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Abstract. The main purpose of this paper is to provide various identities and formulas for higher-
order combinatorial-type numbers and polynomials with the help of generating functions and their both
functional equations and derivative formulas. The results of this paper comprise some special numbers and
polynomials such as the Stirling numbers of the first kind, the Cauchy numbers, the Changhee numbers, the
Simsek numbers, the Peters poynomials, the Boole polynomials, the Simsek polynomials. Finally, remarks
and observations on our results are given.

1. Introduction

The aim of this paper is to provide some new identities and relations for a family of generating functions
constructed via inspiring by the following equations given by Simsek [9, p. 567]:∫

X

λx(1 + λt)xχ(x)dµ−q (x) =
1 + q(

λq
)d (1 + λt)d − 1

d−1∑
j=0

(−1) jχ( j)
(
λq

) j (1 + λt) j

and

H(t;λ, q, χ) =

(
1 + q

)∑d−1
j=0 (−1) jχ( j)

(
λq

) j (1 + λt) j(
λq

)d (1 + λt)d − 1
=

∞∑
n=0

Yn,χ(λ, q)
tn

n!
,

where

µq(x) = µq(x + pNZp) =
qx[
pN] ,

[x] =
[
x : q

]
=

{ 1−qx

1−q , q , 1
x, q = 1,
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X = Xd = lim
←

N
Z/dpNZ, X1 = Zp (the set of p-adic integers),

and d is an even positive integer, λ ∈ Zp with λ , 1 and χ denotes the Dirichlet character with even
conductor d.

Here, we note that for any integer d, we give some fundamental properties of the numbers In,d
(
λ, q

)
(of

higher-order) and the polynomials In,d
(
x;λ, q

)
(of higher-order) which are defined by means of the following

generating functions, respectively:

Fd
(
t;λ, q

)
=

log(1 + λt)(
λq

)d (1 + λt)d − 1
=

∞∑
n=0

In,d
(
λ, q

) tn

n!
, (1)

and

Gd
(
t, x;λ, q

)
= (1 + λt)xFd

(
t;λ, q

)
=

∞∑
n=0

In,d
(
x;λ, q

) tn

n!
, (2)

also generating functions of their higher-order are given by

Fd
(
t;λ, q, k

)
=

 log(1 + λt)(
λq

)d (1 + λt)d − 1

k

=

∞∑
n=0

I(k)
n,d

(
λ, q

) tn

n!
, (3)

and

Gd
(
t, x;λ, q, k

)
= (1 + λt)x

Fd
(
t;λ, q, k

)
=

∞∑
n=0

I(k)
n,d

(
x;λ, q

) tn

n!
, (4)

where k is a nonnegative integer (cf. [5], [6]).

Theorem 1.1 (cf. [5]). Let n be a nonnegative integer. Then we have

I(k)
n,d

(
x;λ, q

)
=

n∑
j=0

(
n
j

)
λn− j (x)n− j I(k)

j,d

(
λ, q

)
(5)

where (x)n = x (x − 1) . . . (x − n + 1).

By (5), one can easily see that I(k)
0,d

(
x;λ, q

)
= I(k)

0,d

(
λ, q

)
. Setting k = 0 into (5) yields I(0)

n,d

(
x;λ, q

)
= λn (x)n .

Higher-order Simsek numbers Y(k)
n (λ) and higher-order Simsek polynomials Y(k)

n (x;λ) are defined by
means of the following generating functions, respectively (cf. [4], [9]):

F (t, k;λ) =

(
2

λ (1 + λt) − 1

)k

=

∞∑
n=0

Y(k)
n (λ)

tn

n!
, (6)

and

F (t, x, k;λ) = (1 + λt)x
F (t, k;λ) =

∞∑
n=0

Y(k)
n (x;λ)

tn

n!
(7)

where k is a nonnegative integer and λ is a real or complex number. It should be noted that Yn (λ) = Y(1)
n (λ),

Yn (x;λ) = Y(1)
n (x;λ) and Y(k)

n (λ) = Y(k)
n (0;λ) (cf. [4], [9], [11]).

