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Abstract.Many mathematicians in ([1], [2], [5], [14], [20]) introduced and investigated the generalized

g-Bernoulli numbers and polynomials and the generalized g-Euler numbers and polynomials and the
generalized g-Gennochi numbers and polynomials.

Mahmudov ([15], [16]) considered and investigated the g-Bernoulli polynomials BE,

5 () in x, y of
order a and the g-Euler polynomials 8% (v, y) in x, y of order a. In this work, we define generalized
g-poly-Bernoulli polynomials 8!

7 (x,y)in x, y of order a. We give new relations between the generalized
g-poly-Bernoulli polynomials Blkal

" (x,y) in x, y of order @ and the generalized g-poly-Euler polynomials
8}1}‘/;‘] (%, y) in x, y of order a and the g-Stirling numbers of the second kind S, (1, k).

1. Introduction, Definitions and Notations

As usual, throughout this paper, IN denotes the set of natural numbers, Ny denotes the set of nonnegative
integers, IR denotes the set of real numbers and C denotes the set of complex numbers.

In the usual notations, let B, (x) and E, (x) denote respectively, the classical Bernoulli polynomials and
the classical Euler polynomials in x defined by the generating functions, respectively

— i o
E By (x) = = —¢€", |t| < 2m.
e n' et—-1

1)
and
- "2,
ZEn (x) prialrane LA It < 7. )
n=0
Also, let

B, (0) := B, and E,, (0) := E,,
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where B, and E,, are respectively, the Bernoulli numbers and the Euler numbers.
k € Z and k > 1, then k-th polylogarithm is defined by ([3], [7], [13]) as

e8]

L@ =) 5 ®

n=1
This function is convergent for [z| <1, whenk =1,

Lij (z) = —log (1 —=z) 4)

[15]. The g-numbers and g-factorial are defined by

_ -7
[n]q - 1_q ’q:’él
[n]! = [nl;n-1],[n-2],..[1],,neN,qgeZ

respectively, where [0],! = 1. The g-binomial coefficients are defined by

nl| [n],
[k L_m'oﬁkﬁn

The g-power basis is defined by

S =
Il
(R

n—1
(@ +y) = { gx + Y+ qy)(x+4"7Y),

From above equality, we get

(x+y)) = Z [ ' L oy,

k=0

The g-exponential functions are given by

o 2" = 1 1
= Zo‘ [l g a-G-n7a " o <, < 1]

and
Ey(z) = Zq(g) [j]q! = H (1 +(1- q)qkz), 0< |q( <1l,zeC
n=0 k=0

From here, we easily see that ¢, (z) E; (—z) = 1. The above g-notation can be found in ([8], [13]). Mahmudov

()

in ([15], [16]) defined the g-Bernoulli polynomials 8, (x, y) in x, y of order « and the g-Euler polynomials

851“; (v, y) in x, y of order a, respectively

ST f t\"
ZO Bl (x,y) T (eq = 1) e (1) Ey (ty), It] < 27 5)

and

TN n 2\
ZO & (x,) bl = (eq o 1) ey (1) Eq (ty), Il < m (6)
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where g € C,a € Ny, 0 < ‘q| < 1. It is obvious that

By =800, lim B (xy) =B (x+y), lim B =B
&l ¢ =E50,0), lim &N (xy) =EP (v+y), lim & =E)

Carlitz defined in [6] the g-Stirling numbers of the second kind S, ; (1, k) as

oo (e, - 1)
g G\~
mZ:aSz”’ K)o = i )

[15]. D. Kim et al. in [11] and Bayad et al. in [3] defined the poly-Bernoulli polynomials by the following
generating function

i P Lic(l=e)
DB () = e ®)
n=0
Hamahata in [7] defined the poly-Euler polynomials by,
- " 2Li(1-e™)
EY (x) = = =2,
;O w () n! tet+1) ¢ ®)

For k = 1, from (4). We get BY (x) = B, (x) and E (x) = E,, (x).

[kal
n,q

(x,y) in x, y of order a as the following generating

By this motivation, we define the generalized g-poly-Bernoulli polynomials 8,;," (x, y) in x, y of order
a and the generalized g-poly-Euler polynomials 8,[1}(/;7“

functions, respectively

o0 n L 1 _ —t o

Yot g = (o) @0 @) (10
and

5 n (2L -et)

Z_;) gl (x, y) [;]q! = [ t(l;((t) +e1))] eq (xt) Eq (ty). (11)

For k =1, from Li; (x) = —log (1 — x). The equations (10) and (11) reduces to (5) and (6) respectively.

