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Abstract. In this paper, we focus on some approximations with Hurwitz zeta function. By using these

approximations, we present some asymptotic formulae related to Hurwitz zeta function. As an application,
we give two corollaries related to Bernoulli polynomials.

1. Introduction, definitions and preliminaries

Throughout this article, N denotes the set of natural numbers, R denotes the set of real numbers and C
denotes the set of complex numbers.

Let g, s € C. Hurwitz zeta function and Riemann zeta function are respectively defined by (cf. [2], [8])

0o

C(Slw) = Zom ,(Re(s) > 1/7’060:\{01_11_2/_3/'“})

and

0o

(6 =Y (Re) > 1),

n=1

Forw =1, {(s,1) = ((s). Also, Hurwitz zeta function and Riemann zeta function are related to Bernoulli
polynomials.
Bernoulli polynomials are defined by the following generating function:
R - £
' = ZO Bu()— (cf. [8], [10])
wherea € C, |f| < 27.

Hurwitz zeta function, Riemann zeta function and Bernoulli polynomials are the famous special func-

tions for Analytic Number Theory. Also, it is possible to investigate the approximation of these functions.
The special functions and their approximations were considered by Luke (cf. [9]).
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In Section 2, we use

lim (1 ; K) — oY, (1.1)

n—oo n

Also, (L.1I) can be written by
1
lim (1+ Ay)* =év.
lim (1+Ay)* =e

(1.1) is a well-known result in Classical Analysis. Many authors have used this result in Analytic
Number Theory. For instance, Carlitz introduced the degenerate Bernoulli polynomials given by the
generating function:

t f "

— (1+Apf= Z Bu(a| V)= (cf. [6], [7] and [5]). 1.2)
(1 + At)’\ - 1 n=0 n.

Fora =0, 8,(0| A) = B,(A) are called the degenerate Bernoulli numbers. From (1.2), we note that

lim Bu(a | A) = Bu(a) (n20).

2. Main Results

In this section, we give a key lemma to give our main results related to approximation of the Hurwitz
zeta function. Letk € Nand 0 < y € R.

We put y — ky in (L.I):
k —n
lim (1 + _]/) =e™
n—oo n

Then, we expand the series on k:

5 fumfs- 2 )5

k=0 k=0
or
(o] k —-n (o)
lim (1 + —y) = Z ek
n—00 n
k=0 k=0
We set

Il
5
—

S|
~——
=

00 k -n _
lim (1 + —y) im (2
n—-oo n n—00

k=0

tm () e[ 5)

From the property of geometric sum, we know

(e8]

ey -1

k=0

Then, we arrive at the following Lemma:
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Lemma 2.1.
m (2) " cfn2) = 2
r%l—r&(n C(n'y)_ey—l'
Theorem 2.2.
(-1 ¢(m )
Iim ————= = ¢,
c(n-1)

Proof. We put y — —yin (2.1):

. Y - ny_ 1
;}1—1&( n) C(n, y)_ ey —1

From (2.1) and (2.3)), we obtain the desired result. O

Theorem 2.3. Let A € R. Then, we have

Gl 5],y (b))
)

Proof. Tt is immediately seen from Theorem[.2|for y — Ay. O

lim
o5

We note that

d n\ _ im 1
@C(n’ﬁ) dyz k)’

and
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Theorem 2.4.

N )

M)

Proof. We take the first derivative respect to y into (2.2):
B R )
s )
)
-1y C(1+ n,g)} ) ey{lim n_zc(l + n,—g)}

lim

¥2 C(n,—ﬂ)

1l
2
l
8

Therefore, we get

- n2(_1)n C (1 +n, g)

U )

|
3]
=
|
—_
+
5
|3
N
(e
—~
—_
+
3
|
1=
~—
—_———

Then, we obtain the desired result. [
Theorem 2.5. Let A € R. Then, we have

O (i) {(—1)”C(1+n,§)]A

e (U | e FR—y

Proof. Tt is immediately seen from Theorem[2.4/for y — Ay. O

Theorem 2.6.