In order to obtain our results, we also need the following generating functions for well-known special
numbers and polynomials:
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The Stirling numbers of the first kind S1 (n, k) are given by

FS1 (t, k) =

(
log (1 + t)

)k

k!
=

∞∑
n=0

S1 (n, k)
tn

n!
(8)

(cf. [7]; see also the references cited therein).
The generating function for the Bernoulli numbers bn (0) of the second kind, which are also called the

Cauchy numbers, are given by (cf. [7, p. 116]):

FC (t) =
t

log (1 + t)
=

∞∑
n=0

bn (0)
tn

n!
(9)

and these numbers are calculated by the following definite integral (cf. [7, p. 114]):

bn (0) =

1∫
0

(x)n dx. (10)

The generating function for the Peters polynomials sn(x;λ, µ), which is a member of the family of Sheffer
sequences, is given by

FP
(
t, x;λ, µ

)
=

1(
1 + (1 + t)λ

)µ (1 + t)x =

∞∑
n=0

sn(x;λ, µ)
tn

n!
, (11)

(cf. [1], [3], [7], [8]). Besides, in their special case when µ = 1, the Peters polynomials sn(x;λ, µ) are reduced
to the Boole polynomials ξn (x;λ) (cf. [3]):

ξn (x;λ) = sn(x;λ, 1)

which, for x = 0 and λ = 1, yields the Changhee numbers Chn = 2ξn (0; 1) (cf. [2]).

2. Identities for the numbers I(k)
n,d

(
λ, q
)

and the polynomials I(k)
n,d

(
x; λ, q

)
In this section, we present some identities and relations involving the numbers I(k)

n,d

(
λ, q

)
and the poly-

nomials I(k)
n,d

(
x;λ, q

)
.

By making use of (3), we have the following functional equation:

Fd
(
t;λ, q, k + v

)
= Fd

(
t;λ, q, k

)
Fd

(
t;λ, q, v

)
.

Using the Cauchy product in the above equation yields

∞∑
n=0

I(k+v)
n,d

(
λ, q

) tn

n!
=

∞∑
n=0

 n∑
j=0

(
n
j

)
I(k)

j,d

(
λ, q

)
I(v)
n− j,d

(
λ, q

) tn

n!
.

Equating the coefficients of tn

n! on both sides of the above equation yields a computation formula for the
numbers I(k+v)

n,d

(
λ, q

)
by the following theorem:

Theorem 2.1.

I(k+v)
n,d

(
λ, q

)
=

n∑
j=0

(
n
j

)
I(k)

j,d

(
λ, q

)
I(v)
n− j,d

(
λ, q

)
.
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With the help of Theorem 2.1, some numerical values of the numbers I(k)
n,d

(
λ, q

)
are computed as follows:

I(2)
0,d

(
λ, q

)
= I(2)

1,d

(
λ, q

)
= 0, I(2)

2,d

(
λ, q

)
=

2λ2((
λq

)d
− 1

)2 , I(2)
3,d

(
λ, q

)
=

6λ3
(
1 − (1 + 2d)

(
λq

)d
)

((
λq

)d
− 1

)3 , . . .

By (3), we obtain

(
log (1 + λt)

)k =
((
λq

)d (1 + λt)d
− 1

)k
∞∑

n=0

I(k)
n,d

(
λ, q

) tn

n!
.

Making use of the Binomial theorem in the above equation together with combining (8), we get

k!
∞∑

n=0

λnS1 (n, k)
tn

n!
=

k∑
j=0

(−1)k− j
(
k
j

) (
λq

)dj

 ∞∑
n=0

(
dj

)
n λ

n tn

n!


 ∞∑

n=0

I(k)
n,d

(
λ, q

) tn

n!

 .
Using the Cauchy product and equating the coefficients of tn

n! on both sides of the above equation, we arrive
at the following theorem:

Theorem 2.2.

S1 (n, k) =
1

k!λn

k∑
j=0

n∑
m=0

(−1)k− j
(
k
j

)(
n
m

) (
λq

)dj (dj
)

m λ
mI(k)

n−m,d

(
λ, q

)
.

Substituting x = d into (5) and k = 1 into Theorem 2.2 with the help of following well-known identity

S1 (n, 1) = (−1)n−1 (n − 1)!, (12)

we also arrive at the following corollary:

Corollary 2.3.