Srivastava in [20] and Srivastava ef al. in [21] gave basic knowledge the Bernoulli polynomials, the Euler
polynomials and g-Bernoulli polynomials and g-Euler polynomials.

Kim et al. in [11] introduced the poly-Bernoullli polynomials, Luo in [14] and Sadjang in [17] and Simsek
in [18] considered and gave some relations the g-Bernoulli polynomials and the Stirling numbers of the
second kind.

Carlitz in [5] gave some properties of g-Bernoulli polynomials. Mahmudov in ([15], [16]) considered

and investigated some recurrences relations between g-Bernoulli polynomials 35;*; (x,y) in x, y of order a

and g-Euler polynomials 8510‘,; (x,y)in x, y of order a.
Firstly, Kaneko in [9] defined poly-Bernoulli numbers. Bayat et al. in [3] and Hamahata in [7] gave some
identities for the poly-Bernoulli polynomials and the poly-Euler polynomials. Kim et al. in [10] and Kurt

in [12] gave some relations and identities for the g-Bernoulli polynomials B

nq (X, y) in x, y of order a.
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2. Explicit Relations for The Generalized g-Poly-Bernoulli Polynomials BL";’“] (%, y) inx, y of order o

In this section, we give some identities and relations for the generalized g-poly-Bernoullli polynomials
k“] (v, y)inx, y of order a. Also, we prove the closed theorem between the generalized g-poly-Bernoulli

polynomlals Blka ' I(x, y) and the g-Stirling numbers of the second kind Sy, (1, k) .

Tllle(.)rem 2.1. The generalized g-poly-Bernoulli polynomials BL";’ Y(x, ) in x, y of order « satisfy the following
relations.

ity = Y| 7| G+, B4
=0 * 49

iy = Y7 | 8% x0)q0y.
=0 49
n r n 7

By = | B0y
=0 - 49

Proof. We can see easily from (10). O

Theorem 2.2. There is the following relation between the g-poly-Bernoulli polynomials B (x y) and the g-Stirling
numbers of the second kind S, (n, k)

n

Z (Z)B[k” (x+y) - B[kl (x+vy) (12)

1=0

Son—=I,m+1).

i( 1)m+n l(m+1)

= (1)
Proof. By (7) and (10), fora =1 and ¢ — 17, we have (12). [

Theorem 2.3. The following relation holds true

m+n -1
TlBLkl](X‘f‘y) ZZ( )B,(x+y) —(m+ DS (n—-1,m+1). (13)
m=0 =0
Proof. By (10) for @ = 1, by using (7), we write as
= k1] _ 1teq (xt) Eq (ty) o
;B (x, y)[ T t—eq(t)—l le(l e )

Z[n]q nklllq( y)[ ] |

n=0

{Zqu(x y) l] 1
1

x m+1
Z_ 1) (m + 1) 52,‘1 (p’m + 1) (_1)p+1 :;}

~ (m + 1

We take to limit 4 — 1~ both sides and by using the Cauchy product, we have (13). O
Theorem 2.4 (Closed Formula). The following relation holds true

min(n,k)

B (x4 y) = Z (D% Sz (n,j,x+1)S2(k, j,1). (14)
j=0
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Proof. By replacing k by —k in (10) , fora =1, we get

iB[ E11 (x, ) —— n] , i (m + 1) (1 3 e_t)m+1 ey (tx) Eg (iy)

n=0 m=0 Eq (t) B

we take to limit ¢ — 17 in both sides, we have

= [—k,1] ﬂ _ = k ot m+1 ext+ty
;Bn (x+y)n!—mZ:0(m+1) (1 e ) T

From here, we write as

519

= > _pm+l . u
ZZB[“](x+y) i Z (m + 1) l—et) et”yﬁ
k=0 n=0 k=0 m=0
— . m+1 xt+tye(m+1)u
ext+ty (1 _ e—t) et o A\
= ——7 Z_O((l—e )e) (15)
Carlitz et al in [6] defined the weighted Stirling numbers of the second is defined kind as
xt -1
(e f Zsz (n,k, x) (16)

[18]. By using (15) and (16) ,we get

P X n .k (x+y)t pu
[k 1] ruw e e
_O;B" 9 T—@-D@ -1
= Z elvo)t (et - 1)j e (e — 1)
=0
_ = [],'e(“y)t (et - 1)’ jlet (e —1)7]
= J! J!

Mz

1]
fe=}

j n=0

— . " e ok
J'ZSZ(”’]”“W)E']!;SZ("’]’DE

By using Cauchy product and comparing the coefficients of both sides , we have (14). O
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