tim (£) {C(n, E) " (—1)"c(n,—f)} -1
e\t y y
Proof. Ttis easily seen from and 2.3). O

Theorem 2.7. Let A € R. Then, we have
tim () {7y - el )}
~ (O AT A
- '}52(”) {C(n'y)+( Y C(n’ y)}
= lim (3)_" {C(n, E) +(=1)'C (n, —E)}.
n—eo\n Y Y

Proof. Ttis easily seen from (2.5). O

531

2.4)

(2.5)
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Theorem 2.8. Let y > 0. Then, we have

p G e on )l oncif = =

Proof. We take the first derivative respect to y into (2.5):

)
+hm(%)_” ”2c T B —c 14+n,-2
—el\n) |2 y y

By using (2.5) into the above equation, we obtain the desired result. [
Theorem 2.9. Let A,y > 0. Then, we have

(5] {efron ) -cveln )
B )
=t () fefrem ) cvre(en g}

Proof. Ttis easily seen from (2.6). O
We note that

d n d 1
wlend) = B

2
and
d n d w— 1
@C(1+n,—§) - @;5(_§+k)”+1
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Theorem 2.10.
n
(-1 C(Z +n, 5)

R )

Proof. We take the first derivative respect to y into (2.4):
(l) (1+1)
ey (24, 5) L1 n,=3) + 2R (240, -3 ) (140, 2)]

o (c(t+n-2))

= i M DELT C2+n3) }+ey{lim n(n:1)6(2+n,—§)}
ooy C(1+n,-4) ey C(14n,-2)
= —ey

Therefore, we get

o T DD’ ceemg) L
n—e y C(1+n,-1)

g M+ 2 )
ey (14n,-t)

Then, we obtain the desired result. [
Theorem 2.11. Let A € IR. Then, we have
A
(1)1 C(24m, ) 1" C(24m,2)
lim = lim .
C(2+n, Ay) C(2+n,—?)

Proof. It is immediately seen from Theorem fory—Ay. O

Theorem 2.12. Let y > 0. Then, we have
3 - n " n
11mn(n+1)( ) C2+7’l,§ +(_1) C2+n,—§ = Q.

n—o0

Proof. We take the first derivative respect to y into (2.6):
=1-n
lim n? (}—/) {—C(1+n,ﬁ)+(—l)”(;(1+n,—2)}
n—oo n y y

+1imn2(¥)_n{"("—jl)c(2+ )+( 2t D, (2+n,—f)}
e \n y y 2 y

By using (2.6) into the above equation, we obtain the desired result. [

(e

Theorem 2.13. Let A,y > 0. Then, we have

]}i_r)?on3(n+1)(%)_n{6_;(2+n Ay)+( 1)" (2+n ——)

y —-An
_ 1}%(;13(“1)%(;) {C(2+n }7)+( 1" C(2+n _;7)}

= lim nP(n+ 1) (z)_n {c (z o, f) +(-1)'C (2 i, _E)} .
n—-oo n y y

A

o i D[ -y
e 12 [ n(n+1) C(1+n,—§) '
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(2.8)
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Proof. It is easily seen from (2.8). O

3. Applications

Finally, we give some approximations related to Bernoulli polynomials, by using the following property:

Comay =222 (o m, @, @, 8. (3.1)
From 2.1)), we set
ey . Y n n
ey —1 —ngIPw( n) C( " y) (3.2)

Then, we choose a = —n/y into (3.1):

B (-5)
n _ n+1 v
C(—n,—;) S’ L] (33)
By using (3.2) and (3.3), we arrive at the following corollary:
Corollary 3.1.
B.. (-2
m () wi(-3) e
nl—lgo( n n+l — 1-ev (3-4)
Putting y — —y in (3.4), we have
n Bus1 (2
i z) n+1 (y) B 1
n1—1>IP<>0(n n+l ev-1 (35)

From and (3.5), we arrive at the following corollary:
Corollary 3.2.

L DB (-4)

H )

= —e’.
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