λn (−1)n−1 (n − 1)! =
(
λq

)d In,d
(
d;λ, q

)
− In,d

(
λ, q

)
. (13)

By (3) and (11), in the special case when d is odd integer, we have the following functional equation:

Fd

(
t;λ,−

1
λ
, k

)
= (−1)k k!FS1 (λt, k) FP (λt, 0; d, k) .

which yields

∞∑
n=0

I(k)
n,d

(
λ,−

1
λ

) tn

n!
= (−1)k k!

 ∞∑
n=0

λnS1 (n, k)
tn

n!


 ∞∑

n=0

λnsn(0; d, k)
tn

n!

 .
Using the Cauchy product and comparing the coefficients of tn

n! on both sides of the final equation, we arrive
at the following theorem:

Theorem 2.4. Let d be odd integer. Then we have

I(k)
n,d

(
λ,−

1
λ

)
= (−1)k k!λn

n∑
j=0

(
n
j

)
S1

(
j, k

)
sn− j(0; d, k).
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By setting k = 1 into Theorem 2.4 and using (12), we arrive at the following corollary:

Corollary 2.5. Let d be odd integer. Then we have

In,d

(
λ,−

1
λ

)
= λn

n∑
j=1

(−1) j
(n) j ξn− j (0; d)

j
.

By setting d = 1 into Corollary 2.5, we also arrive at the following corollary:

Corollary 2.6.

In,1

(
λ,−

1
λ

)
= λn

n∑
j=1

(−1) j
(n) j Chn− j

2 j
. (14)

Since

Chn =
(−1)n n!

2n

(cf. [2]), equation (14) is also written as follows:

In,1

(
λ,−

1
λ

)
=

(−1)n λnn!
2n+1

n∑
j=1

2 j

j
. (15)

Combining the above equation with the following well-known identity,

2n

n

n−1∑
k=0

1(n−1
k
) =

n∑
j=1

2 j

j

for n ≥ 1 (cf. [10]), we get the following corollary:

Corollary 2.7.

In,1

(
λ,−

1
λ

)
=

(−1)n λn (n − 1)!
2

n−1∑
k=0

1(n−1
k
) .

By (3), (6) and (8), we have the following functional equation:

F1 (t;λ, 1, k) =
k!
2k
F (t, k;λ) FS1 (λt, k)

which yields

∞∑
n=0

I(k)
n,1 (λ, 1)

tn

n!
=

k!
2k

 ∞∑
n=0

Y(k)
n (λ)

tn

n!


 ∞∑

n=0

λnS1 (n, k)
tn

n!

 .
Using the Cauchy product in the above equation and comparing the coefficients of tn

n! on both sides of the
final equation, we arrive at the following theorem:

Theorem 2.8.

I(k)
n,1 (λ, 1) =

k!
2k

n∑
j=0

(
n
j

)
λn− jY(k)

j (λ) S1
(
n − j, k

)
. (16)
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Remark 2.9. Since

Y(k)
n (λ) = (−1)n

(
n + k − 1

n

)
2kn!λ2n

(λ − 1)k+n
.

(cf. [4]), equation (14) is also written as follows:

I(k)
n,1 (λ, 1) =

kλn

(λ − 1)k

n∑
j=0

(−1) j
(
n
j

) (
j + k − 1

)
!
(
λ

λ − 1

) j

S1
(
n − j, k

)
. (17)

2.1. Riemann integral representation of the polynomials I(k)
n,d

(
x;λ, q

)
Here, we provide integral representation of the polynomials I(k)

n,d

(
x;λ, q

)
.

Integrating both sides of (5) from 0 to 1 with respect to x yields

1∫
0

I(k)
n,d

(
x;λ, q

)
dx =

n∑
j=0

(
n
j

)
λn− jI(k)

j,d

(
λ, q

) 1∫
0

(x)n− j dx.

Combining the above equation with (10) yields the Riemann integral representation of the polynomials
I(k)
n,d

(
x;λ, q

)
by the following theorem:

Theorem 2.10.
1∫

0

I(k)
n,d

(
x;λ, q

)
dx =

n∑
j=0

(
n
j

)
λn− jI(k)

j,d

(
λ, q

)
bn− j (0) .

