=0 '

When x =1, b,y = b, 1(1) are called the partially degenerate Bell numbers.
From (7), we note that

= -xz(k)“ ko (see [12]), (8)

where (Kon = 1, (s = k(k = A)(k = 24) -+ (k = (n = DA, (n > 1).

Recently, the partially degenerate Bell numbers and polynomials were introduced as a degenerate
version of Bell numbers and polynomials. In this paper, as a further degeneration of them, we study fully
degenerate Bell numbers and polynomials. Among other things, we derive various expressions for the
fully degenerate Bell numbers and polynomials.

2. Fully degenerate Bell numbers and polynomials

Motivated by (4), we consider the fully degenerate Bell polynomials, B, 1(n > 0), which are given by

ex(x(er () = 1) = Y Bua®@) o, (A €R). ©)
n=0 :

When x =1, B, » = By,,1(1) are called the fully degenerate Bell numbers.
Note that

Y lim B (0) = limes (x(ea(t) ~ 1)

n=0
= lim(1 + Ax((1 + AT = 1))7 (10)

(o] tn
— -1 Z Bn(x)ﬁ-
n=0 ’

By comparing the coefficients on both sides, we get

lim B, 1(x) = B,(), (1> 0).
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From (9), we have
ex(x(ea(t) = 1) = (1 + Ax(ea(t) - 1)1

(Drax —(m(f) 1)

(L) xk Z Saa(n, k);
n=k :

( Z(l)k,Aka2,A(7’l, k)):Tn!.

k=0

P M 1 7

I}
o

Therefore, by (9) and (11), we obtain the following theorem.

Theorem 2.1. For n > 0, we have
n
Bua(x) = ) (1axS(n,K).
k=0

In particular,

n

Bua =Y (DkaS2,(n,K).

k=0
By (9), we get
ea(x(er(t) — 1)) = e%log(lﬂ\x(e,\(t)fl))

k
Ak

|(log(1 T+ Ax(en(t) - 1)))

W")—\

A*Y s, k)A’x’ (ea(t) = 1)

s 11 M T I

Ak

1 20

t}’l
S1(l,A'x Z S2(m)—
n=l .

1=k
=Y Y (Y 510Kz, DA )
n=k I=k n!
=Y 510, K)Sa,0(n, DA ’)t,,
n=0 k=0 I=k

where S1(n, k) are the Stirling numbers of the first kind.

Therefore, by (9) and (12), we obtain the following theorem.

Theorem 2.2. Forn > 0, we have

Bua(®)= Y ) S1(LK)Ss0(n, DA,

k=0 I=k
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(11)

(12)
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From (9), we have
Y Bua) s = ealateah — 1)
n=0
=1+ Ax((1+AHT —1))7

= Y Wk + -1
1=0 '

S 1
=Y Y v ant
1=0 " m=0
1

- 1 ! R t
= ;mmx’ﬁ Z:(‘)(m)(_l)l ;mmm

. e n
=X (XX (,i)(—l)""l(lm(m)mxl%)%.

Therefore, by comparing the coefficients on both sides of (13), we obtain the following theorem.

Theorem 2.3. (Dobinski-like formula) For n > 0, we have
) 1 Z 1
— _1\-m 1=
Bia(x) =) ) (m)< D" (Wi (m)ax

1=0 m=0

In particular,

o
Bya = Z Z (m)(_l)]m(l)l,)\(m)n,/\ll_!-

From Theorem 2.3, we note that

lim B, 1(+) = Y ; (’;{1)(—1)“1("%98" = B, (x).

m=0 k=0

510

(13)

(14)
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Now, we observe that

; Bn/\ (n _ 1)|
= %e)\(x(e,\(t) - 1))
_ %(1 +Ax(@ + At -1

= x(1+ Ax((1 + AT = )71 4 110D
= xe} M(x(ea(t) - 1))e; Ah)

—xZu D e - 1){](1 A

—x Y- M Z Saall ) Y0 - Dy
1=0 m=0

m

ok ik sl m
t
=2 Y Y - St D Y1 - D
=0 1=0 m=0
) n k I
=X 2( ) (1= a1 S2406 D1 = i)
n=0 k=0 =0
By (15), we get
[se] tn
ZBHH,A(x)_'
n.
n=0
) n k n tn
() (k)u = a5 DA = Dt )
n=0 k=0 I1=0 ’

Therefore, by comparing the coefficients on both sides of (16), we obtain the following theorem.