3. Further identities arising from partial derivative formulas for the function Gd
(
t, x; λ, q, k

)
The aim of this section is to present a few partial derivative formulas including the generating function

Gd
(
t, x;λ, q, k

)
. By making use of these derivative formulas, we derive some identities in association with

the Cauchy numbers and the polynomials I(k)
n,d

(
x;λ, q

)
.

Taking the derivative of (4) with respect to the parameter q yields the following partial differential
equation

∂
∂q
{Gd

(
t, x;λ, q, k

)
} = −

dk
(
λq

)d

q log (1 + λt)
Gd

(
t, x + d;λ, q, k + 1

)
. (18)

Upon rearranging right-hand side of the equation (18) and making use of the generating function for
the Cauchy numbers in (9), we get the following functional equation:

∂
∂q
{Gd

(
t, x;λ, q, k

)
} = −

dk
(
λq

)d−1

t
FC (λt)Gd

(
t, x + d;λ, q, k + 1

)
. (19)

which readily yields

∞∑
n=0

∂
∂q
{I(k)

n,d

(
x;λ, q

)
}
tn

n!
= −

dk
(
λq

)d−1

t

 ∞∑
n=0

λnbn (0)
tn

n!


 ∞∑

n=0

I(k+1)
n,d

(
x + d;λ, q

) tn

n!

 .
By using the Cauchy product in the above equation and after some elementary calculations, we obtain

∞∑
n=0

∂
∂q
{I(k)

n,d

(
x;λ, q

)
}
tn

n!
= −dk

(
λq

)d−1
∞∑

n=0

 1
n + 1

n+1∑
j=0

(
n + 1

j

)
λ jb j (0) I(k+1)

n+1− j,d

(
x + d;λ, q

) tn

n!
.
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Upon comparing the coefficients of tn

n! on both sides of the above equation, we arrive at a derivative formula
for the polynomials I(k)

n,d

(
x;λ, q

)
by the following theorem:

Theorem 3.1.

∂
∂q
{I(k)

n,d

(
x;λ, q

)
} =
−dk

(
λq

)d−1

n + 1

n+1∑
j=0

(
n + 1

j

)
λ jb j (0) I(k+1)

n+1− j,d

(
x + d;λ, q

)
.

On the other hand, it follows from (4) and (18) that

∞∑
n=0

I(k+1)
n,d

(
x + d;λ, q

) tn

n!
= −

q log (1 + λt)

dk
(
λq

)d

∞∑
n=0

∂
∂q
{I(k)

n,d

(
x;λ, q

)
}
tn

n!
.

Combining the above equation with the Taylor series for the function log (1 + λt) yields

∞∑
n=0

I(k+1)
n,d

(
x + d;λ, q

) tn

n!
= −

q

dk
(
λq

)d

∞∑
n=0

n
n−1∑
j=0

(−1) j (n − 1)!λ j+1(
n − 1 − j

)
!
(
j + 1

) ∂
∂q
{I(k)

n−1− j,d

(
x;λ, q

)
}

 tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation yields the following theorem:

Theorem 3.2.

I(k+1)
n,d

(
x + d;λ, q

)
= −

n!

dk
(
λq

)d−1

n−1∑
j=0

(−1) j λ j(
j + 1

) (
n − 1 − j

)
!
∂
∂q
{I(k)

n−1− j,d

(
x;λ, q

)
}. (20)

Also, taking the derivative of (4) with respect to the parameter x yields the following partial differential
equation

∂
∂x
{Gd

(
t, x;λ, q, k

)
} = log (1 + λt)Gd

(
t, x;λ, q, k

)
. (21)

If we combine equation (21) with equation (4) and the Taylor series for the function log (1 + λt), then we get

∞∑
n=0

∂
∂x
{I(k)

n,d

(
x;λ, q

)
}
tn

n!
=

∞∑
n=0

n
n−1∑
j=0

(−1) j (n − 1)!λ j+1(
n − 1 − j

)
!
(
j + 1

) I(k)
n−1− j,d

(
x;λ, q

) tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation yields the following theorem:

Theorem 3.3.

∂
∂x
{I(k)

n,d

(
x;λ, q

)
} = λn!

n−1∑
j=0

(−1) j λ j(
n − 1 − j

)
!
(
j + 1

) I(k)
n−1− j,d

(
x;λ, q

)
. (22)
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