Theorem 2.4. For n > 0, we have

n k
Buiia(x) = Z Z (Z)(l — )18 (e, (1 = A)eiop-

k=0 1=0

In particular,

n k
Buiia ( )(1 = NS0k, DA = A)yga-
k=0 1=0

Note that

n k
. n
%HI(I) By a(x) = (k)xl”Sz(k, )
- =0 1=0

1l
=
=
—_
>
~———
os]
~
—~
=
~
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(15)

(16)
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For n € N, by Theorem 2.3, we get

gk
MN

Bn,/\(x) =

(o0 s

I

I
—_
3
—_

—
—

g

m+1 I!

( l )( 1110 (1 + 1) =

fe=}

—
iy

I
(m+ 11 —-m—-1)!

e D

(1 W0+ 1) 0
I

fe=}

I
—_
3

(o8]

! m
ZZ El )71’}’1)' L ( )1 A(Zsl(n kA" k(m+1)k 1)

1=0 m=0

Il
=

!
Z ( : )( D" (Draa Z S1(n, A" K (m + 1)F 1

!
Z:4 (Til)(_l)lm(l)Hl,/\sl(Vl, k)%)\”’k(m + 1)k71
! o
=x ( )( D"(1)1251(n, k) An kZ( ' )mf
k=0 1=0 m=0 L\

o ]
—x /\”_k51(n,k)ZZ(Til)( D" (W1 Z(’;_i) 1

k=0 1=0 m=0 j=1

k oo 1
— 5 Z/\” kSy(n, k)(l; 1)22( )( 1) (1) gy

1=0 m=0

=

By comparing the coefficients on both sides of (17), we obtain the following theorem.

Theorem 2.5. For n € IN, we have

)

) 1
B =xY Z AT, o, k)(k 1) Yy (L)(—l)l-*"(l)m,mf—l’li!.

k=1 j=1 1=0 m=0

In particular,

n 00

- -1\ v v 11
ZA” S(n, k)( )ZZ( )( D" (W a3
=

=1 1=0 m=0
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(17)
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From (9), we can derive the following equation.

n

d t
d_ n,)\(x)m

= Z di nA(x) tn
= aeA(x(e,\(t) -1)

ex(x(er(t) - 1))
1+ Ax((1+ AT = 1)

_M8

= () - 1)

_ ex(t) —1
1+ Ax((1+ AT = 1)

= ;—xlog(l + Ax(ex(t) — 1))er(x(er(t) — 1))

d v D7 Ay £
dx; A (ert) - 1) %BM,A(x>m!

ea(x(ea(t) - 1))

P

1 b m
(DA e = DY Bua)—

m=0

—
1l
—_

p”qg

(~1) A 1Z'ZSzA(k l)k, EBM x)—

=1 m=0
(o) k R m
= YA S ) Y B
’ m!
k=1 I=1 m=0
Sy v (1 -1 31-1,1-1 t
=Y (LY (e s )

1l
—_

n k=1 I=1

Therefore, by comparing the coefficients on both sides of (18), we obtain the following theorem.

Theorem 2.6. For n > 1, we have

n k
%Bm(x) = Z Z (Z)(—l)l_l/\l_lxl_lllsz,A(k, D)Bjg A (x).

k=1 I=1

Note that

hm Bm(x Z( ) n—k(X)

Ll

Bu(x), (n € N).

I
& bl
><|§“ Q,MH
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